PROJECT NAME : Effect of crimes on Housing price Index NAME : Naznee Mansoori E mail : nazneenmansoori968@gmail.com COLLEGE : IIT Kanpur

1.Introduction

Everyone wants to live with their family and wants to feel safe in their home, but what if you bought a house in wrong place because you didn’t analyse the neighbourhood area or you were facing financial crisis. Often, places where crimes like robbery, rape, assaults or violence occur frequently people either leave their home and settle down elsewhere or they sell their houses in very low price because of hurry. This project addresses the issue of crime in American states and change in housing price index during the period of 1975 to 2015. It was the time when american economy was already well established and new business ideas were growing fast in places like california, San-francisco and LA. During this span of forty years america had faced all ups and downs like oil-shock, 9/11 and small country wars. We investigated housing price index as dependent variable on crimes to see the effect on development of society, as places where people live longer have much grown culture than the other.

2.Overview of project

Our project present a study of increase in price of houses in american state, on an average everywhere price have been increased, which can be observed in plot of mean housing price index of the states over the years.There is negative correlation between housing price Index and crimes.(Please see Appendix 1 and 2). We have analysised change in population over the years. Our study includes total 44 states of america,which includes Miami,Boston,Pittsbergh,Washington and many other famous city.

Hypothesis H1: Over the year Housing price Index have been increased so high, does this means crimes are falling in America.

3.Data

This dataset was actually made to check the correlations between a housing price index and its crime rate. Rise and fall of housing prices can be due to various factors with obvious reasons being the facilities of the house and its neighborhood. Think of a place like Detroit where there are hoodlums and you don’t want to end up buying a house in the wrong place. This data set will serve as historical data for crime rate data and this in turn can be used to predict whether the housing price will rise or fall. Rise in housing price will suggest decrease in crime rate over the years and vice versa.

4.Model

To see the correlation between crime data and housing price index, we proposed the following model, with housing price index as dependent variable Housing Price Index = ????0 +(Year) ????1 + (Population) ????2 + (Homicides)????3 + (Robberies)????4 + (Rapes)????5 + (Violent Crimes)????6 + (Assaults)????7 + (City..State)????8 + error (Numbers 0-8 in above equation denote betas’ coefficients)???(e)????8 #4.1 Reading Data

setwd("C:/Users/Taiyyab Ali/Desktop/R language")
 Housingpriceindex <- read.csv("Housingpriceindex.csv")
 View(Housingpriceindex)

4.2 Tested model

Model1 = index_nsa ~ Year + Population + Homicides + Robberies + Rapes + Violent.Crimes + Assaults + City..State 
fit <- lm(Model1, data = Housingpriceindex)
summary(fit)
## 
## Call:
## lm(formula = Model1, data = Housingpriceindex)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -84.289 -15.412  -2.201  10.405 182.836 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 -9.360e+03  1.282e+02 -73.007  < 2e-16 ***
## Year                         4.748e+00  6.417e-02  74.003  < 2e-16 ***
## Population                   5.613e-06  1.576e-06   3.562 0.000378 ***
## Homicides                    4.162e-03  1.218e-02   0.342 0.732642    
## Robberies                    7.298e-04  5.229e-04   1.396 0.163040    
## Rapes                       -1.106e-02  3.995e-03  -2.769 0.005679 ** 
## Violent.Crimes              -9.682e-05  3.736e-04  -0.259 0.795527    
## Assaults                     7.458e-05  7.445e-04   0.100 0.920211    
## City..StateArlington, TX     1.725e+00  6.244e+00   0.276 0.782419    
## City..StateAtlanta, GA       1.800e+00  6.129e+00   0.294 0.768990    
## City..StateAurora, CO        3.150e+01  6.210e+00   5.073 4.37e-07 ***
## City..StateAustin, TX        2.932e+01  6.171e+00   4.751 2.20e-06 ***
## City..StateBaltimore, MD     9.210e+00  6.148e+00   1.498 0.134281    
## City..StateBoston, MA        2.259e+01  6.240e+00   3.620 0.000304 ***
## City..StateBuffalo, NY      -1.590e+01  6.187e+00  -2.570 0.010249 *  
## City..StateCharlotte, NC    -5.170e+00  6.234e+00  -0.829 0.407051    
## City..StateChicago, IL       1.124e+00  6.117e+00   0.184 0.854237    
## City..StateCincinnati, OH   -6.436e+00  6.158e+00  -1.045 0.296118    
## City..StateCleveland, OH    -9.708e+00  6.109e+00  -1.589 0.112198    
## City..StateColumbus, OH     -5.089e+00  6.153e+00  -0.827 0.408337    
## City..StateDallas, TX        5.267e+00  6.180e+00   0.852 0.394213    
## City..StateDenver, CO        3.208e+01  6.190e+00   5.183 2.46e-07 ***
## City..StateDetroit, MI      -4.220e+00  6.178e+00  -0.683 0.494706    
## City..StateFresno, CA        5.140e+00  6.225e+00   0.826 0.409060    
## City..StateHonolulu, HI     -1.526e+01  6.262e+00  -2.436 0.014952 *  
## City..StateHouston, TX       1.253e+01  6.199e+00   2.021 0.043476 *  
## City..StateIndianapolis, IN -9.631e+00  6.241e+00  -1.543 0.122967    
## City..StateJacksonville, FL  1.443e+01  6.267e+00   2.303 0.021392 *  
## City..StateLouisville, KY    1.080e+00  6.227e+00   0.173 0.862357    
## City..StateMemphis, TN      -4.843e+00  6.217e+00  -0.779 0.436099    
## City..StateMesa, AZ          2.342e+01  6.269e+00   3.736 0.000194 ***
## City..StateMiami, FL         3.096e+01  6.183e+00   5.007 6.10e-07 ***
## City..StateMilwaukee, WI     4.964e+00  6.331e+00   0.784 0.433169    
## City..StateMinneapolis, MN   1.904e+01  6.200e+00   3.072 0.002164 ** 
## City..StateNashville, TN     7.028e+00  6.311e+00   1.114 0.265562    
## City..StateNewark, NJ        1.271e+01  6.216e+00   2.044 0.041125 *  
## City..StateOakland, CA       1.399e+01  6.223e+00   2.249 0.024664 *  
## City..StateOmaha, NE         4.025e+00  6.276e+00   0.641 0.521376    
## City..StateOrlando, FL       5.917e+00  6.277e+00   0.943 0.345995    
## City..StatePhiladelphia, PA  6.232e+00  6.189e+00   1.007 0.314084    
## City..StatePhoenix, AZ       2.406e+01  6.237e+00   3.857 0.000119 ***
## City..StatePittsburgh, PA   -2.853e+00  6.195e+00  -0.460 0.645262    
## City..StatePortland, OR      2.731e+01  6.295e+00   4.339 1.52e-05 ***
## City..StateRaleigh, NC      -3.007e+00  6.249e+00  -0.481 0.630426    
## City..StateSacramento, CA   -1.063e+00  6.206e+00  -0.171 0.864078    
## City..StateSeattle, WA       1.551e+01  6.160e+00   2.517 0.011913 *  
## City..StateTampa, FL         1.640e+01  6.214e+00   2.639 0.008392 ** 
## City..StateTucson, AZ        1.090e+01  6.223e+00   1.752 0.080037 .  
## City..StateTulsa, OK         4.952e+00  6.225e+00   0.795 0.426474    
## City..StateWashington, DC    1.243e+01  6.152e+00   2.020 0.043540 *  
## City..StateWichita, KS       1.576e+00  6.184e+00   0.255 0.798872    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 27.21 on 1657 degrees of freedom
## Multiple R-squared:  0.8088, Adjusted R-squared:  0.803 
## F-statistic: 140.2 on 50 and 1657 DF,  p-value: < 2.2e-16

We use the OLS model which minimise the error using least square method and gives the beta coefficients. By using these beta we can predict housing price index for coming years. The R-square value is pretty high so our model estimated a good approximation model and adjusted R-square value shows all the independent variables are important to include.(we have checked by removing some variables values of R-square and adjusted R-square decreased in most cases).

4.3 Result

Value of F- statistics and p-value <<0.001 shows our hypothesis is right.All the City..states with statistically significant p-value of beta are currently well developed states and have grown well in terms of education, society and bussiness.We can see Boston,Washington,Denver,Miami,Seattle and others in this statistically significant list.Over the years technology and population changed which played vital role in change in housing price index as both year and population is statistically significant p-value of their beta coefficiengts is less than 0.01.By forcing law and order properly in states, crimes decreses and that result in rich societal value which leads to attract people to buy house at higher cost.

4.4 Conclusion

By forcing law and order properly in states, crimes decreses and that result in rich societal value which leads to attract people to buy house at higher cost.Over hypothesis is true that crimes and housing price index have negative correlation between each other. People generally like to live crouded places where law and order are properly working and crime rate is low.

4.5 References

Housing price index data Available from https://www.kaggle.com/sandeep04201988/housing-price-index-using-crime-rate-data

American crime study Available from https://www.kaggle.com/marshallproject/crime-rates

fit$coefficients[1:8]
##    (Intercept)           Year     Population      Homicides      Robberies 
##  -9.359824e+03   4.748463e+00   5.613083e-06   4.162309e-03   7.297628e-04 
##          Rapes Violent.Crimes       Assaults 
##  -1.106297e-02  -9.682311e-05   7.458312e-05

5.1 Appendix 1

Studying correlation

cor(Housingpriceindex$index_nsa,Housingpriceindex$Population,method = "pearson")
## [1] 0.1021095

Positive correlation between population and housing price index, as expected with increase in population housing price index increases but slop of housing price index is very high in comparison to population, which can be the reason of weak correlation.

cor.test(Housingpriceindex$index_nsa,Housingpriceindex$Population,method = "pearson")
## 
##  Pearson's product-moment correlation
## 
## data:  Housingpriceindex$index_nsa and Housingpriceindex$Population
## t = 4.2397, df = 1706, p-value = 2.358e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.05494486 0.14881948
## sample estimates:
##       cor 
## 0.1021095

As p-value is less than 0.01, this correlation is statistically significant.

cor.test(Housingpriceindex$index_nsa,Housingpriceindex$Violent.Crimes)
## 
##  Pearson's product-moment correlation
## 
## data:  Housingpriceindex$index_nsa and Housingpriceindex$Violent.Crimes
## t = -1.4656, df = 1706, p-value = 0.1429
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.08275273  0.01198973
## sample estimates:
##         cor 
## -0.03546118

People don’t like to buy houses in vicinity of area full of crime, so the correlation is negative.

cor.test(Housingpriceindex$index_nsa,Housingpriceindex$Homicides)
## 
##  Pearson's product-moment correlation
## 
## data:  Housingpriceindex$index_nsa and Housingpriceindex$Homicides
## t = -3.5359, df = 1706, p-value = 0.0004173
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.13219098 -0.03801809
## sample estimates:
##         cor 
## -0.08529503

Correlation is negative as expected and also statistically significant with p-value = 0.0004173.Usually people avoid these kind of area to live because negative things affect minds to do negative.

cor.test(Housingpriceindex$index_nsa,Housingpriceindex$Rapes)
## 
##  Pearson's product-moment correlation
## 
## data:  Housingpriceindex$index_nsa and Housingpriceindex$Rapes
## t = -4.885, df = 1706, p-value = 1.131e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.16396959 -0.07041383
## sample estimates:
##        cor 
## -0.1174523

Negative correlation with p-value = 1.131e-0.6. statistically significnt. Again people don’t like to buy house where rape cases are high, it’s not safe for there children.

cor.test(Housingpriceindex$index_nsa,Housingpriceindex$Assaults)
## 
##  Pearson's product-moment correlation
## 
## data:  Housingpriceindex$index_nsa and Housingpriceindex$Assaults
## t = 1.5716, df = 1706, p-value = 0.1162
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.009426004  0.085298648
## sample estimates:
##        cor 
## 0.03802174

Weak positive correlation with p-value = 0.1126, which is statistically insignificant.

cor.test(Housingpriceindex$index_nsa,Housingpriceindex$Robberies)
## 
##  Pearson's product-moment correlation
## 
## data:  Housingpriceindex$index_nsa and Housingpriceindex$Robberies
## t = -3.9478, df = 1706, p-value = 8.208e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.14193599 -0.04793135
## sample estimates:
##         cor 
## -0.09514578

Weak negative correlation as expected with p-value 8.208e-05,which is statistically significant.

library(corrgram)
corrgram(Housingpriceindex[ ,c(1,2,4:9)],order = TRUE,upper.panel = panel.pie, lower.panel = panel.shade,text.panel = panel.txt, main= "corrgram plot of housing price index with each variable",diag.panel = panel.minmax)

5.2 Appendix 2

2.1 Quick review of dataset

str(Housingpriceindex)
## 'data.frame':    1708 obs. of  9 variables:
##  $ Year          : int  1975 1975 1975 1975 1975 1975 1976 1976 1976 1976 ...
##  $ index_nsa     : num  41.1 30.8 36.4 20.9 20.4 ...
##  $ City..State   : Factor w/ 44 levels "Albuquerque, NM",..: 3 10 12 30 39 43 3 6 10 11 ...
##  $ Population    : int  490584 3150000 659931 337748 503500 716000 457300 860974 3134499 427045 ...
##  $ Violent.Crimes: int  8033 37160 10403 5900 3971 12704 7529 14191 30640 3461 ...
##  $ Homicides     : int  185 818 288 111 52 235 154 200 814 56 ...
##  $ Rapes         : int  443 1657 491 316 324 520 477 460 1179 263 ...
##  $ Assaults      : int  3518 12514 2524 2288 1492 2812 3518 5776 11070 1617 ...
##  $ Robberies     : int  3887 22171 7100 3185 2103 9137 3380 7755 17577 1525 ...

index_nsa stand for housing price index in USD. Housing price Index = change in price/ Initial price

2.2 Dimension of data

dim(Housingpriceindex)
## [1] 1708    9

2.3 Mean, max and median of data

library(psych)
describe(Housingpriceindex[ ,c(2,4:9)])[ ,c(2,3,4,5,8,9)]
##                   n      mean        sd    median       min        max
## index_nsa      1708    123.78     61.32    108.58     20.39     386.21
## Population     1708 621931.25 499821.21 470970.00 112994.00 3150000.00
## Violent.Crimes 1708   7794.24   8798.88   5119.00    385.00   90520.00
## Homicides      1708    115.13    143.51     62.00      1.00     960.00
## Rapes          1708    411.85    405.57    297.50     34.00    3754.00
## Assaults       1708   3853.74   4344.99   2588.00    264.00   42237.00
## Robberies      1708   3415.84   4206.70   2108.50     83.00   43783.00
  1. One way contingency table
table(Housingpriceindex$Year)
## 
## 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 
##    6   24   40   43   44   44   44   44   44   44   44   44   44   44   44 
## 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 
##   44   44   44   44   44   44   44   44   44   44   44   44   44   44   44 
## 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 
##   44   44   44   44   44   44   44   44   44   44   11

Mostly we have 44 state’s observation sets every year.

table(Housingpriceindex$City..State)
## 
##  Albuquerque, NM    Arlington, TX      Atlanta, GA       Aurora, CO 
##               39               38               41               39 
##       Austin, TX    Baltimore, MD       Boston, MA      Buffalo, NY 
##               39               40               39               39 
##    Charlotte, NC      Chicago, IL   Cincinnati, OH    Cleveland, OH 
##               39               41               40               41 
##     Columbus, OH       Dallas, TX       Denver, CO      Detroit, MI 
##               40               39               39               39 
##       Fresno, CA     Honolulu, HI      Houston, TX Indianapolis, IN 
##               38               38               39               38 
## Jacksonville, FL   Louisville, KY      Memphis, TN         Mesa, AZ 
##               37               39               38               38 
##        Miami, FL    Milwaukee, WI  Minneapolis, MN    Nashville, TN 
##               39               38               39               36 
##       Newark, NJ      Oakland, CA        Omaha, NE      Orlando, FL 
##               39               40               37               37 
## Philadelphia, PA      Phoenix, AZ   Pittsburgh, PA     Portland, OR 
##               39               38               39               39 
##      Raleigh, NC   Sacramento, CA      Seattle, WA        Tampa, FL 
##               38               39               40               39 
##       Tucson, AZ        Tulsa, OK   Washington, DC      Wichita, KS 
##               38               38               40               39

There are total 44 states of america in dataset.

meancrime = aggregate(Housingpriceindex$Violent.Crimes, by = list(State = Housingpriceindex$City..State),mean)
meancrime
##               State         x
## 1   Albuquerque, NM 12217.590
## 2     Arlington, TX  5326.053
## 3       Atlanta, GA  6847.732
## 4        Aurora, CO  5522.333
## 5        Austin, TX  9443.641
## 6     Baltimore, MD  7451.400
## 7        Boston, MA  6857.205
## 8       Buffalo, NY  5917.872
## 9     Charlotte, NC  7273.128
## 10      Chicago, IL  7095.878
## 11   Cincinnati, OH  5905.475
## 12    Cleveland, OH  6193.293
## 13     Columbus, OH  5999.425
## 14       Dallas, TX  7123.615
## 15       Denver, CO  6111.308
## 16      Detroit, MI  6909.051
## 17       Fresno, CA  7084.553
## 18     Honolulu, HI  6732.368
## 19      Houston, TX  5093.231
## 20 Indianapolis, IN  6453.816
## 21 Jacksonville, FL 15465.838
## 22   Louisville, KY  6269.308
## 23      Memphis, TN  7386.921
## 24         Mesa, AZ  9535.342
## 25        Miami, FL  7297.410
## 26    Milwaukee, WI  9191.158
## 27  Minneapolis, MN  5203.333
## 28    Nashville, TN  7821.500
## 29       Newark, NJ 10248.667
## 30      Oakland, CA  7172.975
## 31        Omaha, NE  7322.865
## 32      Orlando, FL  7560.216
## 33 Philadelphia, PA 13513.590
## 34      Phoenix, AZ  8605.447
## 35   Pittsburgh, PA  8231.333
## 36     Portland, OR 10210.795
## 37      Raleigh, NC  9260.605
## 38   Sacramento, CA  7178.282
## 39      Seattle, WA  6979.925
## 40        Tampa, FL  9321.667
## 41       Tucson, AZ  8036.500
## 42        Tulsa, OK  8756.737
## 43   Washington, DC  7258.625
## 44      Wichita, KS  8254.564
plot(meancrime, main = "Mean Violent crime rate in states")

Some city have been very high in violent crime.

meanPopulation = aggregate(Housingpriceindex$Population, by = list(State = Housingpriceindex$City..State),mean)
meanPopulation
##               State         x
## 1   Albuquerque, NM  534349.6
## 2     Arlington, TX  562341.3
## 3       Atlanta, GA  569319.4
## 4        Aurora, CO  486596.0
## 5        Austin, TX  584607.9
## 6     Baltimore, MD  512723.5
## 7        Boston, MA  952875.6
## 8       Buffalo, NY  600227.6
## 9     Charlotte, NC  978754.2
## 10      Chicago, IL  636766.9
## 11   Cincinnati, OH  592461.3
## 12    Cleveland, OH  528310.0
## 13     Columbus, OH  546036.4
## 14       Dallas, TX  586302.9
## 15       Denver, CO  551614.2
## 16      Detroit, MI  502257.8
## 17       Fresno, CA  484269.0
## 18     Honolulu, HI  531729.5
## 19      Houston, TX  502107.2
## 20 Indianapolis, IN  585038.5
## 21 Jacksonville, FL  528063.2
## 22   Louisville, KY  515232.9
## 23      Memphis, TN  407784.2
## 24         Mesa, AZ  504605.3
## 25        Miami, FL  555914.2
## 26    Milwaukee, WI 1259156.8
## 27  Minneapolis, MN  475220.4
## 28    Nashville, TN  522815.9
## 29       Newark, NJ  667643.4
## 30      Oakland, CA  822692.1
## 31        Omaha, NE  478915.5
## 32      Orlando, FL  582112.8
## 33 Philadelphia, PA  646698.7
## 34      Phoenix, AZ  536581.0
## 35   Pittsburgh, PA  683420.4
## 36     Portland, OR 1104236.8
## 37      Raleigh, NC  714322.6
## 38   Sacramento, CA  712689.2
## 39      Seattle, WA  660126.2
## 40        Tampa, FL  685315.0
## 41       Tucson, AZ  596459.7
## 42        Tulsa, OK  652768.0
## 43   Washington, DC  567694.1
## 44      Wichita, KS  641348.4
boxplot(Housingpriceindex$index_nsa, horizontal = TRUE, main = "Housing price index distribution over the years")

Most of the time price doubled as median is more than hundred.

boxplot(Housingpriceindex$Population, horizontal = TRUE, main = "Population distribution over the years")

There are too much outlier in population boxplot in righthand side.

library(car)
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
scatterplot(Population ~ Year, data = Housingpriceindex)

4. Hypothesis: With increase in poplulation, housing price index should be incresing

House_index <- aggregate(Housingpriceindex$index_nsa, by = list(Year = Housingpriceindex$Year),mean)
House_index
##    Year         x
## 1  1975  30.11500
## 2  1976  36.72017
## 3  1977  40.73010
## 4  1978  46.90176
## 5  1979  53.80188
## 6  1980  58.45125
## 7  1981  61.55432
## 8  1982  63.95102
## 9  1983  66.26108
## 10 1984  68.61102
## 11 1985  71.55506
## 12 1986  75.43449
## 13 1987  78.77506
## 14 1988  81.64983
## 15 1989  84.95335
## 16 1990  88.14335
## 17 1991  96.97639
## 18 1992  99.92093
## 19 1993 103.17143
## 20 1994 107.40221
## 21 1995 110.89804
## 22 1996 114.66321
## 23 1997 118.34258
## 24 1998 124.34049
## 25 1999 131.87725
## 26 2000 141.28338
## 27 2001 151.43585
## 28 2002 160.82273
## 29 2003 171.12045
## 30 2004 186.22026
## 31 2005 209.28146
## 32 2006 224.55007
## 33 2007 223.26373
## 34 2008 203.34487
## 35 2009 187.41925
## 36 2010 180.93774
## 37 2011 173.03646
## 38 2012 177.97761
## 39 2013 191.83261
## 40 2014 204.67202
## 41 2015 199.17545
plot(House_index ,main = " Mean Housing Price Index from 1975 to 2015", ylab = "Mean housing Price index")

Overall trend is upward, Housing price contantly increasing over the years.

YearlyPolulation <- aggregate(Population ~ Year, data = Housingpriceindex,sum)
YearlyPolulation
##    Year Population
## 1  1975    5857763
## 2  1976   16983123
## 3  1977   23420031
## 4  1978   23987753
## 5  1979   24946275
## 6  1980   24636321
## 7  1981   24612296
## 8  1982   24853004
## 9  1983   27788236
## 10 1984   25181519
## 11 1985   25344823
## 12 1986   25601365
## 13 1987   26192138
## 14 1988   25435384
## 15 1989   25433873
## 16 1990   25988349
## 17 1991   25583366
## 18 1992   25803789
## 19 1993   26373767
## 20 1994   27283435
## 21 1995   25922116
## 22 1996   26557239
## 23 1997   26879303
## 24 1998   26612583
## 25 1999   27553312
## 26 2000   28055928
## 27 2001   28620733
## 28 2002   28676866
## 29 2003   28667377
## 30 2004   28762411
## 31 2005   28955986
## 32 2006   29196347
## 33 2007   29658684
## 34 2008   29992130
## 35 2009   29480743
## 36 2010   29442632
## 37 2011   29761041
## 38 2012   30082832
## 39 2013   30399496
## 40 2014   30805707
## 41 2015    6868491
plot(YearlyPolulation, main = "Total Yearly Populatin of America's 44 states", ylab = "YearlyPolulation")