mba.df <- read.csv(paste("MBA Starting Salaries Data.csv",sep = "")) 
mbasalary.df <- subset(mba.df, mba.df$salary!=998 & mba.df$salary!=999 & mba.df$satis!=998)
View(mbasalary.df)
summary(mbasalary.df)
##       age             sex          gmat_tot        gmat_qpc    
##  Min.   :22.00   Min.   :1.00   Min.   :450.0   Min.   :28.00  
##  1st Qu.:25.00   1st Qu.:1.00   1st Qu.:570.0   1st Qu.:72.00  
##  Median :27.00   Median :1.00   Median :610.0   Median :82.00  
##  Mean   :27.59   Mean   :1.28   Mean   :615.2   Mean   :79.35  
##  3rd Qu.:29.00   3rd Qu.:2.00   3rd Qu.:650.0   3rd Qu.:91.00  
##  Max.   :48.00   Max.   :2.00   Max.   :760.0   Max.   :99.00  
##     gmat_vpc        gmat_tpc         s_avg           f_avg      
##  Min.   :22.00   Min.   : 0.00   Min.   :2.000   Min.   :0.000  
##  1st Qu.:71.00   1st Qu.:75.00   1st Qu.:2.800   1st Qu.:2.750  
##  Median :81.00   Median :87.00   Median :3.090   Median :3.000  
##  Mean   :78.13   Mean   :83.48   Mean   :3.064   Mean   :3.078  
##  3rd Qu.:91.00   3rd Qu.:93.00   3rd Qu.:3.300   3rd Qu.:3.330  
##  Max.   :99.00   Max.   :99.00   Max.   :4.000   Max.   :4.000  
##     quarter         work_yrs         frstlang         salary      
##  Min.   :1.000   Min.   : 0.000   Min.   :1.000   Min.   :     0  
##  1st Qu.:1.000   1st Qu.: 2.000   1st Qu.:1.000   1st Qu.:     0  
##  Median :2.000   Median : 3.000   Median :1.000   Median : 85000  
##  Mean   :2.394   Mean   : 4.104   Mean   :1.078   Mean   : 54985  
##  3rd Qu.:3.000   3rd Qu.: 5.000   3rd Qu.:1.000   3rd Qu.:100000  
##  Max.   :4.000   Max.   :22.000   Max.   :2.000   Max.   :220000  
##      satis      
##  Min.   :3.000  
##  1st Qu.:5.000  
##  Median :6.000  
##  Mean   :5.762  
##  3rd Qu.:6.000  
##  Max.   :7.000
aggregate(mbasalary.df$salary, by=list(Sex=mbasalary.df$sex), mean)
##   Sex        x
## 1   1 54373.45
## 2   2 56560.30
aggregate(mbasalary.df$salary, by=list(FirstLanguage = mbasalary.df$frstlang), mean)
##   FirstLanguage        x
## 1             1 54875.65
## 2             2 56286.67
attach(mbasalary.df)
boxplot(salary~satis, horizontal=TRUE,col=c("violet","hotpink4","blue","green","yellow","orange","red"),xlab="salary",ylab="Level Of Satisfaction",main="Level of satisfaction Vs. salary")

boxplot(salary~sex, horizontal=TRUE,col=c("brown","yellow"), yaxt="n",  main="Salary comparison based on sex", xlab="Salary",ylab="Sex",col.main="red")
axis(side = 2, at=c(1,2),labels = c("Male","Female"))

boxplot(salary~frstlang, horizontal=TRUE,col=c("brown","yellow"),yaxt="n",main="Salary comparison based on first language", xlab="Salary",ylab="First language",col.main="red")
axis(side = 2, at=c(1,2),labels = c("English","Non-English"))

colors()
##   [1] "white"                "aliceblue"            "antiquewhite"        
##   [4] "antiquewhite1"        "antiquewhite2"        "antiquewhite3"       
##   [7] "antiquewhite4"        "aquamarine"           "aquamarine1"         
##  [10] "aquamarine2"          "aquamarine3"          "aquamarine4"         
##  [13] "azure"                "azure1"               "azure2"              
##  [16] "azure3"               "azure4"               "beige"               
##  [19] "bisque"               "bisque1"              "bisque2"             
##  [22] "bisque3"              "bisque4"              "black"               
##  [25] "blanchedalmond"       "blue"                 "blue1"               
##  [28] "blue2"                "blue3"                "blue4"               
##  [31] "blueviolet"           "brown"                "brown1"              
##  [34] "brown2"               "brown3"               "brown4"              
##  [37] "burlywood"            "burlywood1"           "burlywood2"          
##  [40] "burlywood3"           "burlywood4"           "cadetblue"           
##  [43] "cadetblue1"           "cadetblue2"           "cadetblue3"          
##  [46] "cadetblue4"           "chartreuse"           "chartreuse1"         
##  [49] "chartreuse2"          "chartreuse3"          "chartreuse4"         
##  [52] "chocolate"            "chocolate1"           "chocolate2"          
##  [55] "chocolate3"           "chocolate4"           "coral"               
##  [58] "coral1"               "coral2"               "coral3"              
##  [61] "coral4"               "cornflowerblue"       "cornsilk"            
##  [64] "cornsilk1"            "cornsilk2"            "cornsilk3"           
##  [67] "cornsilk4"            "cyan"                 "cyan1"               
##  [70] "cyan2"                "cyan3"                "cyan4"               
##  [73] "darkblue"             "darkcyan"             "darkgoldenrod"       
##  [76] "darkgoldenrod1"       "darkgoldenrod2"       "darkgoldenrod3"      
##  [79] "darkgoldenrod4"       "darkgray"             "darkgreen"           
##  [82] "darkgrey"             "darkkhaki"            "darkmagenta"         
##  [85] "darkolivegreen"       "darkolivegreen1"      "darkolivegreen2"     
##  [88] "darkolivegreen3"      "darkolivegreen4"      "darkorange"          
##  [91] "darkorange1"          "darkorange2"          "darkorange3"         
##  [94] "darkorange4"          "darkorchid"           "darkorchid1"         
##  [97] "darkorchid2"          "darkorchid3"          "darkorchid4"         
## [100] "darkred"              "darksalmon"           "darkseagreen"        
## [103] "darkseagreen1"        "darkseagreen2"        "darkseagreen3"       
## [106] "darkseagreen4"        "darkslateblue"        "darkslategray"       
## [109] "darkslategray1"       "darkslategray2"       "darkslategray3"      
## [112] "darkslategray4"       "darkslategrey"        "darkturquoise"       
## [115] "darkviolet"           "deeppink"             "deeppink1"           
## [118] "deeppink2"            "deeppink3"            "deeppink4"           
## [121] "deepskyblue"          "deepskyblue1"         "deepskyblue2"        
## [124] "deepskyblue3"         "deepskyblue4"         "dimgray"             
## [127] "dimgrey"              "dodgerblue"           "dodgerblue1"         
## [130] "dodgerblue2"          "dodgerblue3"          "dodgerblue4"         
## [133] "firebrick"            "firebrick1"           "firebrick2"          
## [136] "firebrick3"           "firebrick4"           "floralwhite"         
## [139] "forestgreen"          "gainsboro"            "ghostwhite"          
## [142] "gold"                 "gold1"                "gold2"               
## [145] "gold3"                "gold4"                "goldenrod"           
## [148] "goldenrod1"           "goldenrod2"           "goldenrod3"          
## [151] "goldenrod4"           "gray"                 "gray0"               
## [154] "gray1"                "gray2"                "gray3"               
## [157] "gray4"                "gray5"                "gray6"               
## [160] "gray7"                "gray8"                "gray9"               
## [163] "gray10"               "gray11"               "gray12"              
## [166] "gray13"               "gray14"               "gray15"              
## [169] "gray16"               "gray17"               "gray18"              
## [172] "gray19"               "gray20"               "gray21"              
## [175] "gray22"               "gray23"               "gray24"              
## [178] "gray25"               "gray26"               "gray27"              
## [181] "gray28"               "gray29"               "gray30"              
## [184] "gray31"               "gray32"               "gray33"              
## [187] "gray34"               "gray35"               "gray36"              
## [190] "gray37"               "gray38"               "gray39"              
## [193] "gray40"               "gray41"               "gray42"              
## [196] "gray43"               "gray44"               "gray45"              
## [199] "gray46"               "gray47"               "gray48"              
## [202] "gray49"               "gray50"               "gray51"              
## [205] "gray52"               "gray53"               "gray54"              
## [208] "gray55"               "gray56"               "gray57"              
## [211] "gray58"               "gray59"               "gray60"              
## [214] "gray61"               "gray62"               "gray63"              
## [217] "gray64"               "gray65"               "gray66"              
## [220] "gray67"               "gray68"               "gray69"              
## [223] "gray70"               "gray71"               "gray72"              
## [226] "gray73"               "gray74"               "gray75"              
## [229] "gray76"               "gray77"               "gray78"              
## [232] "gray79"               "gray80"               "gray81"              
## [235] "gray82"               "gray83"               "gray84"              
## [238] "gray85"               "gray86"               "gray87"              
## [241] "gray88"               "gray89"               "gray90"              
## [244] "gray91"               "gray92"               "gray93"              
## [247] "gray94"               "gray95"               "gray96"              
## [250] "gray97"               "gray98"               "gray99"              
## [253] "gray100"              "green"                "green1"              
## [256] "green2"               "green3"               "green4"              
## [259] "greenyellow"          "grey"                 "grey0"               
## [262] "grey1"                "grey2"                "grey3"               
## [265] "grey4"                "grey5"                "grey6"               
## [268] "grey7"                "grey8"                "grey9"               
## [271] "grey10"               "grey11"               "grey12"              
## [274] "grey13"               "grey14"               "grey15"              
## [277] "grey16"               "grey17"               "grey18"              
## [280] "grey19"               "grey20"               "grey21"              
## [283] "grey22"               "grey23"               "grey24"              
## [286] "grey25"               "grey26"               "grey27"              
## [289] "grey28"               "grey29"               "grey30"              
## [292] "grey31"               "grey32"               "grey33"              
## [295] "grey34"               "grey35"               "grey36"              
## [298] "grey37"               "grey38"               "grey39"              
## [301] "grey40"               "grey41"               "grey42"              
## [304] "grey43"               "grey44"               "grey45"              
## [307] "grey46"               "grey47"               "grey48"              
## [310] "grey49"               "grey50"               "grey51"              
## [313] "grey52"               "grey53"               "grey54"              
## [316] "grey55"               "grey56"               "grey57"              
## [319] "grey58"               "grey59"               "grey60"              
## [322] "grey61"               "grey62"               "grey63"              
## [325] "grey64"               "grey65"               "grey66"              
## [328] "grey67"               "grey68"               "grey69"              
## [331] "grey70"               "grey71"               "grey72"              
## [334] "grey73"               "grey74"               "grey75"              
## [337] "grey76"               "grey77"               "grey78"              
## [340] "grey79"               "grey80"               "grey81"              
## [343] "grey82"               "grey83"               "grey84"              
## [346] "grey85"               "grey86"               "grey87"              
## [349] "grey88"               "grey89"               "grey90"              
## [352] "grey91"               "grey92"               "grey93"              
## [355] "grey94"               "grey95"               "grey96"              
## [358] "grey97"               "grey98"               "grey99"              
## [361] "grey100"              "honeydew"             "honeydew1"           
## [364] "honeydew2"            "honeydew3"            "honeydew4"           
## [367] "hotpink"              "hotpink1"             "hotpink2"            
## [370] "hotpink3"             "hotpink4"             "indianred"           
## [373] "indianred1"           "indianred2"           "indianred3"          
## [376] "indianred4"           "ivory"                "ivory1"              
## [379] "ivory2"               "ivory3"               "ivory4"              
## [382] "khaki"                "khaki1"               "khaki2"              
## [385] "khaki3"               "khaki4"               "lavender"            
## [388] "lavenderblush"        "lavenderblush1"       "lavenderblush2"      
## [391] "lavenderblush3"       "lavenderblush4"       "lawngreen"           
## [394] "lemonchiffon"         "lemonchiffon1"        "lemonchiffon2"       
## [397] "lemonchiffon3"        "lemonchiffon4"        "lightblue"           
## [400] "lightblue1"           "lightblue2"           "lightblue3"          
## [403] "lightblue4"           "lightcoral"           "lightcyan"           
## [406] "lightcyan1"           "lightcyan2"           "lightcyan3"          
## [409] "lightcyan4"           "lightgoldenrod"       "lightgoldenrod1"     
## [412] "lightgoldenrod2"      "lightgoldenrod3"      "lightgoldenrod4"     
## [415] "lightgoldenrodyellow" "lightgray"            "lightgreen"          
## [418] "lightgrey"            "lightpink"            "lightpink1"          
## [421] "lightpink2"           "lightpink3"           "lightpink4"          
## [424] "lightsalmon"          "lightsalmon1"         "lightsalmon2"        
## [427] "lightsalmon3"         "lightsalmon4"         "lightseagreen"       
## [430] "lightskyblue"         "lightskyblue1"        "lightskyblue2"       
## [433] "lightskyblue3"        "lightskyblue4"        "lightslateblue"      
## [436] "lightslategray"       "lightslategrey"       "lightsteelblue"      
## [439] "lightsteelblue1"      "lightsteelblue2"      "lightsteelblue3"     
## [442] "lightsteelblue4"      "lightyellow"          "lightyellow1"        
## [445] "lightyellow2"         "lightyellow3"         "lightyellow4"        
## [448] "limegreen"            "linen"                "magenta"             
## [451] "magenta1"             "magenta2"             "magenta3"            
## [454] "magenta4"             "maroon"               "maroon1"             
## [457] "maroon2"              "maroon3"              "maroon4"             
## [460] "mediumaquamarine"     "mediumblue"           "mediumorchid"        
## [463] "mediumorchid1"        "mediumorchid2"        "mediumorchid3"       
## [466] "mediumorchid4"        "mediumpurple"         "mediumpurple1"       
## [469] "mediumpurple2"        "mediumpurple3"        "mediumpurple4"       
## [472] "mediumseagreen"       "mediumslateblue"      "mediumspringgreen"   
## [475] "mediumturquoise"      "mediumvioletred"      "midnightblue"        
## [478] "mintcream"            "mistyrose"            "mistyrose1"          
## [481] "mistyrose2"           "mistyrose3"           "mistyrose4"          
## [484] "moccasin"             "navajowhite"          "navajowhite1"        
## [487] "navajowhite2"         "navajowhite3"         "navajowhite4"        
## [490] "navy"                 "navyblue"             "oldlace"             
## [493] "olivedrab"            "olivedrab1"           "olivedrab2"          
## [496] "olivedrab3"           "olivedrab4"           "orange"              
## [499] "orange1"              "orange2"              "orange3"             
## [502] "orange4"              "orangered"            "orangered1"          
## [505] "orangered2"           "orangered3"           "orangered4"          
## [508] "orchid"               "orchid1"              "orchid2"             
## [511] "orchid3"              "orchid4"              "palegoldenrod"       
## [514] "palegreen"            "palegreen1"           "palegreen2"          
## [517] "palegreen3"           "palegreen4"           "paleturquoise"       
## [520] "paleturquoise1"       "paleturquoise2"       "paleturquoise3"      
## [523] "paleturquoise4"       "palevioletred"        "palevioletred1"      
## [526] "palevioletred2"       "palevioletred3"       "palevioletred4"      
## [529] "papayawhip"           "peachpuff"            "peachpuff1"          
## [532] "peachpuff2"           "peachpuff3"           "peachpuff4"          
## [535] "peru"                 "pink"                 "pink1"               
## [538] "pink2"                "pink3"                "pink4"               
## [541] "plum"                 "plum1"                "plum2"               
## [544] "plum3"                "plum4"                "powderblue"          
## [547] "purple"               "purple1"              "purple2"             
## [550] "purple3"              "purple4"              "red"                 
## [553] "red1"                 "red2"                 "red3"                
## [556] "red4"                 "rosybrown"            "rosybrown1"          
## [559] "rosybrown2"           "rosybrown3"           "rosybrown4"          
## [562] "royalblue"            "royalblue1"           "royalblue2"          
## [565] "royalblue3"           "royalblue4"           "saddlebrown"         
## [568] "salmon"               "salmon1"              "salmon2"             
## [571] "salmon3"              "salmon4"              "sandybrown"          
## [574] "seagreen"             "seagreen1"            "seagreen2"           
## [577] "seagreen3"            "seagreen4"            "seashell"            
## [580] "seashell1"            "seashell2"            "seashell3"           
## [583] "seashell4"            "sienna"               "sienna1"             
## [586] "sienna2"              "sienna3"              "sienna4"             
## [589] "skyblue"              "skyblue1"             "skyblue2"            
## [592] "skyblue3"             "skyblue4"             "slateblue"           
## [595] "slateblue1"           "slateblue2"           "slateblue3"          
## [598] "slateblue4"           "slategray"            "slategray1"          
## [601] "slategray2"           "slategray3"           "slategray4"          
## [604] "slategrey"            "snow"                 "snow1"               
## [607] "snow2"                "snow3"                "snow4"               
## [610] "springgreen"          "springgreen1"         "springgreen2"        
## [613] "springgreen3"         "springgreen4"         "steelblue"           
## [616] "steelblue1"           "steelblue2"           "steelblue3"          
## [619] "steelblue4"           "tan"                  "tan1"                
## [622] "tan2"                 "tan3"                 "tan4"                
## [625] "thistle"              "thistle1"             "thistle2"            
## [628] "thistle3"             "thistle4"             "tomato"              
## [631] "tomato1"              "tomato2"              "tomato3"             
## [634] "tomato4"              "turquoise"            "turquoise1"          
## [637] "turquoise2"           "turquoise3"           "turquoise4"          
## [640] "violet"               "violetred"            "violetred1"          
## [643] "violetred2"           "violetred3"           "violetred4"          
## [646] "wheat"                "wheat1"               "wheat2"              
## [649] "wheat3"               "wheat4"               "whitesmoke"          
## [652] "yellow"               "yellow1"              "yellow2"             
## [655] "yellow3"              "yellow4"              "yellowgreen"

Average salary of students: 54985

Average salary of females: 56560

Average salary of males: 54373

Average salary of students whose first language is English is higher than those who have others

Level Of satisfaction is healthy

library(car)
aggregate(cbind(gmat_tot,gmat_qpc,gmat_vpc,gmat_tpc)~sex, data=mbasalary.df, mean)
##   sex gmat_tot gmat_qpc gmat_vpc gmat_tpc
## 1   1 616.7626 80.92806 77.13669 83.58993
## 2   2 611.2963 75.27778 80.68519 83.20370
aggregate(cbind(gmat_tot,gmat_qpc,gmat_vpc,gmat_tpc)~frstlang, data=mbasalary.df, mean)
##   frstlang gmat_tot gmat_qpc gmat_vpc gmat_tpc
## 1        1 616.7978 78.93258 79.50562 83.90449
## 2        2 596.6667 84.26667 61.80000 78.46667
scatterplot(salary ~ gmat_tot, data=mbasalary.df, spread=FALSE, smoother.args=list(lty=2), pch=19,main="Salary Vs.GMAT Score", xlab="GMAT Score", ylab="Salary", col.lab="red",col.main="Orange")

It is clearly visible that GMAT Score plays a prominent role in getting good placement

Females have more average verbal GMAT_Score than males

Students without having their first_language as english have more average quantitative GMAT_Score

library(lattice)
attach(mbasalary.df)
## The following objects are masked from mbasalary.df (pos = 5):
## 
##     age, f_avg, frstlang, gmat_qpc, gmat_tot, gmat_tpc, gmat_vpc,
##     quarter, s_avg, salary, satis, sex, work_yrs
histogram(salary~age, main="Distribution of Salary Vs. Age", xlab="Age", col.main="blue", col.lab="green")

library(car)
scatterplot(salary~gmat_qpc, data=mbasalary.df, main="Salary Vs. GMAT_Quantitative Percentile",xlab = "GMAT_Quantitative Score", ylab="Salary", col.main="red", col.lab="dark blue")

scatterplot(salary~gmat_vpc, data=mbasalary.df, main="Salary Vs. GMAT_Verbal Percentile",xlab = "GMAT_Verbal Percentile", ylab="Salary", col.main="red", col.lab="dark blue")

scatterplot(salary~gmat_tpc, data=mbasalary.df, main="Salary Vs. GMAT_Overall Percentile",xlab = "GMAT_Overall Percentile", ylab="Salary", col.main="red", col.lab="dark blue")

library(corrgram)
corrgram(mbasalary.df, upper.panel = panel.pie, lower.panel = panel.shade, text.panel = panel.txt, diag.panel = panel.minmax)

cor(mbasalary.df[,], use = "complete.obs", method="kendall")
##                  age          sex    gmat_tot      gmat_qpc     gmat_vpc
## age       1.00000000 -0.065041153 -0.06082776 -0.1496542537  0.039907466
## sex      -0.06504115  1.000000000 -0.03289126 -0.1162995642  0.068377056
## gmat_tot -0.06082776 -0.032891262  1.00000000  0.5912249323  0.618641641
## gmat_qpc -0.14965425 -0.116299564  0.59122493  1.0000000000  0.172322047
## gmat_vpc  0.03990747  0.068377056  0.61864164  0.1723220471  1.000000000
## gmat_tpc -0.06420357 -0.033917247  0.97893742  0.5884532087  0.610528597
## s_avg     0.08799754  0.056772894  0.07981602  0.0007924996  0.136687052
## f_avg     0.03212006  0.066136238  0.08645074  0.0593444969  0.075463243
## quarter  -0.02647261 -0.079821423 -0.05206960  0.0205092140 -0.111510295
## work_yrs  0.66623303  0.006852418 -0.13837749 -0.2213521405 -0.007608988
## frstlang  0.11550298 -0.008488358 -0.07922043  0.0770445630 -0.174081341
## salary   -0.04236378 -0.050931734  0.01423837 -0.0156051967  0.008744069
## satis    -0.09804344 -0.046061133  0.05858051 -0.0419066838  0.112920113
##             gmat_tpc         s_avg       f_avg     quarter     work_yrs
## age      -0.06420357  0.0879975393  0.03212006 -0.02647261  0.666233029
## sex      -0.03391725  0.0567728938  0.06613624 -0.07982142  0.006852418
## gmat_tot  0.97893742  0.0798160156  0.08645074 -0.05206960 -0.138377494
## gmat_qpc  0.58845321  0.0007924996  0.05934450  0.02050921 -0.221352141
## gmat_vpc  0.61052860  0.1366870519  0.07546324 -0.11151030 -0.007608988
## gmat_tpc  1.00000000  0.0749349137  0.08142346 -0.04555033 -0.136515221
## s_avg     0.07493491  1.0000000000  0.58736099 -0.69252193  0.106099286
## f_avg     0.08142346  0.5873609923  1.00000000 -0.44595369  0.028066988
## quarter  -0.04555033 -0.6925219295 -0.44595369  1.00000000 -0.067650823
## work_yrs -0.13651522  0.1060992864  0.02806699 -0.06765082  1.000000000
## frstlang -0.07920923 -0.1098567638 -0.08235700  0.08331854 -0.008849845
## salary    0.01459666  0.0937391801  0.03816175 -0.15928756  0.028695844
## satis     0.06319036 -0.0278855407 -0.06652151  0.05724563 -0.040900067
##              frstlang       salary       satis
## age       0.115502981 -0.042363777 -0.09804344
## sex      -0.008488358 -0.050931734 -0.04606113
## gmat_tot -0.079220435  0.014238370  0.05858051
## gmat_qpc  0.077044563 -0.015605197 -0.04190668
## gmat_vpc -0.174081341  0.008744069  0.11292011
## gmat_tpc -0.079209234  0.014596662  0.06319036
## s_avg    -0.109856764  0.093739180 -0.02788554
## f_avg    -0.082356997  0.038161753 -0.06652151
## quarter   0.083318544 -0.159287562  0.05724563
## work_yrs -0.008849845  0.028695844 -0.04090007
## frstlang  1.000000000  0.001779082 -0.12505512
## salary    0.001779082  1.000000000  0.11802585
## satis    -0.125055119  0.118025854  1.00000000

Age, quarter and gmat_qpc are negatively correlated with salary

s_avg,GMAT_Score and f_avg are positively correlated with salary

placed.df <- subset(mbasalary.df, mbasalary.df$salary!=0)
placedbySex <- table(placed.df$sex)
placedbySex
## 
##  1  2 
## 72 31
library(stats)
chisq.test(placedbySex) #Nulll Hypothesis: percentage of Females placed is higher than Males
## 
##  Chi-squared test for given probabilities
## 
## data:  placedbySex
## X-squared = 16.32, df = 1, p-value = 5.349e-05
placedbyfrstlang <- table(placed.df$frstlang)
chisq.test(placedbyfrstlang) #Null Hypothesis: percentage of students placed whose first language was English is higher than those with other languages  
## 
##  Chi-squared test for given probabilities
## 
## data:  placedbyfrstlang
## X-squared = 76.903, df = 1, p-value < 2.2e-16

Since probability of the sampled results is less than 0.01, we reject the null hypothesis

Model <- salary ~ work_yrs + s_avg + f_avg + gmat_qpc + gmat_vpc + sex + frstlang + satis+sex+satis+frstlang+quarter
fit1 <- lm(Model, data = placed.df)
summary(fit1)
## 
## Call:
## lm(formula = Model, data = placed.df)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -30401  -8606   -979   4452  82897 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 104978.1    33314.4   3.151 0.002188 ** 
## work_yrs      2327.1      587.3   3.962 0.000145 ***
## s_avg         -157.4     8024.5  -0.020 0.984389    
## f_avg        -2098.4     3877.9  -0.541 0.589725    
## gmat_qpc       106.9      122.6   0.872 0.385289    
## gmat_vpc      -100.6      103.4  -0.972 0.333360    
## sex          -4901.3     3589.1  -1.366 0.175363    
## frstlang     13749.1     6663.7   2.063 0.041873 *  
## satis        -1327.7     2122.5  -0.626 0.533168    
## quarter      -2059.2     2674.2  -0.770 0.443244    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15770 on 93 degrees of freedom
## Multiple R-squared:  0.2895, Adjusted R-squared:  0.2207 
## F-statistic: 4.211 on 9 and 93 DF,  p-value: 0.0001369

``` ### Work years and First language are statistically correlated in our fitted model