# load package and data
options(scipen=999)  # turn-off scientific notation like 1e+48
library(ggplot2)
theme_set(theme_bw())  # pre-set the bw theme.
data("midwest", package = "ggplot2")
# midwest <- read.csv("http://goo.gl/G1K41K")  # bkup data source

# Scatterplot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) + 
  geom_point(aes(col=state, size=popdensity)) + 
  geom_smooth(method="loess", se=F) + 
  xlim(c(0, 0.1)) + 
  ylim(c(0, 500000)) + 
  labs(subtitle="Area Vs Population", 
       y="Population", 
       x="Area", 
       title="Scatterplot", 
       caption = "Source: midwest")

plot(gg)
## Warning: Removed 15 rows containing non-finite values (stat_smooth).
## Warning: Removed 15 rows containing missing values (geom_point).

# install.packages("ggalt", repos = "cran.nexr.com")
options(scipen = 999)
library(ggplot2)
library(ggalt)
midwest_select <- midwest[midwest$poptotal > 350000 & 
                            midwest$poptotal <= 500000 & 
                            midwest$area > 0.01 & 
                            midwest$area < 0.1, ]

# Plot
ggplot(midwest, aes(x=area, y=poptotal)) + 
  geom_point(aes(col=state, size=popdensity)) +   # draw points
  geom_smooth(method="loess", se=F) + 
  xlim(c(0, 0.1)) + 
  ylim(c(0, 500000)) +   # draw smoothing line
  geom_encircle(aes(x=area, y=poptotal), 
                data=midwest_select, 
                color="red", 
                size=2, 
                expand=0.08) +   # encircle
  labs(subtitle="Area Vs Population", 
       y="Population", 
       x="Area", 
       title="Scatterplot + Encircle", 
       caption="Source: midwest")
## Warning: Removed 15 rows containing non-finite values (stat_smooth).
## Warning: Removed 15 rows containing missing values (geom_point).

# load package and data
library(ggplot2)
data(mpg, package="ggplot2")
# mpg <- read.csv("http://goo.gl/uEeRGu")

mpg_select <- mpg[mpg$manufacturer %in% c("audi", "ford", "honda", "hyundai"), ]

# Scatterplot
theme_set(theme_bw())  # pre-set the bw theme.
g <- ggplot(mpg_select, aes(displ, cty)) + 
  labs(subtitle="mpg: Displacement vs City Mileage",
       title="Bubble chart")

g + geom_jitter(aes(col=manufacturer, size=hwy)) + 
  geom_smooth(aes(col=manufacturer), method="lm", se=F)

# load package and data
library(ggplot2)
if(!require(ggExtra)) install.packages("ggExtra")
## Loading required package: ggExtra
library(ggExtra)
data(mpg, package="ggplot2")
# mpg <- read.csv("http://goo.gl/uEeRGu")

# Scatterplot
theme_set(theme_bw())  # pre-set the bw theme.
mpg_select <- mpg[mpg$hwy >= 35 & mpg$cty > 27, ]
g <- ggplot(mpg, aes(cty, hwy)) + 
  geom_count() + 
  geom_smooth(method="lm", se=F)
ggMarginal(g, type = "histogram", fill="transparent")

theme_set(theme_bw())  # pre-set the bw theme.
g
ggMarginal(g, type = "boxplot", fill="transparent")

# ggMarginal(g, type = "density", fill="transparent")
# devtools::install_github("kassambara/ggcorrplot")
library(ggplot2)
library(ggcorrplot)

# Correlation matrix
data(mtcars)
corr <- round(cor(mtcars), 1)

# Plot
ggcorrplot(corr, hc.order = TRUE, 
           type = "lower", 
           lab = TRUE, 
           lab_size = 3, 
           method="circle", 
           colors = c("tomato2", "white", "springgreen3"), 
           title="Correlogram of mtcars", 
           ggtheme=theme_bw)

library(ggplot2)
theme_set(theme_bw())  

# Data Prep
data("mtcars")  # load data
mtcars$`car name` <- rownames(mtcars)  # create new column for car names
mtcars$mpg_z <- round((mtcars$mpg - mean(mtcars$mpg))/sd(mtcars$mpg), 2)  # compute normalized mpg
mtcars$mpg_type <- ifelse(mtcars$mpg_z < 0, "below", "above")  # above / below avg flag
mtcars <- mtcars[order(mtcars$mpg_z), ]  # sort
mtcars$`car name` <- factor(mtcars$`car name`, levels = mtcars$`car name`)  # convert to factor to retain sorted order in plot.

# Diverging Barcharts
ggplot(mtcars, aes(x=`car name`, y=mpg_z, label=mpg_z)) + 
  geom_bar(stat='identity', aes(fill=mpg_type), width=.5)  +
  scale_fill_manual(name="Mileage", 
                    labels = c("Above Average", "Below Average"), 
                    values = c("above"="#00ba38", "below"="#f8766d")) + 
  labs(subtitle="Normalised mileage from 'mtcars'", 
       title= "Diverging Bars") + 
  coord_flip()

library(ggplot2)
theme_set(theme_bw())

ggplot(mtcars, aes(x=`car name`, y=mpg_z, label=mpg_z)) + 
  geom_point(stat='identity', fill="black", size=6)  +
  geom_segment(aes(y = 0, 
                   x = `car name`, 
                   yend = mpg_z, 
                   xend = `car name`), 
               color = "black") +
  geom_text(color="white", size=2) +
  labs(title="Diverging Lollipop Chart", 
       subtitle="Normalized mileage from 'mtcars': Lollipop") + 
  ylim(-2.5, 2.5) +
  coord_flip()

library(ggplot2)
theme_set(theme_bw())

# Plot
ggplot(mtcars, aes(x=`car name`, y=mpg_z, label=mpg_z)) + 
  geom_point(stat='identity', aes(col=mpg_type), size=6)  +
  scale_color_manual(name="Mileage", 
                     labels = c("Above Average", "Below Average"), 
                     values = c("above"="#00ba38", "below"="#f8766d")) + 
  geom_text(color="white", size=2) +
  labs(title="Diverging Dot Plot", 
       subtitle="Normalized mileage from 'mtcars': Dotplot") + 
  ylim(-2.5, 2.5) +
  coord_flip()

# Prepare data: group mean city mileage by manufacturer.
cty_mpg <- aggregate(mpg$cty, by=list(mpg$manufacturer), FUN=mean)  # aggregate
colnames(cty_mpg) <- c("make", "mileage")  # change column names
cty_mpg <- cty_mpg[order(cty_mpg$mileage), ]  # sort
cty_mpg$make <- factor(cty_mpg$make, levels = cty_mpg$make)  # to retain the order in plot.
head(cty_mpg, 4)
##          make  mileage
## 9     lincoln 11.33333
## 8  land rover 11.50000
## 3       dodge 13.13514
## 10    mercury 13.25000
library(ggplot2)
theme_set(theme_bw())

# Draw plot
ggplot(cty_mpg, aes(x=make, y=mileage)) + 
  geom_bar(stat="identity", width=.5, fill="tomato3") + 
  labs(title="Ordered Bar Chart", 
       subtitle="Make Vs Avg. Mileage", 
       caption="source: mpg") + 
  theme(axis.text.x = element_text(angle=65, vjust=0.6))

library(ggplot2)
library(scales)
theme_set(theme_classic())

# prep data
df <- read.csv("https://raw.githubusercontent.com/selva86/datasets/master/gdppercap.csv")
colnames(df) <- c("continent", "1952", "1957")
left_label <- paste(df$continent, round(df$`1952`),sep=", ")
right_label <- paste(df$continent, round(df$`1957`),sep=", ")
df$class <- ifelse((df$`1957` - df$`1952`) < 0, "red", "green")

# Plot
p <- ggplot(df) + geom_segment(aes(x=1, xend=2, y=`1952`, yend=`1957`, col=class), size=.75, show.legend=F) + 
                  geom_vline(xintercept=1, linetype="dashed", size=.1) + 
                  geom_vline(xintercept=2, linetype="dashed", size=.1) +
                  scale_color_manual(labels = c("Up", "Down"), 
                                     values = c("green"="#00ba38", "red"="#f8766d")) +  # color of lines
                  labs(x="", y="Mean GdpPerCap") +  # Axis labels
                  xlim(.5, 2.5) + ylim(0,(1.1*(max(df$`1952`, df$`1957`))))  # X and Y axis limits

# Add texts
p <- p + geom_text(label=left_label, y=df$`1952`, x=rep(1, NROW(df)), hjust=1.1, size=3.5)
p <- p + geom_text(label=right_label, y=df$`1957`, x=rep(2, NROW(df)), hjust=-0.1, size=3.5)
p <- p + geom_text(label="Time 1", x=1, y=1.1*(max(df$`1952`, df$`1957`)), hjust=1.2, size=5)  # title
p <- p + geom_text(label="Time 2", x=2, y=1.1*(max(df$`1952`, df$`1957`)), hjust=-0.1, size=5)  # title

# Minify theme
p + theme(panel.background = element_blank(), 
           panel.grid = element_blank(),
           axis.ticks = element_blank(),
           axis.text.x = element_blank(),
           panel.border = element_blank(),
           plot.margin = unit(c(1,2,1,2), "cm"))

library(ggplot2)
theme_set(theme_classic())

# Histogram on a Continuous (Numeric) Variable
g <- ggplot(mpg, aes(displ)) + scale_fill_brewer(palette = "Spectral")

g + geom_histogram(aes(fill=class), 
                   binwidth = .1, 
                   col="black", 
                   size=.1) +  # change binwidth
  labs(title="Histogram with Auto Binning", 
       subtitle="Engine Displacement across Vehicle Classes")  

g + geom_histogram(aes(fill=class), 
                   bins=5, 
                   col="black", 
                   size=.1) +   # change number of bins
  labs(title="Histogram with Fixed Bins", 
       subtitle="Engine Displacement across Vehicle Classes") 

theme_set(theme_classic())

# Histogram on a Categorical variable
g <- ggplot(mpg, aes(manufacturer))
g + geom_bar(aes(fill=class), width = 0.5) + 
  theme(axis.text.x = element_text(angle=65, vjust=0.6)) + 
  labs(title="Histogram on Categorical Variable", 
       subtitle="Manufacturer across Vehicle Classes") 

library(ggplot2)
theme_set(theme_classic())

# Plot
g <- ggplot(mpg, aes(cty))
g + geom_density(aes(fill=factor(cyl)), alpha=0.8) + 
    labs(title="Density plot", 
         subtitle="City Mileage Grouped by Number of cylinders",
         caption="Source: mpg",
         x="City Mileage",
         fill="# Cylinders")

library(ggplot2)
theme_set(theme_bw())

# plot
g <- ggplot(mpg, aes(manufacturer, cty))
g + geom_boxplot() + 
  geom_dotplot(binaxis='y', 
               stackdir='center', 
               dotsize = .5, 
               fill="red") +
  theme(axis.text.x = element_text(angle=65, vjust=0.6)) + 
  labs(title="Box plot + Dot plot", 
       subtitle="City Mileage vs Class: Each dot represents 1 row in source data",
       caption="Source: mpg",
       x="Class of Vehicle",
       y="City Mileage")
## `stat_bindot()` using `bins = 30`. Pick better value with `binwidth`.

library(ggplot2)
theme_set(theme_bw())

# plot
g <- ggplot(mpg, aes(class, cty))
g + geom_violin() + 
  labs(title="Violin plot", 
       subtitle="City Mileage vs Class of vehicle",
       caption="Source: mpg",
       x="Class of Vehicle",
       y="City Mileage")

library(ggplot2)
library(ggthemes)
options(scipen = 999)  # turns of scientific notations like 1e+40

# Read data
email_campaign_funnel <- read.csv("https://raw.githubusercontent.com/selva86/datasets/master/email_campaign_funnel.csv")

# X Axis Breaks and Labels 
brks <- seq(-15000000, 15000000, 5000000)
lbls = paste0(as.character(c(seq(15, 0, -5), seq(5, 15, 5))), "m")

# Plot
ggplot(email_campaign_funnel, aes(x = Stage, y = Users, fill = Gender)) +   # Fill column
                              geom_bar(stat = "identity", width = .6) +   # draw the bars
                              scale_y_continuous(breaks = brks,   # Breaks
                                                 labels = lbls) + # Labels
                              coord_flip() +  # Flip axes
                              labs(title="Email Campaign Funnel") +
                              theme_tufte() +  # Tufte theme from ggfortify
                              theme(plot.title = element_text(hjust = .5), 
                                    axis.ticks = element_blank()) +   # Centre plot title
                              scale_fill_brewer(palette = "Dark2")  # Color palette

library(ggplot2)
library(lubridate)
## 
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
## 
##     date
theme_set(theme_bw())

df <- economics_long[economics_long$variable %in% c("psavert", "uempmed"), ]
df <- df[lubridate::year(df$date) %in% c(1967:1981), ]

# labels and breaks for X axis text
brks <- df$date[seq(1, length(df$date), 12)]
lbls <- lubridate::year(brks)

# plot
ggplot(df, aes(x=date)) + 
  geom_line(aes(y=value, col=variable)) + 
  labs(title="Time Series of Returns Percentage", 
       subtitle="Drawn from Long Data format", 
       caption="Source: Economics", 
       y="Returns %", 
       color=NULL) +  # title and caption
  scale_x_date(labels = lbls, breaks = brks) +  # change to monthly ticks and labels
  scale_color_manual(labels = c("psavert", "uempmed"), 
                     values = c("psavert"="#00ba38", "uempmed"="#f8766d")) +  # line color
  theme(axis.text.x = element_text(angle = 90, vjust=0.5, size = 8),  # rotate x axis text
        panel.grid.minor = element_blank())  # turn off minor grid

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:lubridate':
## 
##     intersect, setdiff, union
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
theme_set(theme_classic())
source_df <- read.csv("https://raw.githubusercontent.com/jkeirstead/r-slopegraph/master/cancer_survival_rates.csv")

# Define functions. Source: https://github.com/jkeirstead/r-slopegraph
tufte_sort <- function(df, x="year", y="value", group="group", method="tufte", min.space=0.05) {
    ## First rename the columns for consistency
    ids <- match(c(x, y, group), names(df))
    df <- df[,ids]
    names(df) <- c("x", "y", "group")

    ## Expand grid to ensure every combination has a defined value
    tmp <- expand.grid(x=unique(df$x), group=unique(df$group))
    tmp <- merge(df, tmp, all.y=TRUE)
    df <- mutate(tmp, y=ifelse(is.na(y), 0, y))
  
    ## Cast into a matrix shape and arrange by first column
    require(reshape2)
    tmp <- dcast(df, group ~ x, value.var="y")
    ord <- order(tmp[,2])
    tmp <- tmp[ord,]
    
    min.space <- min.space*diff(range(tmp[,-1]))
    yshift <- numeric(nrow(tmp))
    ## Start at "bottom" row
    ## Repeat for rest of the rows until you hit the top
    for (i in 2:nrow(tmp)) {
        ## Shift subsequent row up by equal space so gap between
        ## two entries is >= minimum
        mat <- as.matrix(tmp[(i-1):i, -1])
        d.min <- min(diff(mat))
        yshift[i] <- ifelse(d.min < min.space, min.space - d.min, 0)
    }

    
    tmp <- cbind(tmp, yshift=cumsum(yshift))

    scale <- 1
    tmp <- melt(tmp, id=c("group", "yshift"), variable.name="x", value.name="y")
    ## Store these gaps in a separate variable so that they can be scaled ypos = a*yshift + y

    tmp <- transform(tmp, ypos=y + scale*yshift)
    return(tmp)
   
}

plot_slopegraph <- function(df) {
    ylabs <- subset(df, x==head(x,1))$group
    yvals <- subset(df, x==head(x,1))$ypos
    fontSize <- 3
    gg <- ggplot(df,aes(x=x,y=ypos)) +
        geom_line(aes(group=group),colour="grey80") +
        geom_point(colour="white",size=8) +
        geom_text(aes(label=y), size=fontSize, family="American Typewriter") +
        scale_y_continuous(name="", breaks=yvals, labels=ylabs)
    return(gg)
}    

## Prepare data    
df <- tufte_sort(source_df, 
                 x="year", 
                 y="value", 
                 group="group", 
                 method="tufte", 
                 min.space=0.05)
## Loading required package: reshape2
df <- transform(df, 
                x=factor(x, levels=c(5,10,15,20), 
                            labels=c("5 years","10 years","15 years","20 years")), 
                y=round(y))

## Plot
plot_slopegraph(df) + labs(title="Estimates of % survival rates") + 
                      theme(axis.title=element_blank(),
                            axis.ticks = element_blank(),
                            plot.title = element_text(hjust=0.5,
                                                      family = "American Typewriter",
                                                      face="bold"),
                            axis.text = element_text(family = "American Typewriter",
                                                     face="bold"))

library(ggplot2)
library(forecast)
theme_set(theme_classic())

# Subset data
nottem_small <- window(nottem, start=c(1920, 1), end=c(1925, 12))  # subset a smaller timewindow

# Plot
ggseasonplot(AirPassengers) + labs(title="Seasonal plot: International Airline Passengers")

ggseasonplot(nottem_small) + labs(title="Seasonal plot: Air temperatures at Nottingham Castle")

# install.packages("ggdendro")
library(ggplot2)
library(ggdendro)
theme_set(theme_bw())

hc <- hclust(dist(USArrests), "ave")  # hierarchical clustering

# plot
ggdendrogram(hc, rotate = TRUE, size = 2)

# devtools::install_github("hrbrmstr/ggalt")
library(ggplot2)
library(ggalt)
library(ggfortify)
## 
## Attaching package: 'ggfortify'
## The following object is masked from 'package:forecast':
## 
##     gglagplot
theme_set(theme_classic())

# Compute data with principal components ------------------
df <- iris[c(1, 2, 3, 4)]
pca_mod <- prcomp(df)  # compute principal components

# Data frame of principal components ----------------------
df_pc <- data.frame(pca_mod$x, Species=iris$Species)  # dataframe of principal components
df_pc_vir <- df_pc[df_pc$Species == "virginica", ]  # df for 'virginica'
df_pc_set <- df_pc[df_pc$Species == "setosa", ]  # df for 'setosa'
df_pc_ver <- df_pc[df_pc$Species == "versicolor", ]  # df for 'versicolor'
 
# Plot ----------------------------------------------------
ggplot(df_pc, aes(PC1, PC2, col=Species)) + 
  geom_point(aes(shape=Species), size=2) +   # draw points
  labs(title="Iris Clustering", 
       subtitle="With principal components PC1 and PC2 as X and Y axis",
       caption="Source: Iris") + 
  coord_cartesian(xlim = 1.2 * c(min(df_pc$PC1), max(df_pc$PC1)), 
                  ylim = 1.2 * c(min(df_pc$PC2), max(df_pc$PC2))) +   # change axis limits
  geom_encircle(data = df_pc_vir, aes(x=PC1, y=PC2)) +   # draw circles
  geom_encircle(data = df_pc_set, aes(x=PC1, y=PC2)) + 
  geom_encircle(data = df_pc_ver, aes(x=PC1, y=PC2))