factorial <- 1
for (i in 1:12) {
factorial <- factorial * i
}
print(factorial)
## [1] 479001600
num_vec <- c(seq(20, 50, 5))
print(num_vec)
## [1] 20 25 30 35 40 45 50
factorial <- function(a, b, c) {
if (a == 0) {
message("Not a quadratic equation. 'a' must not be zero")
return(NULL)
}
else {
discriminant <- (b ^ 2 - 4 * a * c)
if (discriminant == 0) {
return(-b / (2 * a))
} else if (discriminant > 0) {
discriminant_sq_root = sqrt(discriminant)
sol_1 <- (-b + discriminant_sq_root) / (2 * a)
sol_2 <- (-b - discriminant_sq_root) / (2 * a)
return(c(sol_1, sol_2))
} else {
discriminant_sq_root = sqrt(-discriminant)
sol_1 <- complex(real = -b / (2 * a), imaginary = discriminant_sq_root / (2 * a))
sol_2 <- complex(real = -b / (2 * a), imaginary = -discriminant_sq_root / (2 * a))
return(c(sol_1, sol_2))
}
}
}
print(factorial(1, 3, -4))
## [1] 1 -4
print(factorial(0, 3, -4))
## Not a quadratic equation. 'a' must not be zero
## NULL
print(factorial(2, -4, 8))
## [1] 1+1.732051i 1-1.732051i
print(factorial(1, -6, 9))
## [1] 3