Storms and other severe weather events can cause both public health and economic problems for communities and municipalities. Many severe events can result in fatalities, injuries, and property damage, and preventing such outcomes to the extent possible is a key concern.

Synopsis

This project involves exploring the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database. This database tracks characteristics of major storms and weather events in the United States, including when and where they occur, as well as estimates of any fatalities, injuries, and property damage.

Data Processing

Setting the Work Directory and Downloading NOAA File From the Internet

setwd ("C:/Users/fkmho/Documents/Data_Science/Reproducible_Research")
getwd()
## [1] "C:/Users/fkmho/Documents/Data_Science/Reproducible_Research"
download.file("https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2", destfile = "stormData.csv")
# create vector stormdata from download stormData.csv file
stormdata <- read.csv("stormData.csv")
# view dimension rows and columns
dim(stormdata)
## [1] 902297     37
# explore head data
head(stormdata)
##   STATE__           BGN_DATE BGN_TIME TIME_ZONE COUNTY COUNTYNAME STATE
## 1       1  4/18/1950 0:00:00     0130       CST     97     MOBILE    AL
## 2       1  4/18/1950 0:00:00     0145       CST      3    BALDWIN    AL
## 3       1  2/20/1951 0:00:00     1600       CST     57    FAYETTE    AL
## 4       1   6/8/1951 0:00:00     0900       CST     89    MADISON    AL
## 5       1 11/15/1951 0:00:00     1500       CST     43    CULLMAN    AL
## 6       1 11/15/1951 0:00:00     2000       CST     77 LAUDERDALE    AL
##    EVTYPE BGN_RANGE BGN_AZI BGN_LOCATI END_DATE END_TIME COUNTY_END
## 1 TORNADO         0                                               0
## 2 TORNADO         0                                               0
## 3 TORNADO         0                                               0
## 4 TORNADO         0                                               0
## 5 TORNADO         0                                               0
## 6 TORNADO         0                                               0
##   COUNTYENDN END_RANGE END_AZI END_LOCATI LENGTH WIDTH F MAG FATALITIES
## 1         NA         0                      14.0   100 3   0          0
## 2         NA         0                       2.0   150 2   0          0
## 3         NA         0                       0.1   123 2   0          0
## 4         NA         0                       0.0   100 2   0          0
## 5         NA         0                       0.0   150 2   0          0
## 6         NA         0                       1.5   177 2   0          0
##   INJURIES PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES
## 1       15    25.0          K       0                                    
## 2        0     2.5          K       0                                    
## 3        2    25.0          K       0                                    
## 4        2     2.5          K       0                                    
## 5        2     2.5          K       0                                    
## 6        6     2.5          K       0                                    
##   LATITUDE LONGITUDE LATITUDE_E LONGITUDE_ REMARKS REFNUM
## 1     3040      8812       3051       8806              1
## 2     3042      8755          0          0              2
## 3     3340      8742          0          0              3
## 4     3458      8626          0          0              4
## 5     3412      8642          0          0              5
## 6     3450      8748          0          0              6
newstormdata <- stormdata[ , c(8, 23:28)]
rm(stormdata)
head(newstormdata)
##    EVTYPE FATALITIES INJURIES PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP
## 1 TORNADO          0       15    25.0          K       0           
## 2 TORNADO          0        0     2.5          K       0           
## 3 TORNADO          0        2    25.0          K       0           
## 4 TORNADO          0        2     2.5          K       0           
## 5 TORNADO          0        2     2.5          K       0           
## 6 TORNADO          0        6     2.5          K       0

Data Acronyms Clarification

CROPDMG - Crop Damage CROPDAMAGE - Crop Damage Expense EVTYPE - Event Type Fatalities - Fatalities Injuries - Injuries PROPDMG - Property Damage PROPDAMAGE - Property Damage Expense

Fatalities and Injuries Summary

summary(newstormdata$FATALITIES)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##   0.0000   0.0000   0.0000   0.0168   0.0000 583.0000
summary(newstormdata$INJURIES)
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
##    0.0000    0.0000    0.0000    0.1557    0.0000 1700.0000
# Call Packages dplyr & bindrcpp
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.3.3
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(bindrcpp)
## Warning: package 'bindrcpp' was built under R version 3.3.3

Fatalities and Injuries Aggregation by Types of Events on Descending Order With First 20 Subset

fatalities <- aggregate(FATALITIES~EVTYPE, data = newstormdata, sum)
fatalities <- fatalities[order(-fatalities$FATALITIES), ][1:20, ]
fatalities
##                      EVTYPE FATALITIES
## 834                 TORNADO       5633
## 130          EXCESSIVE HEAT       1903
## 153             FLASH FLOOD        978
## 275                    HEAT        937
## 464               LIGHTNING        816
## 856               TSTM WIND        504
## 170                   FLOOD        470
## 585             RIP CURRENT        368
## 359               HIGH WIND        248
## 19                AVALANCHE        224
## 972            WINTER STORM        206
## 586            RIP CURRENTS        204
## 278               HEAT WAVE        172
## 140            EXTREME COLD        160
## 760       THUNDERSTORM WIND        133
## 310              HEAVY SNOW        127
## 141 EXTREME COLD/WIND CHILL        125
## 676             STRONG WIND        103
## 30                 BLIZZARD        101
## 350               HIGH SURF        101
injuries <- aggregate(INJURIES ~ EVTYPE, data = newstormdata, sum)
injuries <- injuries[order(-injuries$INJURIES), ][1:20, ]
injuries
##                 EVTYPE INJURIES
## 834            TORNADO    91346
## 856          TSTM WIND     6957
## 170              FLOOD     6789
## 130     EXCESSIVE HEAT     6525
## 464          LIGHTNING     5230
## 275               HEAT     2100
## 427          ICE STORM     1975
## 153        FLASH FLOOD     1777
## 760  THUNDERSTORM WIND     1488
## 244               HAIL     1361
## 972       WINTER STORM     1321
## 411  HURRICANE/TYPHOON     1275
## 359          HIGH WIND     1137
## 310         HEAVY SNOW     1021
## 957           WILDFIRE      911
## 786 THUNDERSTORM WINDS      908
## 30            BLIZZARD      805
## 188                FOG      734
## 955   WILD/FOREST FIRE      545
## 117         DUST STORM      440

Top Fatalities and Injuries Graphs

par(mfrow=c(1,1), mar=c(12,7,3,2))
barplot(fatalities$FATALITIES,names.arg=fatalities$EVTYPE,las=2,col="green", ylab="fatalities", main="Top Fatalities")

par(mfrow=c(1,1), mar=c(12,7,3,2))
barplot(injuries$INJURIES,names.arg=injuries$EVTYPE,las=2,col="green", ylab="injuries",main="Top Injuries")

Tornados have the hghtest number of injuries and fatalities according as illustrated above.

Across the United States, which types of events have the greatest economic consequences?

Data Processing

Conversion of Property and Crop Damage to Numbers. H=10^2, K=10^3, M =10^6, B=10^9, and create variables PROPDAMAGE, CROPDAMAGE

newstormdata$PROPDAMAGE = 0
newstormdata[newstormdata$PROPDMGEXP == "H", ]$PROPDAMAGE = newstormdata[newstormdata$PROPDMGEXP == "H", ]$PROPDMG * 10^2
newstormdata[newstormdata$PROPDMGEXP == "K", ]$PROPDAMAGE = newstormdata[newstormdata$PROPDMGEXP == "K", ]$PROPDMG * 10^3
newstormdata[newstormdata$PROPDMGEXP == "M", ]$PROPDAMAGE = newstormdata[newstormdata$PROPDMGEXP == "M", ]$PROPDMG * 10^6
newstormdata[newstormdata$PROPDMGEXP == "B", ]$PROPDAMAGE = newstormdata[newstormdata$PROPDMGEXP == "B", ]$PROPDMG * 10^9

newstormdata$CROPDAMAGE = 0
newstormdata[newstormdata$CROPDMGEXP == "H", ]$CROPDAMAGE = newstormdata[newstormdata$CROPDMGEXP == "H", ]$CROPDMG * 10^2
newstormdata[newstormdata$CROPDMGEXP == "K", ]$CROPDAMAGE = newstormdata[newstormdata$CROPDMGEXP == "K", ]$CROPDMG * 10^3
newstormdata[newstormdata$CROPDMGEXP == "M", ]$CROPDAMAGE = newstormdata[newstormdata$CROPDMGEXP == "M", ]$CROPDMG * 10^6
newstormdata[newstormdata$CROPDMGEXP == "B", ]$CROPDAMAGE = newstormdata[newstormdata$CROPDMGEXP == "B", ]$CROPDMG * 10^9

Crop and Property Damage Variable Aggregation Top 20 Arranged in Descending Order

economicdamage <- aggregate(PROPDAMAGE + CROPDAMAGE ~ EVTYPE, newstormdata, sum)
names(economicdamage) = c("EVENTTYPE", "TOTALDAMAGE")
economicdamage <- arrange(economicdamage, desc(TOTALDAMAGE))
economicdamage <- economicdamage[1:20, ]
economicdamage$TOTALDAMAGE <- economicdamage$TOTALDAMAGE/10^9
economicdamage$EVENTTYPE <- factor(economicdamage$EVENTTYPE, levels = economicdamage$EVENTTYPE)
head(economicdamage)
##           EVENTTYPE TOTALDAMAGE
## 1             FLOOD   150.31968
## 2 HURRICANE/TYPHOON    71.91371
## 3           TORNADO    57.34061
## 4       STORM SURGE    43.32354
## 5              HAIL    18.75290
## 6       FLASH FLOOD    17.56213
with(economicdamage, barplot(TOTALDAMAGE, names.arg = EVENTTYPE, beside = T, cex.names = 0.8, las=2, col = "blue", main = "Crop and Property Damage Top 20 Event Types", ylab = "Damages Dollar Value"))

The worst economic damage is caused by flood and least is heavy rain/severe weather