I am reading a data that is collected from twitter on the account of sentiment analysis of Demonetisation on the 1st anniversary of banning the 500 and 1000 rupees notes.
I am using references from Data Byte - NIT Trichy’s Project and Kaggle (for dataset and tutorials).
demonet_tweet <- read.csv("C:\\Users\\user\\Desktop\\demonetization-tweets.csv")
For handling the complex dataset, I will be using many packages, they are as follows,
library(readr)
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.4.3
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
library(ggvis)
##
## Attaching package: 'ggvis'
## The following object is masked from 'package:ggplot2':
##
## resolution
library(gdata)
## gdata: read.xls support for 'XLS' (Excel 97-2004) files ENABLED.
##
## gdata: read.xls support for 'XLSX' (Excel 2007+) files ENABLED.
##
## Attaching package: 'gdata'
## The following objects are masked from 'package:dplyr':
##
## combine, first, last
## The following object is masked from 'package:stats':
##
## nobs
## The following object is masked from 'package:utils':
##
## object.size
## The following object is masked from 'package:base':
##
## startsWith
library(lubridate)
##
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
##
## date
library(formattable)
## Warning: package 'formattable' was built under R version 3.4.3
To have a look at the dataset,
glimpse(demonet_tweet) #This function defined in dplyr
## Observations: 8,000
## Variables: 16
## $ S.no <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,...
## $ HappinessFactor <int> 941, 1925, 2797, 607, 1198, 56, 2298, 2792, 49...
## $ text <fctr> RT @rssurjewala: Critical question: Was PayTM...
## $ favorited <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALS...
## $ favoriteCount <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0...
## $ replyToSN <fctr> NA, NA, NA, NA, NA, DerekScissors1, NA, NA, N...
## $ created <fctr> 23-11-2016 18:40, 23-11-2016 18:40, 23-11-201...
## $ truncated <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALS...
## $ replyToSID <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ id <dbl> 8.01e+17, 8.01e+17, 8.01e+17, 8.01e+17, 8.01e+...
## $ replyToUID <dbl> NA, NA, NA, NA, NA, 2586266100, NA, NA, NA, NA...
## $ statusSource <fctr> <a href="http://twitter.com/download/android"...
## $ screenName <fctr> HASHTAGFARZIWAL, PRAMODKAUSHIK9, rahulja13034...
## $ retweetCount <int> 331, 66, 12, 338, 120, 0, 637, 112, 1, 0, 1, 1...
## $ isRetweet <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRU...
## $ retweeted <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALS...
We do a hypothesis testing now using chi-square test, Creating a table,
a <- table(demonet_tweet$HappinessFactor)
a
##
## 1 2 3 4 5 8 9 10 11 12 13 14 15 16 17
## 3 2 3 2 3 4 2 3 1 4 1 1 3 1 1
## 18 19 20 21 22 23 24 25 26 27 28 29 30 32 33
## 2 4 5 4 1 5 4 5 4 2 2 2 2 2 1
## 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
## 1 1 1 2 1 1 5 4 2 6 4 1 2 2 3
## 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
## 10 2 2 5 3 6 4 6 4 3 4 2 1 1 2
## 64 65 66 67 68 69 70 72 73 74 75 76 77 78 79
## 1 2 5 1 2 1 2 1 7 3 4 4 1 4 3
## 80 81 83 84 85 87 88 89 90 91 92 93 94 95 96
## 3 7 5 5 4 2 1 4 3 4 5 2 1 5 2
## 97 99 100 102 103 104 105 106 107 108 110 111 112 113 114
## 7 3 6 2 2 1 9 1 5 2 2 2 3 3 10
## 115 116 118 119 120 121 122 123 124 125 126 127 128 129 130
## 3 1 3 2 2 2 1 6 3 2 1 2 1 2 3
## 131 132 133 135 136 137 138 139 140 141 142 144 145 146 147
## 5 3 5 4 3 4 3 5 4 1 7 3 1 3 2
## 148 149 150 151 152 153 154 155 156 157 158 159 161 162 163
## 2 3 2 4 2 4 4 2 3 1 1 3 1 1 3
## 164 165 167 168 169 170 171 172 173 174 175 176 177 179 180
## 7 1 2 1 3 4 4 5 4 5 5 4 3 6 3
## 181 182 183 184 186 187 189 190 191 192 193 194 195 196 197
## 8 3 2 2 2 2 1 3 3 2 3 1 1 4 3
## 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
## 4 5 3 3 2 3 3 3 3 3 2 3 1 4 6
## 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
## 2 4 3 3 2 4 1 6 4 5 2 3 1 5 1
## 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
## 1 3 2 1 3 3 3 1 1 2 1 4 1 2 5
## 244 245 246 247 248 249 251 252 253 254 255 256 257 258 259
## 2 1 1 6 7 1 3 1 4 3 5 3 2 2 2
## 260 261 262 263 264 265 266 267 268 270 271 272 273 275 276
## 5 1 1 3 3 1 7 2 1 1 2 4 1 2 3
## 277 278 279 280 281 282 283 284 285 286 287 288 289 290 292
## 6 4 4 1 4 5 3 3 3 2 1 2 5 3 2
## 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
## 3 3 3 2 1 4 3 1 1 4 3 3 4 2 1
## 308 310 311 312 313 314 315 316 317 318 319 321 322 323 324
## 6 3 4 3 6 2 3 5 2 3 2 3 1 4 3
## 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
## 4 1 2 3 1 1 9 4 3 2 4 2 5 5 3
## 340 342 343 344 345 346 347 348 350 351 352 353 354 355 356
## 2 4 4 3 3 2 1 8 2 1 2 1 4 2 3
## 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
## 5 3 3 2 2 1 3 2 3 4 3 7 4 2 5
## 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
## 2 7 2 6 2 3 2 4 3 1 3 2 2 4 7
## 387 389 390 391 392 393 394 395 396 397 398 399 400 401 402
## 4 4 6 1 1 3 1 3 3 5 3 4 2 4 3
## 403 404 405 406 408 409 410 411 412 413 414 415 416 417 418
## 5 5 3 2 3 4 2 1 5 2 2 4 3 3 2
## 419 420 421 422 423 424 425 426 427 428 429 430 431 433 434
## 3 7 3 2 3 5 1 2 3 1 4 4 4 3 3
## 435 436 437 438 439 440 441 442 443 444 445 446 447 449 450
## 6 1 6 2 5 2 3 3 2 2 2 3 2 2 2
## 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
## 4 3 3 4 3 6 1 3 2 4 1 2 3 2 5
## 467 468 469 470 471 474 475 476 477 478 480 481 482 483 484
## 2 3 4 1 3 1 2 3 3 2 1 1 1 4 2
## 485 486 487 488 489 490 491 492 493 494 495 497 498 501 502
## 1 3 5 4 2 4 2 3 3 1 4 2 2 3 3
## 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
## 2 5 7 2 4 6 5 1 3 1 3 4 1 2 3
## 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
## 2 3 3 1 2 2 3 4 3 1 3 2 4 7 1
## 533 534 536 537 538 539 540 541 542 544 545 546 547 548 549
## 3 3 3 4 2 2 2 1 1 1 1 1 6 3 4
## 550 551 552 553 554 556 558 560 561 562 563 564 565 566 568
## 5 5 3 3 2 1 2 3 3 1 3 3 3 1 2
## 569 570 571 572 574 575 576 577 578 579 581 582 583 585 586
## 5 2 3 3 3 2 1 5 1 2 4 2 3 3 3
## 587 588 589 590 591 593 594 595 596 597 598 599 600 601 602
## 5 2 2 2 1 6 2 1 6 2 5 4 3 3 4
## 603 604 605 606 607 608 609 610 611 612 613 615 616 617 618
## 6 3 4 1 1 3 3 5 4 3 3 1 4 1 1
## 619 620 621 623 624 625 626 627 628 629 630 631 632 633 634
## 3 4 2 4 2 5 1 2 2 2 2 4 3 3 3
## 635 638 639 640 641 642 643 645 646 647 648 649 650 652 653
## 3 4 2 3 3 3 4 3 9 4 3 1 4 3 1
## 654 655 656 657 658 659 660 661 662 663 664 666 667 669 670
## 2 3 2 2 2 6 5 2 2 5 4 3 7 3 3
## 672 673 674 676 677 678 679 680 681 682 683 684 685 686 687
## 1 2 2 4 3 1 3 4 1 2 2 5 5 3 1
## 688 689 691 692 693 694 695 696 697 698 699 700 701 702 703
## 2 1 2 2 3 1 4 2 5 4 1 4 1 1 1
## 704 705 707 708 710 711 712 713 714 715 716 717 718 719 720
## 4 4 3 1 3 2 3 1 7 2 5 5 3 3 1
## 721 722 723 724 725 726 727 728 729 730 731 732 733 734 736
## 2 1 1 3 4 2 2 5 2 2 1 3 1 2 2
## 737 738 739 740 741 743 744 745 747 748 749 750 751 752 753
## 2 3 2 3 2 1 1 1 2 5 1 2 3 2 4
## 754 755 756 757 760 762 763 764 766 767 768 769 770 771 772
## 1 4 4 4 3 3 3 3 1 3 2 6 2 2 2
## 773 774 775 776 777 778 779 780 781 783 784 785 786 787 788
## 1 3 3 1 3 1 3 2 4 4 2 4 3 1 1
## 789 790 791 792 793 794 795 796 797 798 801 802 803 804 805
## 2 4 3 4 3 5 4 3 2 3 1 4 6 3 5
## 806 807 808 809 810 812 813 814 815 816 817 818 819 821 822
## 4 2 2 3 5 4 2 2 2 1 2 1 4 2 2
## 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
## 1 6 1 4 3 1 3 4 2 2 2 1 3 2 2
## 838 839 840 841 842 843 844 845 846 847 848 849 850 851 853
## 3 3 4 1 5 3 2 2 3 1 2 4 3 2 3
## 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
## 5 4 3 1 2 5 1 2 3 1 3 3 6 2 1
## 869 870 871 872 873 875 876 877 878 879 880 881 882 883 884
## 1 1 2 1 7 2 2 3 2 5 3 3 2 3 2
## 885 886 887 888 889 890 891 892 893 894 895 897 898 899 900
## 2 2 4 2 2 3 2 6 2 5 3 4 2 6 4
## 901 902 904 905 906 907 908 909 910 911 912 913 914 915 916
## 1 3 1 1 2 4 4 3 2 1 2 3 4 2 2
## 917 918 919 920 921 922 924 925 927 928 929 930 931 932 933
## 4 3 2 3 4 5 2 3 3 3 4 2 3 4 1
## 934 935 936 937 938 940 941 942 943 944 945 946 947 948 949
## 1 4 3 5 6 4 5 5 1 4 4 1 3 2 4
## 950 951 952 953 954 955 956 957 958 959 960 962 963 964 965
## 2 2 2 2 3 1 1 2 2 3 2 3 7 4 1
## 966 967 968 969 970 971 972 973 974 976 977 978 979 980 981
## 3 4 3 2 3 1 4 3 3 3 3 3 3 2 2
## 982 983 984 985 986 987 988 989 991 992 994 995 996 997 998
## 4 3 4 5 2 6 4 5 1 1 5 1 1 2 2
## 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
## 2 2 3 2 2 3 2 1 4 4 3 3 1 1 4
## 1014 1015 1016 1017 1018 1021 1022 1023 1024 1025 1026 1027 1028 1029 1031
## 1 3 3 1 2 2 1 5 5 2 2 4 3 1 1
## 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
## 3 3 1 2 6 3 3 3 5 2 1 2 3 4 6
## 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
## 5 2 2 4 5 2 7 4 5 7 6 2 7 1 3
## 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
## 2 4 5 4 3 1 1 5 2 1 1 1 3 3 6
## 1077 1078 1079 1081 1082 1083 1084 1085 1086 1088 1089 1090 1091 1092 1093
## 5 1 2 3 4 2 3 4 3 5 4 5 2 4 4
## 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1109
## 2 6 1 3 2 1 1 1 4 6 5 7 3 4 2
## 1110 1111 1112 1113 1114 1115 1117 1118 1120 1121 1122 1123 1124 1125 1126
## 3 7 4 2 6 5 6 3 2 3 5 2 1 5 5
## 1127 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
## 3 2 3 5 1 1 2 4 5 3 3 2 3 2 3
## 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
## 2 2 4 1 5 1 5 3 4 2 4 2 7 5 6
## 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
## 3 4 2 4 3 4 4 1 4 4 4 2 3 2 1
## 1173 1174 1175 1176 1177 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
## 7 2 3 3 6 2 2 2 2 4 3 2 4 4 4
## 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
## 3 4 6 2 5 1 2 1 5 2 3 2 4 2 6
## 1205 1206 1207 1208 1209 1210 1211 1212 1214 1215 1216 1217 1218 1219 1220
## 4 5 3 4 2 3 3 1 1 3 3 2 4 3 4
## 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1235 1236
## 5 6 2 3 1 2 3 2 2 1 3 4 2 3 3
## 1237 1238 1239 1240 1241 1242 1244 1245 1246 1247 1248 1249 1250 1251 1252
## 4 4 3 4 7 4 3 1 5 2 2 1 1 1 2
## 1253 1254 1255 1256 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
## 1 1 5 2 2 3 1 6 1 1 4 1 1 2 2
## 1269 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
## 2 3 3 2 2 3 2 3 1 3 1 4 2 3 1
## 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
## 3 4 4 1 4 4 4 4 2 2 3 1 1 1 4
## 1300 1301 1302 1303 1304 1305 1306 1307 1309 1310 1311 1312 1313 1314 1315
## 2 1 2 2 4 2 4 3 2 2 2 1 4 4 2
## 1316 1317 1318 1319 1320 1321 1322 1325 1326 1327 1328 1329 1330 1331 1332
## 4 3 6 4 1 2 2 2 1 2 3 2 1 6 4
## 1333 1334 1335 1336 1337 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
## 1 3 2 5 3 2 1 1 3 2 2 2 1 1 4
## 1349 1350 1351 1352 1353 1354 1355 1356 1358 1359 1360 1361 1362 1363 1364
## 4 1 1 2 3 2 1 4 1 2 1 3 4 2 1
## 1365 1366 1367 1368 1369 1371 1373 1374 1375 1376 1377 1378 1379 1380 1381
## 4 2 3 2 1 1 1 5 1 2 3 4 3 4 4
## 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
## 3 3 4 2 3 1 3 2 2 3 2 1 5 4 3
## 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
## 2 4 2 2 1 2 3 5 1 4 1 1 4 3 2
## 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1427
## 4 2 2 3 2 6 2 2 3 5 1 2 3 2 4
## 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1441 1442 1443
## 1 3 4 3 8 1 1 7 5 2 2 6 5 5 3
## 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
## 2 3 4 3 1 3 4 5 3 1 1 4 1 4 3
## 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
## 1 3 3 1 5 4 2 4 3 3 3 3 1 2 5
## 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
## 3 2 1 2 1 4 2 1 2 2 3 4 3 2 3
## 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
## 3 4 9 3 2 2 2 3 3 8 1 3 4 4 5
## 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
## 2 3 3 1 2 1 1 2 2 5 4 2 3 6 7
## 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1534
## 3 3 1 2 4 1 3 2 2 7 2 1 2 4 4
## 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
## 2 7 3 7 1 3 1 2 4 5 2 1 3 5 4
## 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
## 3 1 3 2 1 1 2 6 2 3 1 2 4 1 6
## 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
## 4 7 5 4 3 3 1 2 1 1 2 3 3 2 4
## 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
## 5 6 2 2 3 5 2 1 2 4 1 1 3 3 1
## 1595 1596 1597 1598 1600 1601 1603 1604 1605 1606 1608 1610 1611 1612 1613
## 1 2 3 3 3 1 1 1 2 1 2 4 2 1 4
## 1614 1615 1617 1618 1619 1620 1622 1623 1624 1625 1626 1627 1628 1629 1630
## 1 4 3 2 2 2 5 4 1 5 4 1 2 1 3
## 1631 1632 1633 1634 1635 1636 1637 1638 1640 1641 1642 1643 1644 1645 1646
## 2 2 2 6 3 3 2 2 2 4 5 2 3 4 2
## 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
## 4 3 3 6 6 2 1 1 7 3 1 3 4 2 3
## 1662 1663 1664 1665 1666 1667 1668 1669 1670 1672 1675 1676 1677 1678 1679
## 3 2 1 2 1 2 5 2 1 4 3 1 2 4 1
## 1680 1681 1682 1683 1684 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
## 4 2 5 1 1 4 3 1 3 4 3 2 4 5 2
## 1696 1697 1699 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
## 1 9 3 2 2 3 3 1 1 4 1 4 2 1 4
## 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1727 1728 1729
## 3 4 2 1 2 1 1 6 2 4 3 4 3 2 3
## 1730 1731 1732 1733 1734 1735 1736 1737 1739 1740 1741 1742 1743 1744 1746
## 2 6 3 3 1 2 4 2 4 1 6 4 2 3 1
## 1747 1748 1749 1750 1751 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
## 1 1 2 1 2 3 1 2 1 3 4 1 3 3 3
## 1763 1764 1765 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1779 1780
## 1 2 4 4 2 4 3 1 4 2 7 3 1 2 2
## 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
## 2 4 2 3 6 1 2 4 2 2 2 4 2 4 3
## 1796 1797 1798 1800 1801 1802 1804 1805 1806 1807 1808 1809 1810 1811 1812
## 1 5 2 3 4 5 2 2 1 2 2 1 3 4 1
## 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
## 1 2 2 3 4 5 4 3 5 4 2 3 5 2 3
## 1828 1829 1830 1831 1832 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
## 5 2 1 1 2 2 3 3 1 2 2 4 1 5 3
## 1844 1845 1846 1847 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
## 7 3 4 2 3 3 3 4 4 3 5 3 6 1 1
## 1860 1861 1862 1863 1864 1865 1866 1868 1869 1870 1871 1872 1873 1874 1875
## 4 1 4 4 1 3 6 2 2 5 4 3 1 2 2
## 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
## 3 5 5 1 7 1 1 3 5 1 2 3 4 4 3
## 1892 1894 1895 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
## 2 1 2 1 4 4 7 2 3 4 2 2 6 5 2
## 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1920 1921 1922 1923 1924
## 2 3 3 6 3 3 5 2 3 2 2 1 1 2 4
## 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
## 6 4 1 3 4 5 4 2 3 1 2 2 5 3 1
## 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1952 1953 1954 1955
## 1 3 4 2 2 5 4 4 3 3 5 2 8 2 1
## 1956 1957 1958 1959 1960 1961 1962 1964 1965 1966 1967 1968 1969 1970 1971
## 5 4 2 2 2 2 2 4 6 3 4 4 5 1 5
## 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
## 2 1 3 2 3 1 6 1 2 7 1 6 8 4 2
## 1987 1988 1989 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2005
## 1 1 4 3 3 6 6 4 3 1 2 2 2 4 1
## 2006 2007 2008 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
## 6 2 1 2 3 5 4 1 4 4 6 1 3 3 4
## 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2034 2035 2036 2037
## 5 1 4 4 7 2 3 2 4 3 1 2 2 3 4
## 2038 2039 2040 2041 2042 2043 2044 2045 2046 2048 2049 2050 2051 2052 2053
## 4 5 3 7 1 1 2 2 4 3 1 1 4 1 2
## 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2068 2069
## 2 4 4 4 5 3 1 4 3 4 3 4 2 2 2
## 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
## 1 4 4 5 1 3 1 2 2 3 7 1 3 2 4
## 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2099 2100 2101
## 3 3 3 1 2 1 1 3 2 1 2 2 4 6 2
## 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
## 1 3 1 2 6 2 5 3 1 2 3 4 3 1 1
## 2118 2119 2120 2121 2122 2123 2124 2125 2126 2128 2129 2130 2131 2132 2133
## 3 2 1 3 2 1 4 2 6 2 2 3 1 2 3
## 2134 2135 2136 2137 2138 2139 2140 2141 2143 2144 2145 2146 2147 2148 2149
## 1 1 2 1 4 5 1 2 3 2 1 1 3 3 4
## 2150 2151 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
## 6 2 4 7 8 1 2 3 3 3 2 1 4 4 3
## 2166 2167 2169 2170 2171 2172 2173 2174 2175 2176 2178 2179 2180 2181 2182
## 3 1 4 1 7 5 1 7 3 6 2 4 1 3 4
## 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2197 2198
## 2 6 3 1 5 3 3 1 2 3 4 3 4 2 1
## 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2215 2216
## 3 1 1 2 3 1 2 5 3 3 2 2 1 5 3
## 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2231 2233
## 4 1 2 1 1 2 1 1 1 4 7 6 4 4 1
## 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
## 1 2 4 1 2 3 4 1 3 2 4 1 3 2 4
## 2249 2250 2251 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
## 1 7 1 2 1 7 2 1 3 1 1 3 3 3 3
## 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2280
## 5 4 1 3 3 1 1 3 1 3 3 2 5 2 2
## 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
## 3 3 2 1 4 2 5 1 4 2 2 1 4 2 1
## 2298 2299 2300 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
## 3 2 4 1 4 1 2 2 2 1 3 2 2 1 1
## 2314 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
## 4 3 1 3 3 3 2 3 2 5 2 4 2 4 1
## 2330 2331 2332 2333 2334 2335 2336 2339 2340 2341 2342 2343 2344 2345 2346
## 4 3 4 3 4 3 4 2 1 4 1 1 3 3 3
## 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
## 3 3 1 1 2 2 1 1 4 3 6 2 8 3 2
## 2362 2363 2364 2365 2366 2367 2369 2370 2371 2372 2373 2374 2375 2376 2377
## 3 3 3 6 2 6 3 1 2 3 5 2 5 2 5
## 2378 2379 2380 2381 2382 2383 2385 2386 2387 2389 2390 2391 2392 2393 2394
## 6 3 1 2 3 6 3 7 1 1 4 1 2 3 3
## 2395 2397 2398 2400 2401 2402 2403 2404 2405 2406 2407 2408 2410 2411 2412
## 1 2 6 2 4 2 2 4 4 5 3 1 2 3 3
## 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2426 2427 2428
## 2 2 1 2 2 2 1 1 1 1 3 2 4 1 3
## 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
## 3 2 1 2 3 2 3 4 2 3 1 3 3 4 8
## 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
## 7 4 4 1 6 2 2 2 5 2 5 3 5 4 2
## 2459 2460 2461 2462 2463 2464 2465 2467 2468 2469 2470 2472 2473 2474 2475
## 2 1 4 5 6 3 1 1 5 4 5 2 4 2 4
## 2476 2477 2478 2479 2480 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
## 2 1 1 3 2 2 2 2 6 2 1 2 3 4 5
## 2493 2494 2495 2496 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
## 3 4 1 5 1 5 1 2 1 3 2 1 4 1 2
## 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2521 2522 2523 2524
## 2 3 1 3 3 5 4 1 3 1 3 3 5 5 4
## 2526 2528 2529 2530 2531 2533 2534 2535 2536 2537 2538 2540 2542 2543 2544
## 4 4 2 1 4 1 4 1 1 1 1 6 2 1 2
## 2545 2546 2547 2548 2550 2551 2553 2554 2556 2557 2558 2559 2560 2561 2562
## 2 5 4 1 1 5 3 2 2 1 2 4 3 5 3
## 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
## 2 2 3 1 2 2 2 3 4 4 4 3 2 2 4
## 2578 2579 2580 2581 2583 2584 2586 2587 2588 2589 2590 2591 2592 2593 2594
## 3 3 1 4 1 6 3 3 2 7 5 3 3 3 2
## 2595 2596 2597 2598 2599 2600 2601 2602 2604 2605 2606 2607 2608 2609 2610
## 3 2 5 7 3 2 3 3 4 3 3 1 1 4 1
## 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2623 2624 2625 2626
## 4 4 6 7 3 2 1 1 2 2 3 4 3 2 2
## 2627 2628 2629 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
## 5 4 4 2 3 2 3 3 2 3 4 2 1 5 2
## 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2655 2656 2657 2658
## 1 4 3 1 2 2 5 1 5 6 3 1 5 4 1
## 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2674 2675
## 3 2 6 2 2 1 6 2 3 4 1 7 2 1 2
## 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
## 2 1 2 1 1 4 3 7 2 3 5 2 3 4 2
## 2691 2692 2693 2694 2695 2696 2697 2699 2700 2701 2703 2704 2705 2706 2707
## 2 4 3 1 2 7 2 3 3 1 2 2 1 2 2
## 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2722 2723
## 3 1 6 2 5 4 3 4 4 2 2 3 5 2 6
## 2724 2725 2727 2728 2729 2730 2732 2733 2734 2735 2736 2737 2738 2739 2740
## 2 2 1 3 3 3 2 1 1 1 2 1 3 4 2
## 2741 2742 2743 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
## 2 5 3 5 4 3 3 1 3 2 3 3 5 2 3
## 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
## 1 3 4 2 1 2 4 4 2 1 4 2 1 2 3
## 2772 2773 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
## 5 6 2 2 5 1 6 3 3 2 2 2 1 6 3
## 2789 2790 2791 2792 2793 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
## 2 4 1 2 2 2 2 4 3 4 1 3 4 1 3
## 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
## 3 4 1 2 2 2 7 3 4 2 2 1 1 6 4
## 2820 2821 2822 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2835 2836
## 2 2 1 2 2 3 3 2 5 6 1 1 2 4 2
## 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2851 2852
## 2 2 2 2 1 2 1 3 1 2 5 3 3 1 5
## 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
## 2 2 3 4 3 4 5 2 2 1 1 3 1 1 3
## 2868 2869 2870 2871 2872 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
## 6 5 6 3 3 3 5 2 2 1 3 5 5 5 2
## 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2898 2899 2901
## 4 3 5 4 2 2 2 2 1 3 4 3 4 1 1
## 2902 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
## 3 3 5 4 2 2 2 1 2 6 2 3 4 2 2
## 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
## 4 3 2 3 3 5 3 2 3 1 2 6 2 4 3
## 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
## 3 1 4 4 2 6 4 4 2 3 2 4 4 4 7
## 2949 2950 2951 2952 2954 2955 2956 2958 2959 2960 2961 2962 2963 2964 2965
## 3 4 2 1 6 4 4 3 3 3 5 2 7 6 4
## 2967 2968 2969 2970 2971 2972 2973 2974 2975 2977 2978 2979 2980 2981 2982
## 2 3 7 3 6 3 5 3 4 2 9 4 3 1 2
## 2983 2984 2986 2987 2988 2989 2990 2992 2993 2994 2995 2996 2997 2998 2999
## 3 3 2 1 1 3 3 2 2 8 5 2 1 5 1
## 3000
## 3
Doing the hypothesis testing,
chisq.test(a)
## Warning in chisq.test(a): Chi-squared approximation may be incorrect
##
## Chi-squared test for given probabilities
##
## data: a
## X-squared = 2317.7, df = 2775, p-value = 1
P value is 1, that means our hypothesis is not significant.
Let us try with the retweet-count field,
b <- table(demonet_tweet$retweetCount)
b
##
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
## 1328 349 182 140 84 125 69 133 63 95 86 58 64 31 102
## 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
## 90 67 9 74 73 45 47 34 92 57 32 3 31 3 32
## 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
## 91 4 30 105 1 1 66 2 30 2 46 39 42 106 79
## 45 46 47 48 49 50 51 52 53 54 55 57 58 59 60
## 130 3 51 36 49 5 1 15 23 2 7 55 1 80 5
## 62 63 66 67 68 69 70 71 72 73 74 75 76 79 82
## 4 3 63 1 5 21 9 69 2 2 1 3 74 1 24
## 88 90 91 93 94 95 96 97 100 101 102 103 104 105 107
## 81 1 3 1 21 91 1 2 7 2 2 7 9 171 2
## 108 109 112 114 115 116 118 120 123 125 127 128 129 132 134
## 1 1 103 4 3 2 14 121 111 8 21 1 1 127 2
## 139 142 144 147 148 153 154 157 165 166 180 182 187 191 203
## 3 2 6 31 1 1 7 1 3 3 1 3 2 8 3
## 216 217 219 221 225 230 237 238 260 264 269 270 272 275 291
## 1 7 8 7 2 1 9 1 6 1 1 247 3 254 1
## 293 299 303 305 316 317 321 330 331 338 340 348 356 357 367
## 1 4 1 10 3 2 3 1 276 2 1 3 2 1 1
## 368 375 381 391 406 415 421 428 441 451 456 462 471 473 520
## 3 4 11 1 3 3 6 6 2 3 3 2 20 2 45
## 526 550 635 637 762 862 886 894 897 947 954 960 1010 1030 1042
## 22 2 1 542 9 1 1 5 6 4 350 27 3 9 10
## 1057 1158 1868 1944
## 9 32 8 2
chisq.test(b)
##
## Chi-squared test for given probabilities
##
## data: b
## X-squared = 58412, df = 183, p-value < 2.2e-16
Therefore, this result is significant.
Now, we will do the linear regression
x <- lm(demonet_tweet$HappinessFactor~demonet_tweet$favoriteCount+demonet_tweet$retweetCount)
x
##
## Call:
## lm(formula = demonet_tweet$HappinessFactor ~ demonet_tweet$favoriteCount +
## demonet_tweet$retweetCount)
##
## Coefficients:
## (Intercept) demonet_tweet$favoriteCount
## 1.497e+03 9.045e-02
## demonet_tweet$retweetCount
## -3.675e-03
We now get the regression model
model_fit <- lm(x, data = demonet_tweet)
summary(model_fit)
##
## Call:
## lm(formula = x, data = demonet_tweet)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1495.6 -746.2 -5.5 746.3 1504.4
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.497e+03 1.146e+01 130.647 <2e-16 ***
## demonet_tweet$favoriteCount 9.045e-02 1.126e+00 0.080 0.936
## demonet_tweet$retweetCount -3.675e-03 3.572e-02 -0.103 0.918
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 870.3 on 7997 degrees of freedom
## Multiple R-squared: 2.174e-06, Adjusted R-squared: -0.0002479
## F-statistic: 0.008692 on 2 and 7997 DF, p-value: 0.9913
Now we draw the word cloud,
to make the word cloud we will need some packages,
library(readr)
library(NLP)
##
## Attaching package: 'NLP'
## The following object is masked from 'package:ggplot2':
##
## annotate
library(tm)
library(wordcloud)
## Loading required package: RColorBrewer
We get the text now,
text_dem <- demonet_tweet$text
Preliminary text mining for analysis,
library(wordcloud)
wordcloud(text_dem, min.freq = 70,max.words=25, rot.per=0.55, colors=brewer.pal(8, "Dark2"), scale = c(3,0.5))