Read

toptrend.df=read.csv(paste("USvideos.csv",sep=""))
attach(toptrend.df)
View(toptrend.df)
str(toptrend.df)
## 'data.frame':    7800 obs. of  16 variables:
##  $ video_id              : Factor w/ 1909 levels "-1yT-K3c6YI",..: 141 121 226 1335 569 767 166 1176 954 1577 ...
##  $ trending_date         : Factor w/ 39 levels "17.01.12","17.02.12",..: 14 14 14 14 14 14 14 14 14 14 ...
##  $ title                 : Factor w/ 1927 levels "'I have taken poison' claims war criminal",..: 1809 1677 1342 1231 788 42 1391 78 1615 1882 ...
##  $ channel_title         : Factor w/ 992 levels "12 News","1theK (원더케이)",..: 143 491 738 339 643 399 748 207 3 956 ...
##  $ category_id           : int  22 24 23 24 24 28 24 28 1 25 ...
##  $ publish_time          : Factor w/ 1875 levels "2008-06-17T00:07:56.000Z",..: 260 229 213 233 211 265 198 216 239 237 ...
##  $ tags                  : Factor w/ 1823 levels "[none]","08282016NtflxUSCAN|Black Mirror|Netflix|Netflix Original Series|San Junipero|Charlie Brooker|Arkangel|USS Calli"| __truncated__,..: 1388 905 1271 1320 1341 708 1430 20 1673 1743 ...
##  $ views                 : int  748374 2418783 3191434 343168 2095731 119180 2103417 817732 826059 256426 ...
##  $ likes                 : int  57527 97185 146033 10172 132235 9763 15993 23663 3543 12654 ...
##  $ dislikes              : int  2966 6146 5339 666 1989 511 2445 778 119 1363 ...
##  $ comment_count         : int  15954 12703 8181 2146 17518 1434 1970 3432 340 2368 ...
##  $ thumbnail_link        : Factor w/ 1909 levels "https://i.ytimg.com/vi/-1yT-K3c6YI/default.jpg",..: 141 121 226 1335 569 767 166 1176 954 1577 ...
##  $ comments_disabled     : Factor w/ 2 levels "False","True": 1 1 1 1 1 1 1 1 1 1 ...
##  $ ratings_disabled      : Factor w/ 2 levels "False","True": 1 1 1 1 1 1 1 1 1 1 ...
##  $ video_error_or_removed: Factor w/ 2 levels "False","True": 1 1 1 1 1 1 1 1 1 1 ...
##  $ description           : Factor w/ 1970 levels "","'A curious cat helps his owner with home improvements.'\\nWe're releasing a NEW BLACK & WHITE episode every wee"| __truncated__,..: 1380 1209 1827 1754 717 1794 432 747 817 499 ...
summary(toptrend.df[,c(2,5,8,9,10,11,13,14,15)])
##   trending_date   category_id        views               likes        
##  17.01.12: 200   Min.   : 1.00   Min.   :      687   Min.   :      0  
##  17.02.12: 200   1st Qu.:17.00   1st Qu.:    84184   1st Qu.:   2018  
##  17.03.12: 200   Median :24.00   Median :   299548   Median :   8901  
##  17.04.12: 200   Mean   :20.06   Mean   :  1322532   Mean   :  48448  
##  17.05.12: 200   3rd Qu.:25.00   3rd Qu.:   951049   3rd Qu.:  28695  
##  17.06.12: 200   Max.   :29.00   Max.   :149376127   Max.   :3093544  
##  (Other) :6600                                                        
##     dislikes         comment_count    comments_disabled ratings_disabled
##  Min.   :      0.0   Min.   :     0   False:7638        False:7762      
##  1st Qu.:     78.0   1st Qu.:   270   True : 162        True :  38      
##  Median :    305.5   Median :  1010                                     
##  Mean   :   3168.3   Mean   :  6114                                     
##  3rd Qu.:   1038.0   3rd Qu.:  3281                                     
##  Max.   :1643059.0   Max.   :827755                                     
##                                                                         
##  video_error_or_removed
##  False:7799            
##  True :   1            
##                        
##                        
##                        
##                        
## 

Count Number of Tags

toptrend.df$tags=as.character(toptrend.df$tags)

library(stringr)
## Warning: package 'stringr' was built under R version 3.4.3
toptrend.df$numtags<-str_count(toptrend.df$tags,'\\w+')

View(toptrend.df)

Count number of words in description

library(stringr)
toptrend.df$numworddes<-str_count(toptrend.df$description,'\\w+')
View(toptrend.df)

Publish date

library(lubridate)
toptrend.df$publish_time=as.Date(publish_time, format = "%Y-%m-%d")
View(toptrend.df)
str(toptrend.df$publish_time)
##  Date[1:7800], format: "2017-11-13" "2017-11-13" "2017-11-12" "2017-11-13" "2017-11-12" ...

Date Difference

str(toptrend.df$trending_date)
##  Date[1:7800], format: "0017-11-14" "0017-11-14" "0017-11-14" "0017-11-14" "0017-11-14" ...
str(toptrend.df$publish_time)
##  Date[1:7800], format: "2017-11-13" "2017-11-13" "2017-11-12" "2017-11-13" "2017-11-12" ...
toptrend.df$datediff=toptrend.df$trending_date-toptrend.df$publish_time+730486

toptrend.df$datediff=as.numeric(toptrend.df$datediff,units="days")
str(toptrend.df$datediff)
##  num [1:7800] 2 2 3 2 3 2 3 3 2 2 ...
View(toptrend.df)

Corrgram

library(corrgram)
## Warning: package 'corrgram' was built under R version 3.4.3
corrgram(toptrend.df)

Correlations

cor.test(toptrend.df$numworddes,toptrend.df$numtags)
## 
##  Pearson's product-moment correlation
## 
## data:  toptrend.df$numworddes and toptrend.df$numtags
## t = 29.86, df = 7798, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3002615 0.3400950
## sample estimates:
##       cor 
## 0.3203198

The number of tags and the length of description of a video are positively correlated.

cor.test(toptrend.df$views,toptrend.df$comment_count)
## 
##  Pearson's product-moment correlation
## 
## data:  toptrend.df$views and toptrend.df$comment_count
## t = 114.73, df = 7798, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.7840472 0.8005647
## sample estimates:
##       cor 
## 0.7924512
cor.test(toptrend.df$views,toptrend.df$likes)
## 
##  Pearson's product-moment correlation
## 
## data:  toptrend.df$views and toptrend.df$likes
## t = 167.78, df = 7798, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8800092 0.8896409
## sample estimates:
##       cor 
## 0.8849196
cor.test(toptrend.df$views,toptrend.df$dislikes)
## 
##  Pearson's product-moment correlation
## 
## data:  toptrend.df$views and toptrend.df$dislikes
## t = 80.357, df = 7798, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.6607087 0.6849943
## sample estimates:
##       cor 
## 0.6730329
cor.test(toptrend.df$views,toptrend.df$datediff)
## 
##  Pearson's product-moment correlation
## 
## data:  toptrend.df$views and toptrend.df$datediff
## t = -1.7455, df = 7798, p-value = 0.08094
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.041936613  0.002431754
## sample estimates:
##         cor 
## -0.01976216

There is a very strong correlation between the number of views of a video and the number of comments and likes on it. The number of dislikes also has a healthy positive correlation with the number of views. However, the number of days from publishing and the number of views do not have a statistically significant correlation.

cor.test(toptrend.df$likes,toptrend.df$datediff)
## 
##  Pearson's product-moment correlation
## 
## data:  toptrend.df$likes and toptrend.df$datediff
## t = -2.0817, df = 7798, p-value = 0.0374
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.045736065 -0.001375012
## sample estimates:
##         cor 
## -0.02356714
cor.test(toptrend.df$likes,toptrend.df$dislikes)
## 
##  Pearson's product-moment correlation
## 
## data:  toptrend.df$likes and toptrend.df$dislikes
## t = 54.485, df = 7798, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.508829 0.540981
## sample estimates:
##       cor 
## 0.5250923

Unexpectedly, there is a minor negative correlation between the number of likes and the number of days from publishing. This means that when we talk about top trending videos, we cannot expect that older videos would have more likes.

Another observation to be made is that videos with higher number of likes are likely to have higher number of dislikes as well.

Let us give a score to each video based on its rank. The highest ranked video gets the maximum marks while the lowest ranked video gets the minimum marks

toptrend.df$score=seq(200000,1000,-1000)

View(toptrend.df) 

Score Predictor

str(title)
##  Factor w/ 1927 levels "'I have taken poison' claims war criminal",..: 1809 1677 1342 1231 788 42 1391 78 1615 1882 ...
scorepre=lm(score~datediff+views+numtags+dislikes+comment_count+title+category_id,data=toptrend.df)
summary(scorepre)[c(1,2,6,7,8,9,10)]
## $call
## lm(formula = score ~ datediff + views + numtags + dislikes + 
##     comment_count + title + category_id, data = toptrend.df)
## 
## $terms
## score ~ datediff + views + numtags + dislikes + comment_count + 
##     title + category_id
## attr(,"variables")
## list(score, datediff, views, numtags, dislikes, comment_count, 
##     title, category_id)
## attr(,"factors")
##               datediff views numtags dislikes comment_count title
## score                0     0       0        0             0     0
## datediff             1     0       0        0             0     0
## views                0     1       0        0             0     0
## numtags              0     0       1        0             0     0
## dislikes             0     0       0        1             0     0
## comment_count        0     0       0        0             1     0
## title                0     0       0        0             0     1
## category_id          0     0       0        0             0     0
##               category_id
## score                   0
## datediff                0
## views                   0
## numtags                 0
## dislikes                0
## comment_count           0
## title                   0
## category_id             1
## attr(,"term.labels")
## [1] "datediff"      "views"         "numtags"       "dislikes"     
## [5] "comment_count" "title"         "category_id"  
## attr(,"order")
## [1] 1 1 1 1 1 1 1
## attr(,"intercept")
## [1] 1
## attr(,"response")
## [1] 1
## attr(,".Environment")
## <environment: R_GlobalEnv>
## attr(,"predvars")
## list(score, datediff, views, numtags, dislikes, comment_count, 
##     title, category_id)
## attr(,"dataClasses")
##         score      datediff         views       numtags      dislikes 
##     "numeric"     "numeric"     "numeric"     "numeric"     "numeric" 
## comment_count         title   category_id 
##     "numeric"      "factor"     "numeric" 
## 
## $sigma
## [1] 14903.61
## 
## $df
## [1] 1933 5867 1933
## 
## $r.squared
## [1] 0.949877
## 
## $adj.r.squared
## [1] 0.9333716
## 
## $fstatistic
##      value      numdf      dendf 
##   57.54926 1932.00000 5867.00000
fitted(scorepre)[1:400]
##          1          2          3          4          5          6 
## 193556.361 191593.277 174968.982 177467.655 168537.286 192332.734 
##          7          8          9         10         11         12 
## 159406.492 164560.391 197056.759 188200.281 190000.000 165078.050 
##         13         14         15         16         17         18 
## 179482.218 153237.731 155416.453 209667.434 147611.146 182755.291 
##         19         20         21         22         23         24 
## 158435.305 164901.527 174673.806 141997.862 157266.719 156128.361 
##         25         26         27         28         29         30 
## 171264.223 138384.126 146376.139 145933.635 154680.468 131965.620 
##         31         32         33         34         35         36 
## 161414.405 133617.734 129469.353 138000.390 140730.416 130210.238 
##         37         38         39         40         41         42 
## 164000.000 157180.559 132621.966 171578.709 166280.431 159000.000 
##         43         44         45         46         47         48 
## 141621.164 124210.990 156000.000 124814.064 154000.000 134398.477 
##         49         50         51         52         53         54 
## 143621.028 116885.965 124680.297 116222.683 130400.036 115346.356 
##         55         56         57         58         59         60 
## 112219.837 145000.000 114469.590 139134.444 130798.005 112432.566 
##         61         62         63         64         65         66 
## 112817.891 154340.571 110787.967 108769.935 122634.586 105949.383 
##         67         68         69         70         71         72 
## 109734.717 104027.415 137146.021 102457.427  98683.397  95480.162 
##         73         74         75         76         77         78 
##  95813.994  88158.009  98709.059  96972.844 124000.000  98448.769 
##         79         80         81         82         83         84 
## 122000.000  93142.448  97811.704  95780.773  93406.914  99721.874 
##         85         86         87         88         89         90 
##  88812.649  92798.011  83410.020  97812.872  87436.810  88333.976 
##         91         92         93         94         95         96 
##  87816.072  85132.141  87149.296  79750.655  87874.852  84795.885 
##         97         98         99        100        101        102 
##  82707.992  82474.383  75378.867  81817.129  80886.328  75072.286 
##        103        104        105        106        107        108 
##  98000.000  76406.982  96000.000  78897.798  94000.000  78403.233 
##        109        110        111        112        113        114 
##  75390.363  78402.364  70808.188  74897.705  73792.190  71887.933 
##        115        116        117        118        119        120 
##  71872.614  67405.443  63401.658  83000.000  59406.639  66900.589 
##        121        122        123        124        125        126 
##  62905.413  63390.272  78000.000  65408.122  63859.086  61904.743 
##        127        128        129        130        131        132 
##  62402.390  73000.000  56901.247  57406.421  54349.984  52433.154 
##        133        134        135        136        137        138 
##  54407.086  50900.527  52901.614  54907.681  64000.000  54901.382 
##        139        140        141        142        143        144 
##  45907.771  61000.000  60000.000  45377.825  45403.979  57000.000 
##        145        146        147        148        149        150 
##  56000.000  55000.000  54000.000  53000.000  52000.000  51000.000 
##        151        152        153        154        155        156 
##  50000.000  43388.347  48000.000  37905.295  46000.000  45000.000 
##        157        158        159        160        161        162 
##  37400.912  43000.000  42000.000  41000.000  40000.000  39000.000 
##        163        164        165        166        167        168 
##  38000.000  37000.000  36000.000  35000.000  34000.000  33000.000 
##        169        170        171        172        173        174 
##  32000.000  31000.000  30000.000  29000.000  28000.000  27000.000 
##        175        176        177        178        179        180 
##  26000.000  25000.000  24000.000  23000.000  22000.000  21000.000 
##        181        182        183        184        185        186 
##  20000.000  19000.000  18000.000  17000.000  16000.000  15000.000 
##        187        188        189        190        191        192 
##  14000.000  13000.000  12000.000  11000.000  10000.000   9000.000 
##        193        194        195        196        197        198 
##   8000.000   7000.000   6000.000   5000.000   4000.000   3000.000 
##        199        200        201        202        203        204 
##   2000.000   1000.000 208334.702 212389.080 205696.075 202777.335 
##        205        206        207        208        209        210 
## 200748.459 207482.482 199730.080 195121.548 192000.000 184980.853 
##        211        212        213        214        215        216 
## 187623.009 186634.997 177672.155 177145.980 179256.840 206885.631 
##        217        218        219        220        221        222 
## 192902.310 167644.007 172761.600 169416.359 180372.695 165404.464 
##        223        224        225        226        227        228 
## 183034.784 164912.620 177389.578 169943.241 167313.132 161827.217 
##        229        230        231        232        233        234 
## 180352.102 160702.191 170000.000 151153.025 155062.786 140954.789 
##        235        236        237        238        239        240 
## 155336.417 151012.399 149120.458 147425.964 147655.689 161000.000 
##        241        242        243        244        245        246 
## 143031.064 176525.210 160799.719 143492.793 152808.525 143866.554 
##        247        248        249        250        251        252 
## 142207.118 141117.527 129417.026 126561.778 134907.133 137396.067 
##        253        254        255        256        257        258 
## 139232.437 147000.000 148405.817 136899.060 148981.614 131247.064 
##        259        260        261        262        263        264 
## 141401.911 126895.129 124435.342 137389.639 129558.717 130918.194 
##        265        266        267        268        269        270 
## 131830.724 133762.624 128376.209 113818.667 115961.062 129386.399 
##        271        272        273        274        275        276 
## 127670.328 125577.695 119964.616 121961.007 101973.632 115817.339 
##        277        278        279        280        281        282 
## 119835.974 118618.623 118216.473 137098.473 114219.308 128365.893 
##        283        284        285        286        287        288 
## 114462.133 118243.024 118630.264 124210.538 105211.009 111340.132 
##        289        290        291        292        293        294 
## 110222.242 113010.991 105817.179 123824.599 110626.204 100720.322 
##        295        296        297        298        299        300 
## 109333.785  96149.553  98479.097 103000.000 102149.000  94914.010 
##        301        302        303        304        305        306 
##  96147.892 104953.488 103001.706 102412.237 104156.173  96436.461 
##        307        308        309        310        311        312 
##  97190.417  86149.689  87144.070  82147.308  88603.802  97016.874 
##        313        314        315        316        317        318 
## 106601.523  79816.123  89169.826 102599.964  88408.428  84831.130 
##        319        320        321        322        323        324 
##  77406.986  84409.446  86655.387  84596.901  83010.822  81311.353 
##        325        326        327        328        329        330 
##  84998.679  82012.171  78160.140  76131.261  71907.615  74233.621 
##        331        332        333        334        335        336 
##  70000.966  70905.804  70831.702  65335.381  69163.657  70002.267 
##        337        338        339        340        341        342 
##  73597.557  62386.601  59676.129  68004.632  45408.315  65002.919 
##        343        344        345        346        347        348 
##  68000.823  56815.704  61641.922  67666.258  59999.734  57003.484 
##        349        350        351        352        353        354 
##  47402.191  55002.025  57390.124  53996.284  59333.356  54666.474 
##        355        356        357        358        359        360 
##  55684.577  60340.203  61001.233  52020.789  60125.148  65593.086 
##        361        362        363        364        365        366 
##  47692.832  47347.618  50597.636  42999.837  50596.767  51102.202 
##        367        368        369        370        371        372 
##  53113.672  47102.295  46207.810  47609.637  44127.386  44112.067 
##        373        374        375        376        377        378 
##  48593.018  27000.000  37591.878  39099.411  36140.914  34597.610 
##        379        380        381        382        383        384 
##  39594.557  34095.257  35609.728  27098.618  35094.587  27092.319 
##        385        386        387        388        389        390 
##  29593.579  35598.342  29098.753  26592.914  25098.386  26650.016 
##        391        392        393        394        395        396 
##  15611.653  31593.361  24566.846  23099.473   6000.000  17596.021 
##        397        398        399        400 
##  17622.175   9599.088  18092.229  10094.705

Rank Predictor

rankpre=lm(rank~datediff+views+dislikes+comment_count+numtags+category_id+title+channel_title,data=toptrend.df)
summary(rankpre)[c(1,2,6,7,8,9,10)]
## $call
## lm(formula = rank ~ datediff + views + dislikes + comment_count + 
##     numtags + category_id + title + channel_title, data = toptrend.df)
## 
## $terms
## rank ~ datediff + views + dislikes + comment_count + numtags + 
##     category_id + title + channel_title
## attr(,"variables")
## list(rank, datediff, views, dislikes, comment_count, numtags, 
##     category_id, title, channel_title)
## attr(,"factors")
##               datediff views dislikes comment_count numtags category_id
## rank                 0     0        0             0       0           0
## datediff             1     0        0             0       0           0
## views                0     1        0             0       0           0
## dislikes             0     0        1             0       0           0
## comment_count        0     0        0             1       0           0
## numtags              0     0        0             0       1           0
## category_id          0     0        0             0       0           1
## title                0     0        0             0       0           0
## channel_title        0     0        0             0       0           0
##               title channel_title
## rank              0             0
## datediff          0             0
## views             0             0
## dislikes          0             0
## comment_count     0             0
## numtags           0             0
## category_id       0             0
## title             1             0
## channel_title     0             1
## attr(,"term.labels")
## [1] "datediff"      "views"         "dislikes"      "comment_count"
## [5] "numtags"       "category_id"   "title"         "channel_title"
## attr(,"order")
## [1] 1 1 1 1 1 1 1 1
## attr(,"intercept")
## [1] 1
## attr(,"response")
## [1] 1
## attr(,".Environment")
## <environment: R_GlobalEnv>
## attr(,"predvars")
## list(rank, datediff, views, dislikes, comment_count, numtags, 
##     category_id, title, channel_title)
## attr(,"dataClasses")
##          rank      datediff         views      dislikes comment_count 
##     "numeric"     "numeric"     "numeric"     "numeric"     "numeric" 
##       numtags   category_id         title channel_title 
##     "numeric"     "numeric"      "factor"      "factor" 
## 
## $sigma
## [1] 14.89518
## 
## $df
## [1] 1937 5863 2924
## 
## $r.squared
## [1] 0.9499679
## 
## $adj.r.squared
## [1] 0.933447
## 
## $fstatistic
##     value     numdf     dendf 
##   57.5009 1936.0000 5863.0000
fitted(rankpre)[1:400]
##           1           2           3           4           5           6 
##   7.4444654   9.4080341  26.0334404  23.3572085  32.4640445   8.6693290 
##           7           8           9          10          11          12 
##  41.5949398  36.4418443   3.9438861  12.7998390  11.0000000  35.9236517 
##          13          14          15          16          17          18 
##  21.0874520  47.7639379  45.5850841  -8.6686335  53.3903669  18.2465816 
##          19          20          21          22          23          24 
##  42.5662677  36.0988666  26.3274608  59.0036583  43.7350951  44.8723991 
##          25          26          27          28          29          30 
##  29.7380345  62.6173395  54.6253255  55.0677664  46.3214001  69.0354925 
##          31          32          33          34          35          36 
##  39.5876233  67.3837977  71.5349888  63.0010986  60.2711011  70.7908756 
##          37          38          39          40          41          42 
##  37.0000000  43.8213298  68.3791326  29.4234652  34.7202278  42.0000000 
##          43          44          45          46          47          48 
##  59.3803278  76.7900326  45.0000000  76.1870108  47.0000000  66.6019088 
##          49          50          51          52          53          54 
##  57.3804805  84.1151945  76.3203063  84.7784416  70.6003816  85.6564899 
##          55          56          57          58          59          60 
##  88.7812936  56.0000000  86.5315450  61.8662937  70.2027585  88.5684676 
##          61          62          63          64          65          66 
##  88.1828684  46.6612582  90.2127445  92.2316677  78.3664689  95.0517504 
##          67          68          69          70          71          72 
##  91.2660318  96.9741437  63.8547308  98.5445961 102.3177802 105.5205857 
##          73          74          75          76          77          78 
## 105.1867555 112.8427591 102.2920964 104.0282941  77.0000000 102.5526914 
##          79          80          81          82          83          84 
##  79.0000000 107.8583034 103.1890606 105.2199463 107.5934620 101.2792485 
##          85          86          87          88          89          90 
## 112.1881049 108.2027391 117.5907988 103.1878781 113.5639576 112.5630979 
##          91          92          93          94          95          96 
## 113.1846795 115.8690970 113.8514541 121.2500661 113.1255074 116.2048579 
##          97          98          99         100         101         102 
## 118.2928242 118.5263813 125.6218541 119.1836498 120.1140474 125.9285203 
##         103         104         105         106         107         108 
## 103.0000000 124.5933949 105.0000000 122.1026427 107.0000000 122.5971444 
##         109         110         111         112         113         114 
## 125.6100129 122.5980104 130.1925990 126.1026700 127.2081656 129.1124375 
##         115         116         117         118         119         120 
## 129.1277780 133.5949332 137.5987203 118.0000000 141.5937411 134.0997850 
##         121         122         123         124         125         126 
## 138.0949640 137.6100997 123.0000000 135.5922563 137.1413258 139.0956324 
##         127         128         129         130         131         132 
## 138.5979845 128.0000000 144.0991360 143.5939550 146.6503736 148.5672766 
##         133         134         135         136         137         138 
## 146.5932889 150.0998380 148.0987683 146.0926935 137.0000000 146.0989926 
##         139         140         141         142         143         144 
## 155.0926052 140.0000000 141.0000000 155.6225564 155.5963990 144.0000000 
##         145         146         147         148         149         150 
## 145.0000000 146.0000000 147.0000000 148.0000000 149.0000000 150.0000000 
##         151         152         153         154         155         156 
## 151.0000000 157.6120517 153.0000000 163.0950787 155.0000000 156.0000000 
##         157         158         159         160         161         162 
## 163.5994619 158.0000000 159.0000000 160.0000000 161.0000000 162.0000000 
##         163         164         165         166         167         168 
## 163.0000000 164.0000000 165.0000000 166.0000000 167.0000000 168.0000000 
##         169         170         171         172         173         174 
## 169.0000000 170.0000000 171.0000000 172.0000000 173.0000000 174.0000000 
##         175         176         177         178         179         180 
## 175.0000000 176.0000000 177.0000000 178.0000000 179.0000000 180.0000000 
##         181         182         183         184         185         186 
## 181.0000000 182.0000000 183.0000000 184.0000000 185.0000000 186.0000000 
##         187         188         189         190         191         192 
## 187.0000000 188.0000000 189.0000000 190.0000000 191.0000000 192.0000000 
##         193         194         195         196         197         198 
## 193.0000000 194.0000000 195.0000000 196.0000000 197.0000000 198.0000000 
##         199         200         201         202         203         204 
## 199.0000000 200.0000000  -7.3320293 -11.3876315  -4.6935173  -1.7747304 
##         205         206         207         208         209         210 
##   0.2534911  -6.9162355   1.2702509   5.6699691   9.0000000  16.0198668 
##         211         212         213         214         215         216 
##  13.3792556  14.3673344  23.3296648  23.8555550  21.7449241  -5.8837434 
##         217         218         219         220         221         222 
##   8.1001663  33.3586968  28.2405881  31.5860455  20.6276466  35.5972766 
##         223         224         225         226         227         228 
##  17.9668457  36.0889213  23.6107864  31.0561139  33.6886648  39.1746015 
##         229         230         231         232         233         234 
##  20.6497594  40.2992259  31.0000000  49.8781780  45.9383559  60.0466057 
##         235         236         237         238         239         240 
##  45.6984156  49.9890943  51.8810426  53.5754565  53.3458677  40.0000000 
##         241         242         243         244         245         246 
##  57.9704458  24.4766603  40.2001610  57.5087115  48.1922275  57.1349450 
##         247         248         249         250         251         252 
##  58.7943523  59.8834397  71.5844537  74.4393528  66.0932433  63.6050608 
##         253         254         255         256         257         258 
##  61.7689132  54.0000000  52.5945594  64.1024541  52.0202382  69.7541714 
##         259         260         261         262         263         264 
##  59.5984654  74.1059968  76.5657150  63.6107339  71.4423985  70.0830001 
##         265         266         267         268         269         270 
##  69.1700783  67.2388162  72.6241485  87.1820848  85.0400474  71.6147295 
##         271         272         273         274         275         276 
##  73.3305301  75.4234004  81.0365134  79.0401200  99.0274937  85.1834126 
##         277         278         279         280         281         282 
##  81.1648110  82.3821307  82.7846527  63.9011334  86.7814422  72.6341537 
##         283         284         285         286         287         288 
##  86.5389855  82.7577746  82.3712356  76.7909289  95.7901133  89.6598752 
##         289         290         291         292         293         294 
##  90.7785289  87.9897951  95.1835667  77.1758555  90.3745814 100.2807993 
##         295         296         297         298         299         300 
##  91.6662148 104.8511967 102.5216516  98.0000000  98.8521765 106.0863500 
##         301         302         303         304         305         306 
## 104.8528555  96.0469712  97.9982968  98.5881414  96.8441967 104.5638986 
##         307         308         309         310         311         312 
## 103.8099766 114.8510617 113.8566843 118.8534411 112.3969190 103.9831485 
##         313         314         315         316         317         318 
##  94.3980912 121.1846273 111.8305682  98.3996184 112.5919471 116.1697424 
##         319         320         321         322         323         324 
## 123.5933904 116.5909300 114.3449846 116.4033319 117.9891980 119.6891334 
##         325         326         327         328         329         330 
## 116.0013171 118.9878296 122.8402385 124.8690934 129.0927591 126.7664721 
##         331         332         333         334         335         336 
## 130.9990344 130.0945710 130.1687735 135.6646173 131.8367314 130.9977309 
##         337         338         339         340         341         342 
## 127.4025693 138.6137765 141.3238675 132.9953658 155.5920618 135.9970827 
##         343         344         345         346         347         348 
## 132.9991770 144.1850466 139.4097941 133.3337411 141.0002649 143.9965176 
##         349         350         351         352         353         354 
## 153.5981862 145.9979560 143.6102380 147.0037042 141.6666438 146.3335222 
##         355         356         357         358         359         360 
## 145.3154175 140.6598111 139.9987661 148.9792222 140.8744926 135.4065380 
##         361         362         363         364         365         366 
## 153.3071764 153.6523706 150.4019896 158.0001484 150.4028556 149.8973573 
##         367         368         369         370         371         372 
## 147.8859526 153.8973300 154.7918344 153.3899871 156.8722220 156.8875625 
##         373         374         375         376         377         378 
## 152.4066051 174.0000000 163.4077437 161.9002150 164.8586742 166.4020155 
##         379         380         381         382         383         384 
## 161.4050668 166.9043676 165.3899003 173.9010074 165.9050360 173.9073065 
##         385         386         387         388         389         390 
## 171.4060450 165.4012797 171.9008640 174.4067111 175.9012317 174.3496264 
##         391         392         393         394         395         396 
## 185.3879483 169.4062589 176.4327234 177.9001620 195.0000000 183.4036010 
##         397         398         399         400 
## 183.3774436 191.4005381 182.9073948 190.9049213