Marketing Campaign, Promotion Effectiveness - Fast Food Chain

Quickly analyze test market campaigns and promotions based on sales, locations and other key metrics. Predict which customers will respond to which campaign by which channel and why. Increase the likelihood of responses and quality of leads in future campaigns.

Scenario

A fast food chain plans to add a new item to its menu. However, they are still undecided between three possible marketing campaigns for promoting the new product. In order to determine which promotion has the greatest effect on sales, the new item is introduced at locations in several randomly selected markets. A different promotion is used at each location, and the weekly sales of the new item are recorded for the first four weeks.

STUDY

A. READING DATASET

Project.df <- read.csv(paste("file:///C:/Users/hp/Desktop/IIML/My Project files/real project/marketing campaign/WA_Fn-UseC_-Marketing-Campaign-Eff-UseC_-FastF.csv", sep=""))
attach(Project.df)
dim(Project.df)
## [1] 548   7

548 Rows and 7 columns

B. Dividing the tabe into important data set

Promotion1.df <- Project.df[which(Project.df$Promotion == 1), ]
Promotion2.df <- Project.df[which(Promotion == 2), ]
Promotion3.df <- Project.df[which(Promotion == 3), ]
Week1.df <- Project.df[which(Week == 1), ]
Week2.df <- Project.df[which(Week == 2), ]
Week3.df <- Project.df[which(Week == 3), ]
Week4.df <- Project.df[which(Week == 4), ]
Small.df <- Project.df[which(MarketSize == "Small"), ]
Medium.df <- Project.df[which(MarketSize == "Medium"), ]
Large.df <- Project.df[which(MarketSize == "Large"), ]
View(Project.df)
Varoius column
str(Project.df)
## 'data.frame':    548 obs. of  7 variables:
##  $ ï..MarketID     : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ MarketSize      : Factor w/ 3 levels "Large","Medium",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ LocationID      : int  1 1 1 1 2 2 2 2 3 3 ...
##  $ AgeOfStore      : int  4 4 4 4 5 5 5 5 12 12 ...
##  $ Promotion       : int  3 3 3 3 2 2 2 2 1 1 ...
##  $ Week            : int  1 2 3 4 1 2 3 4 1 2 ...
##  $ SalesInThousands: num  33.7 35.7 29 39.2 27.8 ...
library(psych)
## Warning: package 'psych' was built under R version 3.3.3
describe(Project.df)
##                  vars   n   mean     sd median trimmed    mad   min    max
## ï..MarketID         1 548   5.72   2.88    6.0    5.76   4.45  1.00  10.00
## MarketSize*         2 548   1.80   0.61    2.0    1.75   0.00  1.00   3.00
## LocationID          3 548 479.66 287.97  504.0  483.96 421.06  1.00 920.00
## AgeOfStore          4 548   8.50   6.64    7.0    7.63   5.93  1.00  28.00
## Promotion           5 548   2.03   0.81    2.0    2.04   1.48  1.00   3.00
## Week                6 548   2.50   1.12    2.5    2.50   1.48  1.00   4.00
## SalesInThousands    7 548  53.47  16.76   50.2   52.02  12.76 17.34  99.65
##                   range  skew kurtosis    se
## ï..MarketID        9.00 -0.02    -1.18  0.12
## MarketSize*        2.00  0.14    -0.53  0.03
## LocationID       919.00 -0.02    -1.16 12.30
## AgeOfStore        27.00  1.04     0.35  0.28
## Promotion          2.00 -0.05    -1.48  0.03
## Week               3.00  0.00    -1.37  0.05
## SalesInThousands  82.31  0.80     0.14  0.72
mytable <- with(Project.df, table(ï..MarketID))
mytable
## ï..MarketID
##  1  2  3  4  5  6  7  8  9 10 
## 52 24 88 36 60 60 60 48 40 80
mytable <- with(Project.df, table(MarketSize))
mytable
## MarketSize
##  Large Medium  Small 
##    168    320     60
mytable <- with(Project.df, table(LocationID))
mytable
## LocationID
##   1   2   3   4   5   6   7   8   9  10  11  12  13 101 102 103 104 105 
##   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4 
## 106 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 
##   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4 
## 218 219 220 221 222 301 302 303 304 305 306 307 308 309 401 402 403 404 
##   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4 
## 405 406 407 408 409 410 411 412 413 414 415 501 502 503 504 505 506 507 
##   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4 
## 508 509 510 511 512 513 514 515 601 602 603 604 605 606 607 608 609 610 
##   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4 
## 611 612 613 614 615 701 702 703 704 705 706 707 708 709 710 711 712 801 
##   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4 
## 802 803 804 805 806 807 808 809 810 901 902 903 904 905 906 907 908 909 
##   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4 
## 910 911 912 913 914 915 916 917 918 919 920 
##   4   4   4   4   4   4   4   4   4   4   4
mytable <- with(Project.df, table(AgeOfStore))
mytable
## AgeOfStore
##  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 17 18 19 20 22 23 24 25 27 28 
## 80 20 32 44 44 36 40 40 28 24 16 24 20 12  8  4  8 20  4 12  8 12  4  4  4
par(mfrow = c(1,2))
boxplot(Project.df$AgeOfStore, main = "AgeofStore")
count <- table(Project.df$AgeOfStore)
barplot(count, main = "age of store" , col = "Blue")

mean(Project.df$AgeOfStore)
## [1] 8.50365
median(Project.df$AgeOfStore)
## [1] 7
sd(Project.df$AgeOfStore)
## [1] 6.638345
mytable <- with(Project.df, table(Project.df$Promotion))
mytable
## 
##   1   2   3 
## 172 188 188
par(mfrow = c(1,2))
boxplot(Project.df$SalesInThousands, main = "Sales" , col = "yellow")
hist(Project.df$SalesInThousands, main = "sales" , col = "red")

mean(Project.df$SalesInThousands)
## [1] 53.4662
median(Project.df$SalesInThousands)
## [1] 50.2
sd(Project.df$SalesInThousands)
## [1] 16.75522
mytable <- xtabs(~ LocationID + MarketSize,)
mytable
##           MarketSize
## LocationID Large Medium Small
##        1       0      4     0
##        2       0      4     0
##        3       0      4     0
##        4       0      4     0
##        5       0      4     0
##        6       0      4     0
##        7       0      4     0
##        8       0      4     0
##        9       0      4     0
##        10      0      4     0
##        11      0      4     0
##        12      0      4     0
##        13      0      4     0
##        101     0      0     4
##        102     0      0     4
##        103     0      0     4
##        104     0      0     4
##        105     0      0     4
##        106     0      0     4
##        201     4      0     0
##        202     4      0     0
##        203     4      0     0
##        204     4      0     0
##        205     4      0     0
##        206     4      0     0
##        207     4      0     0
##        208     4      0     0
##        209     4      0     0
##        210     4      0     0
##        211     4      0     0
##        212     4      0     0
##        213     4      0     0
##        214     4      0     0
##        215     4      0     0
##        216     4      0     0
##        217     4      0     0
##        218     4      0     0
##        219     4      0     0
##        220     4      0     0
##        221     4      0     0
##        222     4      0     0
##        301     0      0     4
##        302     0      0     4
##        303     0      0     4
##        304     0      0     4
##        305     0      0     4
##        306     0      0     4
##        307     0      0     4
##        308     0      0     4
##        309     0      0     4
##        401     0      4     0
##        402     0      4     0
##        403     0      4     0
##        404     0      4     0
##        405     0      4     0
##        406     0      4     0
##        407     0      4     0
##        408     0      4     0
##        409     0      4     0
##        410     0      4     0
##        411     0      4     0
##        412     0      4     0
##        413     0      4     0
##        414     0      4     0
##        415     0      4     0
##        501     0      4     0
##        502     0      4     0
##        503     0      4     0
##        504     0      4     0
##        505     0      4     0
##        506     0      4     0
##        507     0      4     0
##        508     0      4     0
##        509     0      4     0
##        510     0      4     0
##        511     0      4     0
##        512     0      4     0
##        513     0      4     0
##        514     0      4     0
##        515     0      4     0
##        601     0      4     0
##        602     0      4     0
##        603     0      4     0
##        604     0      4     0
##        605     0      4     0
##        606     0      4     0
##        607     0      4     0
##        608     0      4     0
##        609     0      4     0
##        610     0      4     0
##        611     0      4     0
##        612     0      4     0
##        613     0      4     0
##        614     0      4     0
##        615     0      4     0
##        701     0      4     0
##        702     0      4     0
##        703     0      4     0
##        704     0      4     0
##        705     0      4     0
##        706     0      4     0
##        707     0      4     0
##        708     0      4     0
##        709     0      4     0
##        710     0      4     0
##        711     0      4     0
##        712     0      4     0
##        801     0      4     0
##        802     0      4     0
##        803     0      4     0
##        804     0      4     0
##        805     0      4     0
##        806     0      4     0
##        807     0      4     0
##        808     0      4     0
##        809     0      4     0
##        810     0      4     0
##        901     4      0     0
##        902     4      0     0
##        903     4      0     0
##        904     4      0     0
##        905     4      0     0
##        906     4      0     0
##        907     4      0     0
##        908     4      0     0
##        909     4      0     0
##        910     4      0     0
##        911     4      0     0
##        912     4      0     0
##        913     4      0     0
##        914     4      0     0
##        915     4      0     0
##        916     4      0     0
##        917     4      0     0
##        918     4      0     0
##        919     4      0     0
##        920     4      0     0
chisq.test(mytable)
## Warning in chisq.test(mytable): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  mytable
## X-squared = 1096, df = 272, p-value < 2.2e-16

Market size is dependenat on LOcationID

plot(MarketSize, AgeOfStore, main="MarketSize vs age of store", col = "green")

plot(MarketSize, Promotion, main="MarketSize vs Promotion", col = "blue")

plot(MarketSize, SalesInThousands, main="MarketSize vs Sales", col = "red")

sales <- aggregate(SalesInThousands ~ MarketSize, data = Project.df, sum)
sales
##   MarketSize SalesInThousands
## 1      Large         11779.61
## 2     Medium         14075.31
## 3      Small          3444.56

Majority of sales has come from medium and large market. Medium being the higest.

plot(Promotion, SalesInThousands, main="Promotion vs Sales")

sales = aggregate(SalesInThousands ~ Promotion, data = Project.df, sum)
sales
##   Promotion SalesInThousands
## 1         1          9993.03
## 2         2          8897.93
## 3         3         10408.52

Agrregate sales due to Promotion3>promotion2>promotion1. Although the sales are not very sinificalty different

boxplot(Promotion ~ SalesInThousands ,data=Project.df, main="Distribution of Sales with Promotion", ylab="Sales", xlab="Promtion", horizontal=TRUE)

scatter.hist(Promotion, SalesInThousands, main="Sales vs Promotion" , xlab = "Promotion" , ylab = "Sales")

plot(AgeOfStore, SalesInThousands, main="Age vs Sale")

scatter.hist(AgeOfStore, SalesInThousands, main="Age vs Sales" , xlab = "Age" , ylab = "Sales")

plot(Week, SalesInThousands, main="Week vs Sales")

scatter.hist(Week, SalesInThousands, main="Week Vs Sales" , xlab = "Week" , ylab = "Sales")

sales = aggregate(SalesInThousands ~ Week, data = Project.df, sum)
sales
##   Week SalesInThousands
## 1    1          7369.31
## 2    2          7313.96
## 3    3          7326.02
## 4    4          7290.19

Sales in all the weeks are almost same.

Corelation

x <- Project.df[,c("LocationID", "AgeOfStore","Promotion","Week","SalesInThousands")]
y <- Project.df[,c("Promotion", "SalesInThousands")]
cor(x,y)
##                    Promotion SalesInThousands
## LocationID       -0.04991501      -0.18785183
## AgeOfStore        0.05976484      -0.02853288
## Promotion         1.00000000      -0.05921195
## Week              0.00000000      -0.01098354
## SalesInThousands -0.05921195       1.00000000
library(corrplot)    
## Warning: package 'corrplot' was built under R version 3.3.3
## corrplot 0.84 loaded
corrplot(corr=cor(Project.df[ , c(3:7)], use="complete.obs"), 
         method ="ellipse")

mytable <- xtabs(~ SalesInThousands + Week,)
mytable
##                 Week
## SalesInThousands 1 2 3 4
##            17.34 0 1 0 0
##            19.26 0 0 0 1
##            22.18 0 1 0 0
##            23.35 0 0 0 1
##            23.44 0 0 0 1
##            23.93 0 0 1 0
##            24.75 1 0 0 0
##            24.77 0 0 1 0
##            24.82 0 1 0 0
##            25.4  0 0 1 0
##            25.7  0 0 0 1
##            26.68 0 0 0 1
##            27.26 0 0 0 1
##            27.37 0 0 0 1
##            27.55 0 0 1 0
##            27.71 0 0 1 0
##            27.72 0 0 0 1
##            27.81 1 0 0 0
##            27.98 0 0 1 0
##            28.62 0 1 0 0
##            29.03 0 0 1 0
##            29.12 0 0 0 1
##            29.3  0 1 0 0
##            29.64 0 1 0 0
##            30.08 1 0 0 0
##            30.26 0 1 0 0
##            30.37 1 0 0 0
##            30.52 0 1 0 0
##            30.81 0 0 0 1
##            30.98 0 0 0 1
##            31.62 0 0 0 1
##            31.85 0 0 1 0
##            31.94 1 0 0 0
##            32.05 0 0 1 0
##            32.18 0 0 1 0
##            32.21 1 0 0 0
##            32.51 0 0 1 0
##            32.61 1 0 0 0
##            32.77 1 0 0 0
##            32.9  1 0 0 0
##            33.14 0 0 1 0
##            33.35 0 0 0 1
##            33.42 1 0 0 0
##            33.64 0 0 1 0
##            33.73 1 0 0 0
##            33.85 0 0 1 0
##            34.27 1 0 0 0
##            34.33 0 0 0 1
##            34.46 1 0 0 0
##            34.67 0 1 0 0
##            34.75 0 0 0 1
##            35.1  0 0 1 0
##            35.16 0 0 0 1
##            35.24 0 1 0 0
##            35.3  1 0 0 0
##            35.46 0 1 0 0
##            35.6  0 0 1 0
##            35.67 0 1 0 0
##            35.68 0 0 1 0
##            35.85 1 0 0 0
##            35.86 0 1 0 0
##            36.05 0 0 0 1
##            36.17 0 0 1 1
##            36.24 0 1 0 0
##            36.39 0 0 1 0
##            36.7  1 0 0 0
##            36.8  0 2 0 0
##            36.88 0 1 0 0
##            37.14 0 0 1 0
##            37.17 1 0 0 0
##            37.2  0 0 0 1
##            37.29 0 1 0 0
##            37.32 0 0 1 1
##            37.41 1 0 0 0
##            37.45 1 0 0 0
##            37.47 0 0 1 0
##            37.84 0 0 1 0
##            37.9  0 0 1 0
##            37.93 0 1 0 0
##            37.94 0 1 0 0
##            38.26 0 1 0 0
##            38.3  0 0 0 1
##            38.41 0 1 0 0
##            38.51 0 0 1 0
##            38.56 1 0 0 0
##            38.64 0 1 0 0
##            38.65 1 0 0 0
##            38.85 0 0 0 1
##            39.25 0 0 0 2
##            39.28 1 0 0 0
##            39.36 0 1 0 0
##            39.41 0 1 0 0
##            39.67 0 0 0 1
##            39.73 1 0 0 0
##            39.8  0 1 0 0
##            39.98 1 0 0 0
##            40.13 0 1 0 0
##            40.16 0 0 1 0
##            40.17 0 0 1 0
##            40.25 0 1 0 1
##            40.26 0 0 0 1
##            40.29 1 0 0 0
##            40.4  1 0 0 0
##            40.43 1 0 0 0
##            40.46 1 0 0 0
##            40.71 1 0 0 0
##            40.84 0 1 0 0
##            40.9  0 0 1 0
##            40.97 0 0 0 1
##            41.1  1 0 1 0
##            41.11 0 0 0 1
##            41.12 0 1 0 0
##            41.22 0 0 0 1
##            41.25 0 1 0 0
##            41.37 0 0 0 1
##            41.44 0 0 1 0
##            41.47 0 1 0 0
##            41.53 0 1 0 0
##            41.54 0 0 0 1
##            41.56 0 1 0 0
##            41.71 0 1 0 0
##            41.73 0 0 1 0
##            41.85 0 0 0 1
##            41.96 1 0 0 0
##            42.15 1 0 1 0
##            42.16 1 1 0 0
##            42.27 0 1 0 0
##            42.46 0 0 1 0
##            42.5  0 0 1 0
##            42.56 0 1 0 0
##            42.59 0 1 0 1
##            42.76 1 0 0 0
##            42.82 0 0 0 1
##            42.92 1 0 0 0
##            42.98 0 0 1 0
##            43.11 0 1 0 0
##            43.15 0 0 0 1
##            43.24 0 0 0 1
##            43.26 0 0 1 0
##            43.27 1 0 0 0
##            43.29 0 0 1 0
##            43.44 0 1 0 0
##            43.51 0 0 0 1
##            43.59 1 0 0 0
##            43.61 1 0 0 0
##            43.69 0 1 0 0
##            43.73 0 0 0 1
##            43.77 0 0 0 1
##            43.78 0 0 1 0
##            43.91 0 0 1 0
##            44.14 0 1 1 0
##            44.16 0 0 1 1
##            44.19 0 0 1 0
##            44.2  0 0 0 1
##            44.29 0 0 1 0
##            44.31 0 0 1 0
##            44.43 0 0 0 1
##            44.54 1 0 0 0
##            44.64 0 0 1 0
##            44.66 1 0 0 0
##            44.67 0 0 0 1
##            44.7  1 0 0 0
##            44.84 0 1 0 1
##            44.98 1 0 0 0
##            45.02 0 1 0 0
##            45.03 0 0 1 0
##            45.08 0 0 1 0
##            45.11 0 0 0 1
##            45.21 1 0 0 0
##            45.3  1 0 0 0
##            45.35 0 0 1 0
##            45.42 0 1 0 0
##            45.43 0 0 0 1
##            45.49 0 0 1 0
##            45.56 1 0 0 0
##            45.57 0 1 0 0
##            45.75 0 1 0 0
##            45.77 0 0 1 0
##            45.84 0 0 0 1
##            45.9  0 0 0 1
##            45.92 0 0 1 0
##            46.02 1 0 0 0
##            46.03 0 1 0 1
##            46.06 0 1 0 0
##            46.14 1 0 0 0
##            46.2  0 1 0 0
##            46.22 0 0 1 0
##            46.26 1 0 0 0
##            46.29 0 1 0 0
##            46.3  0 0 0 1
##            46.42 0 0 1 0
##            46.45 0 0 0 1
##            46.47 0 0 0 1
##            46.49 0 0 1 0
##            46.66 0 0 0 1
##            46.83 0 0 1 0
##            46.84 0 0 0 1
##            46.89 0 0 0 1
##            46.98 1 0 1 0
##            47.06 0 0 0 1
##            47.2  0 0 1 0
##            47.22 1 0 2 0
##            47.33 1 0 0 0
##            47.35 0 0 0 2
##            47.36 0 0 0 1
##            47.48 1 0 0 0
##            47.5  0 0 0 1
##            47.51 0 0 0 1
##            47.63 1 0 0 0
##            47.71 0 1 0 0
##            47.89 1 0 0 0
##            47.92 0 1 0 0
##            47.93 0 0 1 0
##            48.06 1 0 0 0
##            48.12 0 0 0 1
##            48.18 2 0 0 0
##            48.25 0 1 0 0
##            48.32 0 0 1 0
##            48.33 0 1 0 0
##            48.35 0 1 0 0
##            48.36 0 0 0 1
##            48.5  1 0 0 0
##            48.64 0 1 0 0
##            48.76 1 0 0 0
##            48.77 0 0 1 0
##            48.84 0 1 0 0
##            49.01 1 0 0 0
##            49.08 0 0 1 1
##            49.11 0 0 1 0
##            49.16 0 1 0 0
##            49.3  1 0 1 0
##            49.38 0 1 0 0
##            49.39 1 0 0 0
##            49.41 0 0 0 1
##            49.44 0 0 1 0
##            49.5  0 0 1 0
##            49.52 0 0 0 1
##            49.56 0 0 1 0
##            49.61 1 0 0 0
##            49.62 1 0 0 0
##            49.63 0 0 0 1
##            49.67 1 0 0 0
##            49.71 0 0 0 1
##            49.72 0 1 0 0
##            49.76 0 1 0 0
##            49.91 0 0 0 1
##            49.95 1 0 0 0
##            49.98 1 1 0 0
##            50.05 0 0 0 1
##            50.07 0 0 0 1
##            50.11 1 0 1 0
##            50.2  1 0 0 1
##            50.26 1 0 0 0
##            50.28 0 1 0 0
##            50.3  0 1 0 0
##            50.48 1 0 0 0
##            50.52 0 1 0 1
##            50.54 1 0 0 0
##            50.55 0 0 1 0
##            50.59 1 0 0 0
##            50.94 1 0 0 0
##            51.01 1 0 0 0
##            51.09 1 2 0 0
##            51.14 0 0 1 0
##            51.15 0 1 0 0
##            51.16 0 0 1 0
##            51.17 0 1 0 0
##            51.26 1 0 0 0
##            51.32 0 0 0 1
##            51.33 0 0 0 1
##            51.35 0 0 1 0
##            51.41 0 0 0 2
##            51.47 1 0 0 0
##            51.5  0 0 0 1
##            51.52 0 0 1 0
##            51.68 0 1 1 0
##            51.72 0 0 2 0
##            51.73 0 1 0 0
##            51.79 1 0 0 0
##            51.82 1 0 0 0
##            51.83 0 0 1 0
##            51.87 1 0 0 0
##            51.89 1 0 0 0
##            51.91 0 0 0 1
##            52.05 0 1 0 0
##            52.21 0 1 0 0
##            52.23 1 0 0 0
##            52.36 0 0 1 0
##            52.37 0 1 0 0
##            52.39 0 1 0 0
##            52.41 0 0 0 1
##            52.64 0 0 1 0
##            52.72 0 0 1 0
##            52.76 0 0 0 1
##            52.85 1 0 0 0
##            52.88 0 0 0 1
##            53.14 0 0 1 0
##            53.38 1 0 0 0
##            53.41 0 1 0 0
##            53.47 0 1 0 0
##            53.5  1 0 0 0
##            53.51 1 0 0 0
##            53.53 1 0 0 0
##            53.56 1 0 0 0
##            53.66 0 0 0 1
##            53.68 0 1 0 0
##            53.76 1 0 0 0
##            53.78 0 1 0 0
##            53.79 1 0 0 0
##            53.95 0 0 0 1
##            54.01 1 0 0 0
##            54.06 0 1 0 0
##            54.09 0 0 1 0
##            54.33 0 0 1 0
##            54.34 1 0 0 0
##            54.37 0 0 1 0
##            54.38 0 1 0 0
##            54.49 0 0 1 0
##            54.58 0 1 0 0
##            54.68 0 0 1 0
##            54.7  0 0 0 1
##            54.79 1 0 0 0
##            54.82 0 1 0 0
##            54.95 1 0 0 0
##            55.02 0 1 0 0
##            55.11 0 1 0 0
##            55.12 0 0 1 0
##            55.19 0 1 0 0
##            55.2  0 0 0 1
##            55.28 0 0 1 0
##            55.3  0 0 0 1
##            55.31 0 1 0 0
##            55.39 1 0 0 0
##            55.46 0 0 1 0
##            55.53 0 1 0 0
##            55.59 0 1 0 0
##            55.78 0 1 0 0
##            55.9  1 0 0 0
##            55.91 0 0 0 1
##            55.94 1 0 0 0
##            55.98 0 0 0 1
##            56.1  0 0 1 0
##            56.16 0 1 0 0
##            56.18 0 0 1 0
##            56.19 0 0 1 0
##            56.34 0 1 0 0
##            56.39 0 0 1 0
##            56.64 1 0 0 0
##            56.7  0 0 0 1
##            56.72 0 0 0 1
##            56.84 0 0 0 1
##            56.86 0 0 1 0
##            56.9  0 0 0 1
##            56.99 1 0 0 0
##            57.04 0 1 0 0
##            57.06 0 0 0 1
##            57.1  0 0 1 0
##            57.14 0 0 1 0
##            57.2  0 0 1 0
##            57.27 0 1 0 0
##            57.37 1 0 0 0
##            58    0 0 1 0
##            58.01 0 1 0 0
##            58.04 0 0 0 1
##            58.1  0 0 1 0
##            58.19 1 0 0 0
##            58.26 0 0 1 0
##            58.33 0 0 0 1
##            58.43 0 1 0 0
##            58.55 1 0 0 0
##            58.77 0 1 0 0
##            59.17 0 1 0 0
##            59.34 1 0 0 0
##            59.64 0 0 0 1
##            59.65 1 0 0 0
##            59.73 0 0 1 0
##            59.76 1 0 0 0
##            59.77 0 0 1 0
##            59.8  0 1 0 0
##            59.87 1 0 0 0
##            60.24 0 1 0 0
##            60.44 0 0 0 1
##            60.59 0 1 0 0
##            60.93 0 0 0 1
##            60.97 0 0 1 0
##            61.24 0 0 0 1
##            61.25 0 0 0 1
##            61.36 0 1 0 0
##            61.53 1 0 0 0
##            61.59 1 0 0 0
##            61.63 0 0 0 1
##            61.77 0 0 0 1
##            61.8  0 1 0 0
##            61.95 0 0 1 0
##            61.96 0 0 1 0
##            62.06 0 0 0 1
##            62.16 1 0 1 0
##            62.19 0 1 0 0
##            62.27 0 0 0 1
##            62.33 1 0 0 0
##            62.37 0 0 1 0
##            62.54 0 1 0 0
##            62.63 0 1 0 0
##            62.72 0 1 0 0
##            62.93 1 0 0 0
##            62.99 0 1 0 0
##            63.48 0 1 0 0
##            63.58 0 0 0 1
##            63.64 0 1 0 0
##            63.73 0 0 1 0
##            63.98 0 0 1 0
##            64.04 0 0 0 1
##            64.14 0 0 0 1
##            64.34 0 0 0 1
##            64.45 0 0 1 0
##            64.66 0 0 0 1
##            65.06 0 0 0 1
##            65.11 1 0 0 0
##            65.12 0 0 0 1
##            65.57 0 1 0 0
##            66.1  0 0 0 1
##            66.11 0 1 0 0
##            66.22 1 0 0 0
##            66.34 1 0 0 0
##            66.66 0 0 1 0
##            66.96 0 1 0 0
##            67.48 1 0 0 0
##            67.84 0 0 0 1
##            68.31 0 0 1 0
##            68.42 0 0 1 0
##            70.6  0 0 1 0
##            73.22 1 0 0 0
##            74.03 0 1 0 0
##            74.75 0 1 0 0
##            75.29 0 0 0 1
##            75.61 0 0 0 1
##            75.88 0 1 0 0
##            76.12 0 0 1 0
##            76.71 0 0 0 1
##            77.17 0 0 0 1
##            77.36 0 0 1 0
##            77.39 0 1 0 0
##            78.01 0 0 1 0
##            78.43 0 1 0 0
##            78.53 0 0 1 0
##            79.02 0 1 0 0
##            79.36 0 0 1 0
##            79.53 1 0 0 0
##            79.64 0 0 0 1
##            80.17 0 0 0 1
##            80.61 0 1 0 0
##            80.75 0 0 0 1
##            80.82 0 0 0 1
##            80.83 0 0 1 0
##            81.16 0 1 0 0
##            81.18 0 0 0 1
##            81.37 0 1 0 0
##            81.55 0 0 1 0
##            81.58 0 0 1 0
##            81.72 0 0 0 1
##            81.79 0 1 0 0
##            82.13 0 0 1 0
##            82.14 0 0 1 0
##            82.56 0 1 0 0
##            82.64 1 0 0 0
##            82.65 1 0 0 0
##            82.72 0 0 0 1
##            82.86 0 1 0 0
##            82.88 0 0 0 1
##            82.89 0 1 0 0
##            83.02 1 0 0 0
##            83.4  0 0 1 0
##            83.43 0 0 0 1
##            84.05 0 0 1 0
##            84.13 0 1 0 0
##            84.34 1 0 0 0
##            85.11 1 0 0 0
##            85.18 0 0 1 0
##            85.21 0 1 0 0
##            85.71 0 1 0 0
##            85.85 0 0 0 1
##            86.11 0 0 1 0
##            86.14 1 0 0 0
##            86.96 0 0 1 0
##            87.08 1 0 0 0
##            87.43 1 0 0 0
##            87.7  1 0 0 0
##            87.9  0 1 0 0
##            88.07 0 1 0 0
##            88.12 0 0 1 0
##            88.64 1 1 0 0
##            88.73 1 0 0 0
##            88.91 0 0 0 1
##            89.25 0 0 0 1
##            89.32 0 1 0 0
##            89.44 0 0 0 1
##            89.7  1 0 0 0
##            89.77 0 0 0 1
##            90.3  0 1 0 0
##            91.29 0 0 0 1
##            91.6  1 0 0 0
##            91.61 1 0 0 0
##            91.98 0 0 1 0
##            93.03 0 0 1 0
##            93.32 1 0 0 0
##            93.63 0 0 1 0
##            93.71 1 0 0 0
##            93.86 0 0 1 0
##            94.17 0 0 0 1
##            94.21 0 0 0 1
##            94.43 0 0 1 0
##            94.89 1 0 0 0
##            96.01 0 1 0 0
##            96.48 1 0 0 0
##            97.61 0 0 0 1
##            99.12 0 0 1 0
##            99.65 1 0 0 0
sales = aggregate(SalesInThousands ~ Week, data = Project.df, sum)
sales
##   Week SalesInThousands
## 1    1          7369.31
## 2    2          7313.96
## 3    3          7326.02
## 4    4          7290.19
chisq.test(mytable)
## Warning in chisq.test(mytable): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  mytable
## X-squared = 1549.3, df = 1548, p-value = 0.4857
aggregate(SalesInThousands, by=list(Week = Week), mean)
##   Week        x
## 1    1 53.79058
## 2    2 53.38657
## 3    3 53.47460
## 4    4 53.21307

Clearly no affect of week on sales.

Distinction by promotion

plot(Promotion,SalesInThousands , main="Age vs Sale")

mytable <- xtabs(~ SalesInThousands+Week+ Promotion,data = Promotion1.df )
mytable
## , , Promotion = 1
## 
##                 Week
## SalesInThousands 1 2 3 4
##            30.81 0 0 0 1
##            32.05 0 0 1 0
##            34.75 0 0 0 1
##            35.3  1 0 0 0
##            35.68 0 0 1 0
##            35.85 1 0 0 0
##            35.86 0 1 0 0
##            36.17 0 0 0 1
##            36.24 0 1 0 0
##            36.39 0 0 1 0
##            36.8  0 1 0 0
##            36.88 0 1 0 0
##            37.32 0 0 0 1
##            37.41 1 0 0 0
##            37.94 0 1 0 0
##            38.64 0 1 0 0
##            39.67 0 0 0 1
##            40.46 1 0 0 0
##            40.84 0 1 0 0
##            40.9  0 0 1 0
##            40.97 0 0 0 1
##            41.1  1 0 1 0
##            41.11 0 0 0 1
##            41.25 0 1 0 0
##            41.56 0 1 0 0
##            41.71 0 1 0 0
##            41.73 0 0 1 0
##            42.16 1 1 0 0
##            42.76 1 0 0 0
##            42.92 1 0 0 0
##            43.11 0 1 0 0
##            43.24 0 0 0 1
##            43.78 0 0 1 0
##            44.43 0 0 0 1
##            44.54 1 0 0 0
##            44.98 1 0 0 0
##            45.02 0 1 0 0
##            45.49 0 0 1 0
##            45.57 0 1 0 0
##            45.92 0 0 1 0
##            46.06 0 1 0 0
##            46.45 0 0 0 1
##            46.49 0 0 1 0
##            46.66 0 0 0 1
##            46.98 0 0 1 0
##            47.35 0 0 0 1
##            47.5  0 0 0 1
##            47.51 0 0 0 1
##            47.92 0 1 0 0
##            48.18 1 0 0 0
##            49.08 0 0 1 0
##            49.3  1 0 1 0
##            49.44 0 0 1 0
##            49.62 1 0 0 0
##            49.76 0 1 0 0
##            49.91 0 0 0 1
##            49.95 1 0 0 0
##            50.11 0 0 1 0
##            50.48 1 0 0 0
##            50.52 0 1 0 1
##            50.54 1 0 0 0
##            51.32 0 0 0 1
##            51.41 0 0 0 1
##            51.72 0 0 2 0
##            51.82 1 0 0 0
##            52.85 1 0 0 0
##            53.38 1 0 0 0
##            53.51 1 0 0 0
##            53.53 1 0 0 0
##            53.68 0 1 0 0
##            53.79 1 0 0 0
##            54.01 1 0 0 0
##            54.06 0 1 0 0
##            54.38 0 1 0 0
##            54.7  0 0 0 1
##            54.95 1 0 0 0
##            55.11 0 1 0 0
##            55.2  0 0 0 1
##            55.28 0 0 1 0
##            55.3  0 0 0 1
##            55.31 0 1 0 0
##            55.46 0 0 1 0
##            55.78 0 1 0 0
##            55.94 1 0 0 0
##            56.1  0 0 1 0
##            56.18 0 0 1 0
##            56.19 0 0 1 0
##            56.64 1 0 0 0
##            56.84 0 0 0 1
##            56.86 0 0 1 0
##            56.9  0 0 0 1
##            56.99 1 0 0 0
##            57.1  0 0 1 0
##            57.14 0 0 1 0
##            57.2  0 0 1 0
##            58    0 0 1 0
##            58.04 0 0 0 1
##            58.19 1 0 0 0
##            58.43 0 1 0 0
##            59.17 0 1 0 0
##            59.34 1 0 0 0
##            59.64 0 0 0 1
##            59.77 0 0 1 0
##            59.87 1 0 0 0
##            60.44 0 0 0 1
##            60.59 0 1 0 0
##            60.93 0 0 0 1
##            61.36 0 1 0 0
##            61.53 1 0 0 0
##            61.63 0 0 0 1
##            61.77 0 0 0 1
##            61.8  0 1 0 0
##            61.95 0 0 1 0
##            61.96 0 0 1 0
##            62.06 0 0 0 1
##            62.16 1 0 0 0
##            62.33 1 0 0 0
##            62.37 0 0 1 0
##            62.54 0 1 0 0
##            62.63 0 1 0 0
##            62.72 0 1 0 0
##            62.99 0 1 0 0
##            63.48 0 1 0 0
##            63.58 0 0 0 1
##            63.73 0 0 1 0
##            64.34 0 0 0 1
##            64.45 0 0 1 0
##            64.66 0 0 0 1
##            65.11 1 0 0 0
##            65.12 0 0 0 1
##            65.57 0 1 0 0
##            66.1  0 0 0 1
##            66.34 1 0 0 0
##            66.66 0 0 1 0
##            66.96 0 1 0 0
##            67.48 1 0 0 0
##            67.84 0 0 0 1
##            68.31 0 0 1 0
##            68.42 0 0 1 0
##            77.36 0 0 1 0
##            80.61 0 1 0 0
##            81.55 0 0 1 0
##            83.43 0 0 0 1
##            85.11 1 0 0 0
##            85.21 0 1 0 0
##            85.71 0 1 0 0
##            85.85 0 0 0 1
##            86.96 0 0 1 0
##            87.08 1 0 0 0
##            88.07 0 1 0 0
##            88.64 0 1 0 0
##            88.73 1 0 0 0
##            89.25 0 0 0 1
##            89.32 0 1 0 0
##            89.44 0 0 0 1
##            91.29 0 0 0 1
##            91.6  1 0 0 0
##            93.03 0 0 1 0
##            93.32 1 0 0 0
##            93.71 1 0 0 0
##            93.86 0 0 1 0
##            94.17 0 0 0 1
##            94.43 0 0 1 0
##            96.01 0 1 0 0
##            97.61 0 0 0 1
##            99.12 0 0 1 0
##            99.65 1 0 0 0
aggregate(Promotion1.df$SalesInThousands, by=list(Week = Promotion1.df$Week), mean)
##   Week        x
## 1    1 58.24442
## 2    2 56.92953
## 3    3 58.77488
## 4    4 58.44721
mytable <- xtabs(~ SalesInThousands+Week+ Promotion,data = Promotion2.df )
mytable
## , , Promotion = 2
## 
##                 Week
## SalesInThousands 1 2 3 4
##            17.34 0 1 0 0
##            19.26 0 0 0 1
##            23.35 0 0 0 1
##            23.44 0 0 0 1
##            23.93 0 0 1 0
##            24.77 0 0 1 0
##            24.82 0 1 0 0
##            25.4  0 0 1 0
##            25.7  0 0 0 1
##            27.26 0 0 0 1
##            27.37 0 0 0 1
##            27.55 0 0 1 0
##            27.71 0 0 1 0
##            27.72 0 0 0 1
##            27.81 1 0 0 0
##            27.98 0 0 1 0
##            28.62 0 1 0 0
##            29.3  0 1 0 0
##            29.64 0 1 0 0
##            30.08 1 0 0 0
##            30.26 0 1 0 0
##            30.37 1 0 0 0
##            30.98 0 0 0 1
##            31.62 0 0 0 1
##            31.85 0 0 1 0
##            31.94 1 0 0 0
##            32.21 1 0 0 0
##            32.61 1 0 0 0
##            32.77 1 0 0 0
##            33.14 0 0 1 0
##            33.35 0 0 0 1
##            33.64 0 0 1 0
##            34.27 1 0 0 0
##            34.67 0 1 0 0
##            35.16 0 0 0 1
##            35.46 0 1 0 0
##            35.6  0 0 1 0
##            36.05 0 0 0 1
##            36.17 0 0 1 0
##            36.7  1 0 0 0
##            36.8  0 1 0 0
##            37.2  0 0 0 1
##            37.29 0 1 0 0
##            37.32 0 0 1 0
##            37.45 1 0 0 0
##            37.47 0 0 1 0
##            37.9  0 0 1 0
##            38.26 0 1 0 0
##            38.3  0 0 0 1
##            38.41 0 1 0 0
##            38.56 1 0 0 0
##            38.65 1 0 0 0
##            39.25 0 0 0 1
##            39.28 1 0 0 0
##            39.36 0 1 0 0
##            39.73 1 0 0 0
##            39.8  0 1 0 0
##            40.16 0 0 1 0
##            40.25 0 1 0 0
##            40.26 0 0 0 1
##            40.4  1 0 0 0
##            40.71 1 0 0 0
##            41.22 0 0 0 1
##            41.37 0 0 0 1
##            41.44 0 0 1 0
##            41.53 0 1 0 0
##            41.54 0 0 0 1
##            41.85 0 0 0 1
##            42.15 1 0 0 0
##            42.46 0 0 1 0
##            42.56 0 1 0 0
##            42.59 0 1 0 0
##            43.27 1 0 0 0
##            43.44 0 1 0 0
##            43.59 1 0 0 0
##            43.61 1 0 0 0
##            43.69 0 1 0 0
##            43.77 0 0 0 1
##            44.14 0 1 1 0
##            44.16 0 0 1 1
##            44.29 0 0 1 0
##            44.31 0 0 1 0
##            44.64 0 0 1 0
##            44.67 0 0 0 1
##            44.7  1 0 0 0
##            44.84 0 1 0 1
##            45.08 0 0 1 0
##            45.11 0 0 0 1
##            45.21 1 0 0 0
##            45.3  1 0 0 0
##            45.35 0 0 1 0
##            45.42 0 1 0 0
##            45.75 0 1 0 0
##            45.9  0 0 0 1
##            46.02 1 0 0 0
##            46.03 0 1 0 0
##            46.2  0 1 0 0
##            46.26 1 0 0 0
##            46.42 0 0 1 0
##            46.89 0 0 0 1
##            46.98 1 0 0 0
##            47.06 0 0 0 1
##            47.2  0 0 1 0
##            47.22 0 0 1 0
##            47.33 1 0 0 0
##            47.36 0 0 0 1
##            47.71 0 1 0 0
##            47.89 1 0 0 0
##            47.93 0 0 1 0
##            48.12 0 0 0 1
##            48.18 1 0 0 0
##            48.25 0 1 0 0
##            48.32 0 0 1 0
##            48.33 0 1 0 0
##            48.5  1 0 0 0
##            48.76 1 0 0 0
##            48.84 0 1 0 0
##            49.11 0 0 1 0
##            49.16 0 1 0 0
##            49.39 1 0 0 0
##            49.41 0 0 0 1
##            49.56 0 0 1 0
##            49.61 1 0 0 0
##            49.71 0 0 0 1
##            49.98 1 0 0 0
##            50.2  1 0 0 0
##            50.28 0 1 0 0
##            50.3  0 1 0 0
##            51.09 1 1 0 0
##            51.26 1 0 0 0
##            51.33 0 0 0 1
##            51.35 0 0 1 0
##            51.41 0 0 0 1
##            51.5  0 0 0 1
##            51.52 0 0 1 0
##            51.68 0 0 1 0
##            51.73 0 1 0 0
##            51.79 1 0 0 0
##            51.87 1 0 0 0
##            52.36 0 0 1 0
##            52.37 0 1 0 0
##            52.72 0 0 1 0
##            52.88 0 0 0 1
##            53.41 0 1 0 0
##            53.66 0 0 0 1
##            53.76 1 0 0 0
##            53.95 0 0 0 1
##            54.09 0 0 1 0
##            54.49 0 0 1 0
##            54.82 0 1 0 0
##            55.02 0 1 0 0
##            55.12 0 0 1 0
##            55.39 1 0 0 0
##            55.91 0 0 0 1
##            55.98 0 0 0 1
##            57.27 0 1 0 0
##            58.01 0 1 0 0
##            58.1  0 0 1 0
##            58.26 0 0 1 0
##            61.25 0 0 0 1
##            66.22 1 0 0 0
##            73.22 1 0 0 0
##            74.03 0 1 0 0
##            75.29 0 0 0 1
##            75.61 0 0 0 1
##            75.88 0 1 0 0
##            76.71 0 0 0 1
##            77.39 0 1 0 0
##            78.01 0 0 1 0
##            78.53 0 0 1 0
##            79.53 1 0 0 0
##            79.64 0 0 0 1
##            80.17 0 0 0 1
##            80.75 0 0 0 1
##            80.83 0 0 1 0
##            81.37 0 1 0 0
##            81.79 0 1 0 0
##            82.14 0 0 1 0
##            82.65 1 0 0 0
##            82.86 0 1 0 0
##            83.4  0 0 1 0
##            87.43 1 0 0 0
##            88.12 0 0 1 0
##            88.64 1 0 0 0
aggregate(Promotion2.df$SalesInThousands, by=list(Week = Promotion2.df$Week), mean)
##   Week        x
## 1    1 47.73021
## 2    2 47.58255
## 3    3 47.72213
## 4    4 46.28277
mytable <- xtabs(~ SalesInThousands+Week+ Promotion,data = Promotion3.df )
mytable
## , , Promotion = 3
## 
##                 Week
## SalesInThousands 1 2 3 4
##            22.18 0 1 0 0
##            24.75 1 0 0 0
##            26.68 0 0 0 1
##            29.03 0 0 1 0
##            29.12 0 0 0 1
##            30.52 0 1 0 0
##            32.18 0 0 1 0
##            32.51 0 0 1 0
##            32.9  1 0 0 0
##            33.42 1 0 0 0
##            33.73 1 0 0 0
##            33.85 0 0 1 0
##            34.33 0 0 0 1
##            34.46 1 0 0 0
##            35.1  0 0 1 0
##            35.24 0 1 0 0
##            35.67 0 1 0 0
##            37.14 0 0 1 0
##            37.17 1 0 0 0
##            37.84 0 0 1 0
##            37.93 0 1 0 0
##            38.51 0 0 1 0
##            38.85 0 0 0 1
##            39.25 0 0 0 1
##            39.41 0 1 0 0
##            39.98 1 0 0 0
##            40.13 0 1 0 0
##            40.17 0 0 1 0
##            40.25 0 0 0 1
##            40.29 1 0 0 0
##            40.43 1 0 0 0
##            41.12 0 1 0 0
##            41.47 0 1 0 0
##            41.96 1 0 0 0
##            42.15 0 0 1 0
##            42.27 0 1 0 0
##            42.5  0 0 1 0
##            42.59 0 0 0 1
##            42.82 0 0 0 1
##            42.98 0 0 1 0
##            43.15 0 0 0 1
##            43.26 0 0 1 0
##            43.29 0 0 1 0
##            43.51 0 0 0 1
##            43.73 0 0 0 1
##            43.91 0 0 1 0
##            44.19 0 0 1 0
##            44.2  0 0 0 1
##            44.66 1 0 0 0
##            45.03 0 0 1 0
##            45.43 0 0 0 1
##            45.56 1 0 0 0
##            45.77 0 0 1 0
##            45.84 0 0 0 1
##            46.03 0 0 0 1
##            46.14 1 0 0 0
##            46.22 0 0 1 0
##            46.29 0 1 0 0
##            46.3  0 0 0 1
##            46.47 0 0 0 1
##            46.83 0 0 1 0
##            46.84 0 0 0 1
##            47.22 1 0 1 0
##            47.35 0 0 0 1
##            47.48 1 0 0 0
##            47.63 1 0 0 0
##            48.06 1 0 0 0
##            48.35 0 1 0 0
##            48.36 0 0 0 1
##            48.64 0 1 0 0
##            48.77 0 0 1 0
##            49.01 1 0 0 0
##            49.08 0 0 0 1
##            49.38 0 1 0 0
##            49.5  0 0 1 0
##            49.52 0 0 0 1
##            49.63 0 0 0 1
##            49.67 1 0 0 0
##            49.72 0 1 0 0
##            49.98 0 1 0 0
##            50.05 0 0 0 1
##            50.07 0 0 0 1
##            50.11 1 0 0 0
##            50.2  0 0 0 1
##            50.26 1 0 0 0
##            50.55 0 0 1 0
##            50.59 1 0 0 0
##            50.94 1 0 0 0
##            51.01 1 0 0 0
##            51.09 0 1 0 0
##            51.14 0 0 1 0
##            51.15 0 1 0 0
##            51.16 0 0 1 0
##            51.17 0 1 0 0
##            51.47 1 0 0 0
##            51.68 0 1 0 0
##            51.83 0 0 1 0
##            51.89 1 0 0 0
##            51.91 0 0 0 1
##            52.05 0 1 0 0
##            52.21 0 1 0 0
##            52.23 1 0 0 0
##            52.39 0 1 0 0
##            52.41 0 0 0 1
##            52.64 0 0 1 0
##            52.76 0 0 0 1
##            53.14 0 0 1 0
##            53.47 0 1 0 0
##            53.5  1 0 0 0
##            53.56 1 0 0 0
##            53.78 0 1 0 0
##            54.33 0 0 1 0
##            54.34 1 0 0 0
##            54.37 0 0 1 0
##            54.58 0 1 0 0
##            54.68 0 0 1 0
##            54.79 1 0 0 0
##            55.19 0 1 0 0
##            55.53 0 1 0 0
##            55.59 0 1 0 0
##            55.9  1 0 0 0
##            56.16 0 1 0 0
##            56.34 0 1 0 0
##            56.39 0 0 1 0
##            56.7  0 0 0 1
##            56.72 0 0 0 1
##            57.04 0 1 0 0
##            57.06 0 0 0 1
##            57.37 1 0 0 0
##            58.33 0 0 0 1
##            58.55 1 0 0 0
##            58.77 0 1 0 0
##            59.65 1 0 0 0
##            59.73 0 0 1 0
##            59.76 1 0 0 0
##            59.8  0 1 0 0
##            60.24 0 1 0 0
##            60.97 0 0 1 0
##            61.24 0 0 0 1
##            61.59 1 0 0 0
##            62.16 0 0 1 0
##            62.19 0 1 0 0
##            62.27 0 0 0 1
##            62.93 1 0 0 0
##            63.64 0 1 0 0
##            63.98 0 0 1 0
##            64.04 0 0 0 1
##            64.14 0 0 0 1
##            65.06 0 0 0 1
##            66.11 0 1 0 0
##            70.6  0 0 1 0
##            74.75 0 1 0 0
##            76.12 0 0 1 0
##            77.17 0 0 0 1
##            78.43 0 1 0 0
##            79.02 0 1 0 0
##            79.36 0 0 1 0
##            80.82 0 0 0 1
##            81.16 0 1 0 0
##            81.18 0 0 0 1
##            81.58 0 0 1 0
##            81.72 0 0 0 1
##            82.13 0 0 1 0
##            82.56 0 1 0 0
##            82.64 1 0 0 0
##            82.72 0 0 0 1
##            82.88 0 0 0 1
##            82.89 0 1 0 0
##            83.02 1 0 0 0
##            84.05 0 0 1 0
##            84.13 0 1 0 0
##            84.34 1 0 0 0
##            85.18 0 0 1 0
##            86.11 0 0 1 0
##            86.14 1 0 0 0
##            87.7  1 0 0 0
##            87.9  0 1 0 0
##            88.91 0 0 0 1
##            89.7  1 0 0 0
##            89.77 0 0 0 1
##            90.3  0 1 0 0
##            91.61 1 0 0 0
##            91.98 0 0 1 0
##            93.63 0 0 1 0
##            94.21 0 0 0 1
##            94.89 1 0 0 0
##            96.48 1 0 0 0
aggregate(Promotion3.df$SalesInThousands, by=list(Week = Promotion3.df$Week), mean)
##   Week        x
## 1    1 55.77617
## 2    2 55.94915
## 3    3 54.37787
## 4    4 55.35468

It Can be clearly seen that Mean sales through out the week due to promotion1> Promotion2>Promotion3

For small market share

mytable <- xtabs(~ SalesInThousands+Promotion, data = Small.df)
mytable
##                 Promotion
## SalesInThousands 1 2 3
##            36.17 0 1 0
##            43.69 0 1 0
##            46.83 0 0 1
##            46.98 0 1 0
##            47.89 0 1 0
##            47.93 0 1 0
##            49.11 0 1 0
##            49.61 0 1 0
##            51.33 0 1 0
##            51.47 0 0 1
##            51.72 1 0 0
##            51.87 0 1 0
##            52.37 0 1 0
##            52.88 0 1 0
##            53.14 0 0 1
##            53.41 0 1 0
##            53.47 0 0 1
##            53.79 1 0 0
##            54.01 1 0 0
##            54.06 1 0 0
##            54.49 0 1 0
##            54.68 0 0 1
##            55.3  1 0 0
##            55.94 1 0 0
##            55.98 0 1 0
##            56.19 1 0 0
##            56.7  0 0 1
##            56.72 0 0 1
##            57.04 0 0 1
##            57.1  1 0 0
##            58.01 0 1 0
##            58.55 0 0 1
##            58.77 0 0 1
##            59.64 1 0 0
##            59.65 0 0 1
##            59.73 0 0 1
##            59.76 0 0 1
##            60.93 1 0 0
##            61.24 0 0 1
##            61.25 0 1 0
##            61.36 1 0 0
##            61.59 0 0 1
##            61.96 1 0 0
##            62.06 1 0 0
##            62.16 1 0 1
##            62.19 0 0 1
##            62.27 0 0 1
##            62.93 0 0 1
##            63.48 1 0 0
##            63.64 0 0 1
##            64.04 0 0 1
##            65.06 0 0 1
##            65.12 1 0 0
##            65.57 1 0 0
##            66.11 0 0 1
##            66.96 1 0 0
##            67.48 1 0 0
##            68.42 1 0 0
##            70.6  0 0 1
chisq.test(mytable)
## Warning in chisq.test(mytable): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  mytable
## X-squared = 117.25, df = 116, p-value = 0.4501
aggregate(Small.df$SalesInThousands, by=list(Promotion = Small.df$Promotion), mean)
##   Promotion        x
## 1         1 60.16250
## 2         2 50.81063
## 3         3 59.51417
aggregate(Small.df$SalesInThousands, by=list(Promotion = Small.df$Promotion), sum)
##   Promotion       x
## 1         1 1203.25
## 2         2  812.97
## 3         3 1428.34

P > 0.01 suggest that for small market there is no relationship between promotion and sales although mean Promotion1>Promotion2>Promotion3, agregate sales due Promotion3>Promotion1>Promotin2

For medium Market

mytable <- xtabs(~ SalesInThousands+Promotion, data = Medium.df)
mytable
##                 Promotion
## SalesInThousands 1 2 3
##            17.34 0 1 0
##            19.26 0 1 0
##            22.18 0 0 1
##            23.35 0 1 0
##            23.44 0 1 0
##            23.93 0 1 0
##            24.75 0 0 1
##            24.77 0 1 0
##            24.82 0 1 0
##            25.4  0 1 0
##            25.7  0 1 0
##            26.68 0 0 1
##            27.26 0 1 0
##            27.37 0 1 0
##            27.55 0 1 0
##            27.71 0 1 0
##            27.72 0 1 0
##            27.81 0 1 0
##            27.98 0 1 0
##            28.62 0 1 0
##            29.03 0 0 1
##            29.12 0 0 1
##            29.3  0 1 0
##            29.64 0 1 0
##            30.08 0 1 0
##            30.26 0 1 0
##            30.37 0 1 0
##            30.52 0 0 1
##            30.81 1 0 0
##            30.98 0 1 0
##            31.62 0 1 0
##            31.85 0 1 0
##            31.94 0 1 0
##            32.05 1 0 0
##            32.18 0 0 1
##            32.21 0 1 0
##            32.51 0 0 1
##            32.61 0 1 0
##            32.77 0 1 0
##            32.9  0 0 1
##            33.14 0 1 0
##            33.35 0 1 0
##            33.42 0 0 1
##            33.64 0 1 0
##            33.73 0 0 1
##            33.85 0 0 1
##            34.27 0 1 0
##            34.33 0 0 1
##            34.46 0 0 1
##            34.67 0 1 0
##            34.75 1 0 0
##            35.1  0 0 1
##            35.16 0 1 0
##            35.24 0 0 1
##            35.3  1 0 0
##            35.46 0 1 0
##            35.6  0 1 0
##            35.67 0 0 1
##            35.68 1 0 0
##            35.85 1 0 0
##            35.86 1 0 0
##            36.05 0 1 0
##            36.17 1 0 0
##            36.24 1 0 0
##            36.39 1 0 0
##            36.7  0 1 0
##            36.8  1 1 0
##            36.88 1 0 0
##            37.14 0 0 1
##            37.17 0 0 1
##            37.2  0 1 0
##            37.29 0 1 0
##            37.32 1 1 0
##            37.41 1 0 0
##            37.45 0 1 0
##            37.47 0 1 0
##            37.84 0 0 1
##            37.9  0 1 0
##            37.93 0 0 1
##            37.94 1 0 0
##            38.26 0 1 0
##            38.3  0 1 0
##            38.41 0 1 0
##            38.51 0 0 1
##            38.56 0 1 0
##            38.64 1 0 0
##            38.65 0 1 0
##            38.85 0 0 1
##            39.25 0 1 1
##            39.28 0 1 0
##            39.41 0 0 1
##            39.67 1 0 0
##            39.73 0 1 0
##            39.8  0 1 0
##            39.98 0 0 1
##            40.13 0 0 1
##            40.16 0 1 0
##            40.17 0 0 1
##            40.25 0 1 1
##            40.26 0 1 0
##            40.29 0 0 1
##            40.4  0 1 0
##            40.43 0 0 1
##            40.46 1 0 0
##            40.71 0 1 0
##            40.84 1 0 0
##            40.9  1 0 0
##            40.97 1 0 0
##            41.1  2 0 0
##            41.11 1 0 0
##            41.12 0 0 1
##            41.22 0 1 0
##            41.25 1 0 0
##            41.37 0 1 0
##            41.44 0 1 0
##            41.47 0 0 1
##            41.53 0 1 0
##            41.54 0 1 0
##            41.56 1 0 0
##            41.71 1 0 0
##            41.73 1 0 0
##            41.96 0 0 1
##            42.15 0 1 1
##            42.16 2 0 0
##            42.27 0 0 1
##            42.46 0 1 0
##            42.5  0 0 1
##            42.56 0 1 0
##            42.59 0 1 1
##            42.76 1 0 0
##            42.82 0 0 1
##            42.92 1 0 0
##            42.98 0 0 1
##            43.11 1 0 0
##            43.15 0 0 1
##            43.24 1 0 0
##            43.26 0 0 1
##            43.27 0 1 0
##            43.29 0 0 1
##            43.51 0 0 1
##            43.73 0 0 1
##            43.77 0 1 0
##            43.78 1 0 0
##            43.91 0 0 1
##            44.14 0 2 0
##            44.16 0 1 0
##            44.19 0 0 1
##            44.2  0 0 1
##            44.31 0 1 0
##            44.43 1 0 0
##            44.54 1 0 0
##            44.64 0 1 0
##            44.66 0 0 1
##            44.67 0 1 0
##            44.84 0 1 0
##            44.98 1 0 0
##            45.02 1 0 0
##            45.03 0 0 1
##            45.08 0 1 0
##            45.11 0 1 0
##            45.3  0 1 0
##            45.42 0 1 0
##            45.43 0 0 1
##            45.49 1 0 0
##            45.56 0 0 1
##            45.57 1 0 0
##            45.77 0 0 1
##            45.84 0 0 1
##            45.92 1 0 0
##            46.02 0 1 0
##            46.03 0 0 1
##            46.06 1 0 0
##            46.14 0 0 1
##            46.22 0 0 1
##            46.26 0 1 0
##            46.29 0 0 1
##            46.3  0 0 1
##            46.42 0 1 0
##            46.45 1 0 0
##            46.47 0 0 1
##            46.49 1 0 0
##            46.66 1 0 0
##            46.84 0 0 1
##            46.89 0 1 0
##            46.98 1 0 0
##            47.22 0 0 2
##            47.33 0 1 0
##            47.35 1 0 1
##            47.48 0 0 1
##            47.5  1 0 0
##            47.51 1 0 0
##            47.63 0 0 1
##            47.71 0 1 0
##            47.92 1 0 0
##            48.06 0 0 1
##            48.18 1 1 0
##            48.25 0 1 0
##            48.32 0 1 0
##            48.33 0 1 0
##            48.35 0 0 1
##            48.36 0 0 1
##            48.5  0 1 0
##            48.64 0 0 1
##            48.76 0 1 0
##            48.77 0 0 1
##            48.84 0 1 0
##            49.01 0 0 1
##            49.08 1 0 1
##            49.3  2 0 0
##            49.38 0 0 1
##            49.39 0 1 0
##            49.44 1 0 0
##            49.5  0 0 1
##            49.52 0 0 1
##            49.56 0 1 0
##            49.63 0 0 1
##            49.67 0 0 1
##            49.72 0 0 1
##            49.91 1 0 0
##            49.95 1 0 0
##            49.98 0 0 1
##            50.07 0 0 1
##            50.11 0 0 1
##            50.26 0 0 1
##            50.28 0 1 0
##            50.3  0 1 0
##            50.48 1 0 0
##            50.52 2 0 0
##            50.54 1 0 0
##            50.55 0 0 1
##            50.59 0 0 1
##            50.94 0 0 1
##            51.01 0 0 1
##            51.09 0 1 1
##            51.14 0 0 1
##            51.15 0 0 1
##            51.16 0 0 1
##            51.32 1 0 0
##            51.41 1 0 0
##            51.5  0 1 0
##            51.68 0 1 1
##            51.72 1 0 0
##            51.79 0 1 0
##            51.82 1 0 0
##            51.91 0 0 1
##            52.05 0 0 1
##            52.21 0 0 1
##            52.23 0 0 1
##            52.39 0 0 1
##            52.41 0 0 1
##            52.64 0 0 1
##            52.72 0 1 0
##            52.76 0 0 1
##            52.85 1 0 0
##            53.38 1 0 0
##            53.53 1 0 0
##            53.56 0 0 1
##            53.78 0 0 1
##            54.09 0 1 0
##            54.37 0 0 1
##            54.38 1 0 0
##            54.58 0 0 1
##            54.7  1 0 0
##            54.79 0 0 1
##            54.95 1 0 0
##            55.11 1 0 0
##            55.19 0 0 1
##            55.2  1 0 0
##            55.28 1 0 0
##            55.31 1 0 0
##            55.46 1 0 0
##            55.53 0 0 1
##            55.59 0 0 1
##            55.78 1 0 0
##            55.9  0 0 1
##            55.91 0 1 0
##            56.1  1 0 0
##            56.16 0 0 1
##            56.18 1 0 0
##            56.64 1 0 0
##            56.84 1 0 0
##            56.86 1 0 0
##            56.9  1 0 0
##            56.99 1 0 0
##            57.06 0 0 1
##            57.14 1 0 0
##            57.27 0 1 0
##            57.37 0 0 1
##            58    1 0 0
##            58.04 1 0 0
##            58.1  0 1 0
##            58.43 1 0 0
##            59.34 1 0 0
##            59.77 1 0 0
##            59.8  0 0 1
##            60.44 1 0 0
##            60.97 0 0 1
##            61.8  1 0 0
##            62.63 1 0 0
##            63.98 0 0 1
##            64.14 0 0 1
##            64.45 1 0 0
##            65.11 1 0 0
chisq.test(mytable)
## Warning in chisq.test(mytable): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  mytable
## X-squared = 607.3, df = 604, p-value = 0.4547
aggregate(Medium.df$SalesInThousands, by=list(Promotion = Medium.df$Promotion), mean)
##   Promotion        x
## 1         1 47.67260
## 2         2 39.11435
## 3         3 45.46888
aggregate(Medium.df$SalesInThousands, by=list(Promotion = Medium.df$Promotion), sum)
##   Promotion       x
## 1         1 4576.57
## 2         2 4224.35
## 3         3 5274.39

P value > 0.01 so no relation between promotion and sales in Medium market also, also the sales of the product in medium market is less that that of Small market Also mean sales of Promotion1>Promotion2>Promotion3 but again for agregate sales promotion3>promotion2>promotion1

Large Market

mytable <- xtabs(~ SalesInThousands+Promotion, data = Large.df)
mytable
##                 Promotion
## SalesInThousands 1 2 3
##            39.36 0 1 0
##            41.85 0 1 0
##            43.44 0 1 0
##            43.59 0 1 0
##            43.61 0 1 0
##            44.16 0 1 0
##            44.29 0 1 0
##            44.7  0 1 0
##            44.84 0 1 0
##            45.21 0 1 0
##            45.35 0 1 0
##            45.75 0 1 0
##            45.9  0 1 0
##            46.03 0 1 0
##            46.2  0 1 0
##            47.06 0 1 0
##            47.2  0 1 0
##            47.22 0 1 0
##            47.36 0 1 0
##            48.12 0 1 0
##            49.16 0 1 0
##            49.41 0 1 0
##            49.62 1 0 0
##            49.71 0 1 0
##            49.76 1 0 0
##            49.98 0 1 0
##            50.05 0 0 1
##            50.11 1 0 0
##            50.2  0 1 1
##            51.09 0 1 0
##            51.17 0 0 1
##            51.26 0 1 0
##            51.35 0 1 0
##            51.41 0 1 0
##            51.52 0 1 0
##            51.73 0 1 0
##            51.83 0 0 1
##            51.89 0 0 1
##            52.36 0 1 0
##            53.5  0 0 1
##            53.51 1 0 0
##            53.66 0 1 0
##            53.68 1 0 0
##            53.76 0 1 0
##            53.95 0 1 0
##            54.33 0 0 1
##            54.34 0 0 1
##            54.82 0 1 0
##            55.02 0 1 0
##            55.12 0 1 0
##            55.39 0 1 0
##            56.34 0 0 1
##            56.39 0 0 1
##            57.2  1 0 0
##            58.19 1 0 0
##            58.26 0 1 0
##            58.33 0 0 1
##            59.17 1 0 0
##            59.87 1 0 0
##            60.24 0 0 1
##            60.59 1 0 0
##            61.53 1 0 0
##            61.63 1 0 0
##            61.77 1 0 0
##            61.95 1 0 0
##            62.33 1 0 0
##            62.37 1 0 0
##            62.54 1 0 0
##            62.72 1 0 0
##            62.99 1 0 0
##            63.58 1 0 0
##            63.73 1 0 0
##            64.34 1 0 0
##            64.66 1 0 0
##            66.1  1 0 0
##            66.22 0 1 0
##            66.34 1 0 0
##            66.66 1 0 0
##            67.84 1 0 0
##            68.31 1 0 0
##            73.22 0 1 0
##            74.03 0 1 0
##            74.75 0 0 1
##            75.29 0 1 0
##            75.61 0 1 0
##            75.88 0 1 0
##            76.12 0 0 1
##            76.71 0 1 0
##            77.17 0 0 1
##            77.36 1 0 0
##            77.39 0 1 0
##            78.01 0 1 0
##            78.43 0 0 1
##            78.53 0 1 0
##            79.02 0 0 1
##            79.36 0 0 1
##            79.53 0 1 0
##            79.64 0 1 0
##            80.17 0 1 0
##            80.61 1 0 0
##            80.75 0 1 0
##            80.82 0 0 1
##            80.83 0 1 0
##            81.16 0 0 1
##            81.18 0 0 1
##            81.37 0 1 0
##            81.55 1 0 0
##            81.58 0 0 1
##            81.72 0 0 1
##            81.79 0 1 0
##            82.13 0 0 1
##            82.14 0 1 0
##            82.56 0 0 1
##            82.64 0 0 1
##            82.65 0 1 0
##            82.72 0 0 1
##            82.86 0 1 0
##            82.88 0 0 1
##            82.89 0 0 1
##            83.02 0 0 1
##            83.4  0 1 0
##            83.43 1 0 0
##            84.05 0 0 1
##            84.13 0 0 1
##            84.34 0 0 1
##            85.11 1 0 0
##            85.18 0 0 1
##            85.21 1 0 0
##            85.71 1 0 0
##            85.85 1 0 0
##            86.11 0 0 1
##            86.14 0 0 1
##            86.96 1 0 0
##            87.08 1 0 0
##            87.43 0 1 0
##            87.7  0 0 1
##            87.9  0 0 1
##            88.07 1 0 0
##            88.12 0 1 0
##            88.64 1 1 0
##            88.73 1 0 0
##            88.91 0 0 1
##            89.25 1 0 0
##            89.32 1 0 0
##            89.44 1 0 0
##            89.7  0 0 1
##            89.77 0 0 1
##            90.3  0 0 1
##            91.29 1 0 0
##            91.6  1 0 0
##            91.61 0 0 1
##            91.98 0 0 1
##            93.03 1 0 0
##            93.32 1 0 0
##            93.63 0 0 1
##            93.71 1 0 0
##            93.86 1 0 0
##            94.17 1 0 0
##            94.21 0 0 1
##            94.43 1 0 0
##            94.89 0 0 1
##            96.01 1 0 0
##            96.48 0 0 1
##            97.61 1 0 0
##            99.12 1 0 0
##            99.65 1 0 0
chisq.test(mytable)
## Warning in chisq.test(mytable): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  mytable
## X-squared = 330.13, df = 330, p-value = 0.4877
aggregate(Large.df$SalesInThousands, by=list(Promotion = Large.df$Promotion), mean)
##   Promotion        x
## 1         1 75.23589
## 2         2 60.32203
## 3         3 77.20396
aggregate(Large.df$SalesInThousands, by=list(Promotion = Large.df$Promotion), sum)
##   Promotion       x
## 1         1 4213.21
## 2         2 3860.61
## 3         3 3705.79

P value > 0.01 so no relation between promotion and sales in Large Market also, also the sales of the product in Large market is greater than small and medium market as expected But mean sales of Promotion31>Promotion1>Promotion2 but this time agregate sales due to Promotion1>Promotion2>Promotion3

Regression Models

Model1 <- SalesInThousands ~ 
             MarketSize +LocationID +AgeOfStore +Promotion +Week 
fit1 <- lm(Model1, data = Project.df)
summary(fit1)
## 
## Call:
## lm(formula = Model1, data = Project.df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -28.3477  -7.9005   0.9609   7.8503  25.3592 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       78.71444    2.12507  37.041  < 2e-16 ***
## MarketSizeMedium -26.95356    1.08634 -24.811  < 2e-16 ***
## MarketSizeSmall  -17.55114    1.80793  -9.708  < 2e-16 ***
## LocationID        -0.01418    0.00177  -8.013  6.9e-15 ***
## AgeOfStore         0.10316    0.07374   1.399    0.162    
## Promotion         -0.61694    0.59726  -1.033    0.302    
## Week              -0.16445    0.43088  -0.382    0.703    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.28 on 541 degrees of freedom
## Multiple R-squared:  0.552,  Adjusted R-squared:  0.547 
## F-statistic: 111.1 on 6 and 541 DF,  p-value: < 2.2e-16
Model2 <- SalesInThousands ~ 
             MarketSize +LocationID  
fit2 <- lm(Model2, data = Project.df)
summary(fit2)
## 
## Call:
## lm(formula = Model2, data = Project.df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -28.6864  -7.8978   0.7938   8.0269  25.4638 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       77.799484   1.297405  59.965  < 2e-16 ***
## MarketSizeMedium -26.848447   1.078206 -24.901  < 2e-16 ***
## MarketSizeSmall  -17.223092   1.787925  -9.633  < 2e-16 ***
## LocationID        -0.014113   0.001768  -7.983 8.54e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.28 on 544 degrees of freedom
## Multiple R-squared:  0.5495, Adjusted R-squared:  0.547 
## F-statistic: 221.2 on 3 and 544 DF,  p-value: < 2.2e-16
Model3 <- SalesInThousands ~ 
             AgeOfStore +Promotion +Week 
fit3 <- lm(Model3, data = Project.df)
summary(fit3)
## 
## Call:
## lm(formula = Model3, data = Project.df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -36.465 -10.856  -2.798   7.006  44.298 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 56.83602    2.63759  21.548   <2e-16 ***
## AgeOfStore  -0.06331    0.10818  -0.585    0.559    
## Promotion   -1.19274    0.88578  -1.347    0.179    
## Week        -0.16445    0.64058  -0.257    0.797    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 16.77 on 544 degrees of freedom
## Multiple R-squared:  0.004254,   Adjusted R-squared:  -0.001238 
## F-statistic: 0.7746 on 3 and 544 DF,  p-value: 0.5085

Inference from Regression

P values of regression analysis shows that the model1 and model2 are acceptable while model3 is not acceptable. Also Sales in thousand is affected by the location and market size but promotion and week and age of store do not have a significat affect on the Sales of the product

RESULTS FROM THE STUDY

1.Market size is dependenat on LOcationID

2.Majority of sales has come from medium and large market. Medium being the higest.

3.Sales in all the weeks are almost same.

4.Agrregate sales due to Promotion3>promotion2>promotion1. Although the sales are not very sinificalty different. MAking Promotion 3 the best promotion stategy overall.

Considering Marketwise

small Market

5.P > 0.01 suggest that for small market there is no relationship between promotion and sales although mean Promotion1>Promotion2>Promotion3, agregate sales due Promotion3>Promotion1>Promotin2

Medium Market

6.P value > 0.01 so no relation between promotion and sales in Medium market also, also the sales of the product in medium market is less that that of Small market Also mean sales of Promotion1>Promotion2>Promotion3 but again for agregate sales promotion3>promotion2>promotion1

Large Market

7.P value > 0.01 so no relation between promotion and sales in Large Market also, also the sales of the product in Large market is greater than small and medium market as expected But mean sales of Promotion31>Promotion1>Promotion2 but this time agregate sales due to Promotion1>Promotion2>Promotion3

Regression

8.P values of regression analysis shows that the model1 and model2 are acceptable while model3 is not acceptable. Also Sales in thousand is affected by the location and market size but promotion and week and age of store do not have a significat affect on the Sales of the product

Conclusion

In this Project just by starting with some simple, plain language questions I was able to explore and visualize the marketing campaign data to find valuable insights between the promotions and the sales that were generated.

Reference

1.https://www.ibm.com/communities/analytics/watson-analytics-blog/marketing-campaign-eff-usec_-fastf/

2.Professor Sameer Mathur at the Indian Institute of Management (IIM), Lucknow

3.https://www.udemy.com/data-science-and-analytics-using-r/learn/v4/content

4.Kandasamy, P., “Engineering mathematics - Vol II, S.Chand &Company Ltd.,New Delhi, 1996.

5.Frvend John, E. and Miller Irwin, “Probability and Statistics for Engineers”, Prentice Hall, New York.

6.Allen A.O., “Probability statistics and Queuing theory with computer science applications”, Academic press, 1978.