INTRODUCTION TO STATISCAL LEARNING

CHAPTER 10: UNSUPERVISED LEARNING

Applied Exercises

7. In the chapter, we mentioned the use of correlation-based distance and Euclidean distance as dissimilarity measures for hierarchical clus- tering. It turns out that these two measures are almost equivalent: if each observation has been centered to have mean zero and standard deviation one, and if we let rij denote the correlation between the ith and jth observations, then the quantity 1 − rij is proportional to the squared Euclidean distance between the ith and jth observations.

On the USArrests data, show that this proportionality holds.

Hint: The Euclidean distance can be calculated using the dist() function, and correlations can be calculated using the cor() function.

library(ISLR)
set.seed(1)
dsc <- scale(USArrests)
d1 <- dist(dsc)^2
d2 <- as.dist(1 - cor(t(dsc)))
summary(d2 / d1)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## 0.000086 0.069135 0.133943 0.234193 0.262589 4.887686

8. In Section 10.2.3, a formula for calculating PVE was given in Equa- tion 10.8. We also saw that the PVE can be obtained using the sdev output of the prcomp() function.

On the USArrests data, calculate PVE in two ways:

  1. Using the sdev output of the prcomp() function, as was done in Section 10.2.3.
pr.out <- prcomp(USArrests, scale = TRUE)
pr.var <- pr.out$sdev^2
pve <- pr.var / sum(pr.var)
sum(pr.var)
## [1] 4
pve
## [1] 0.62006039 0.24744129 0.08914080 0.04335752
  1. By applying Equation 10.8 directly. That is, use the “prcomp()” function to compute the principal component loadings. Then, use those loadings in Equation 10.8 to obtain the PVE.
loadings <- pr.out$rotation
USArrests2 <- scale(USArrests)
sumvar <- sum(apply(as.matrix(USArrests2)^2, 2, sum))
apply((as.matrix(USArrests2) %*% loadings)^2, 2, sum) / sumvar
##        PC1        PC2        PC3        PC4 
## 0.62006039 0.24744129 0.08914080 0.04335752

9. Consider the USArrests data. We will now perform hierarchical clus- tering on the states.

  1. Using hierarchical clustering with complete linkage and Euclidean distance, cluster the states.
set.seed(2)
hc.complete <- hclust(dist(USArrests), method = "complete")
plot(hc.complete)

  1. Cut the dendrogram at a height that results in three distinct clusters. Which states belong to which clusters?
cutree(hc.complete, 3)
##        Alabama         Alaska        Arizona       Arkansas     California 
##              1              1              1              2              1 
##       Colorado    Connecticut       Delaware        Florida        Georgia 
##              2              3              1              1              2 
##         Hawaii          Idaho       Illinois        Indiana           Iowa 
##              3              3              1              3              3 
##         Kansas       Kentucky      Louisiana          Maine       Maryland 
##              3              3              1              3              1 
##  Massachusetts       Michigan      Minnesota    Mississippi       Missouri 
##              2              1              3              1              2 
##        Montana       Nebraska         Nevada  New Hampshire     New Jersey 
##              3              3              1              3              2 
##     New Mexico       New York North Carolina   North Dakota           Ohio 
##              1              1              1              3              3 
##       Oklahoma         Oregon   Pennsylvania   Rhode Island South Carolina 
##              2              2              3              2              1 
##   South Dakota      Tennessee          Texas           Utah        Vermont 
##              3              2              2              3              3 
##       Virginia     Washington  West Virginia      Wisconsin        Wyoming 
##              2              2              3              3              2
  1. Hierarchically cluster the states using complete linkage and Eu- clidean distance, after scaling the variables to have standard deviation one.
sd.data <- scale(USArrests)
hc.complete.sd <- hclust(dist(sd.data), method = "complete")
plot(hc.complete.sd)

  1. What effect does scaling the variables have on the hierarchical clustering obtained? In your opinion, should the variables be scaled before the inter-observation dissimilarities are computed? Provide a justification for your answer.
cutree(hc.complete.sd, 3)
##        Alabama         Alaska        Arizona       Arkansas     California 
##              1              1              2              3              2 
##       Colorado    Connecticut       Delaware        Florida        Georgia 
##              2              3              3              2              1 
##         Hawaii          Idaho       Illinois        Indiana           Iowa 
##              3              3              2              3              3 
##         Kansas       Kentucky      Louisiana          Maine       Maryland 
##              3              3              1              3              2 
##  Massachusetts       Michigan      Minnesota    Mississippi       Missouri 
##              3              2              3              1              3 
##        Montana       Nebraska         Nevada  New Hampshire     New Jersey 
##              3              3              2              3              3 
##     New Mexico       New York North Carolina   North Dakota           Ohio 
##              2              2              1              3              3 
##       Oklahoma         Oregon   Pennsylvania   Rhode Island South Carolina 
##              3              3              3              3              1 
##   South Dakota      Tennessee          Texas           Utah        Vermont 
##              3              1              2              3              3 
##       Virginia     Washington  West Virginia      Wisconsin        Wyoming 
##              3              3              3              3              3
table(cutree(hc.complete, 3), cutree(hc.complete.sd, 3))
##    
##      1  2  3
##   1  6  9  1
##   2  2  2 10
##   3  0  0 20

Scaling the variables affect the clusters obtained although the trees are somewhat similar. The variables should be scaled beforehand because the data measures have different units.

10. In this problem, you will generate simulated data, and then perform PCA and K-means clustering on the data.

  1. Generate a simulated data set with 20 observations in each of three classes (i.e. 60 observations total), and 50 variables.

Hint: There are a number of functions in R that you can use to generate data. One example is the rnorm() function; runif() is another option. Be sure to add a mean shift to the observations in each class so that there are three distinct classes.

set.seed(2)
x <- matrix(rnorm(20 * 3 * 50, mean = 0, sd = 0.001), ncol = 50)
x[1:20, 2] <- 1
x[21:40, 1] <- 2
x[21:40, 2] <- 2
x[41:60, 1] <- 1
true.labels <- c(rep(1, 20), rep(2, 20), rep(3, 20))
  1. Perform PCA on the 60 observations and plot the first two prin- cipal component score vectors. Use a different color to indicate the observations in each of the three classes. If the three classes appear separated in this plot, then continue on to part (c). If not, then return to part (a) and modify the simulation so that there is greater separation between the three classes. Do not continue to part (c) until the three classes show at least some separation in the first two principal component score vectors.
pr.out <- prcomp(x)
plot(pr.out$x[, 1:2], col = 1:3, xlab = "Z1", ylab = "Z2", pch = 19)

  1. Perform K-means clustering of the observations with K = 3. How well do the clusters that you obtained in K-means cluster- ing compare to the true class labels?

Hint: You can use the table() function in R to compare the true class labels to the class labels obtained by clustering. Be careful how you interpret the results: K-means clustering will arbitrarily number the clusters, so you cannot simply check whether the true class labels and clustering labels are the same.

km.out <- kmeans(x, 3, nstart = 20)
table(true.labels, km.out$cluster)
##            
## true.labels  1  2  3
##           1 20  0  0
##           2  0 20  0
##           3  0  0 20
  1. Perform K-means clustering with K = 2. Describe your results.
km.out <- kmeans(x, 2, nstart = 20)
table(true.labels, km.out$cluster)
##            
## true.labels  1  2
##           1 20  0
##           2  0 20
##           3 20  0

The observations are perfectly clustered.

All observations of one of the three clusters is now absorbed in one of the two clusters.

  1. Now perform K-means clustering with K = 4, and describe your results.
km.out <- kmeans(x, 4, nstart = 20)
table(true.labels, km.out$cluster)
##            
## true.labels  1  2  3  4
##           1  9  0  0 11
##           2  0 20  0  0
##           3  0  0 20  0

The first cluster is splitted into two clusters.

  1. Now perform K-means clustering with K = 3 on the first two principal component score vectors, rather than on the raw data. That is, perform K-means clustering on the 60 × 2 matrix of which the first column is the first principal component score vector, and the second column is the second principal component score vector. Comment on the results.
km.out <- kmeans(pr.out$x[, 1:2], 3, nstart = 20)
table(true.labels, km.out$cluster)
##            
## true.labels  1  2  3
##           1  0  0 20
##           2  0 20  0
##           3 20  0  0

All observations are perfectly clustered once again.

  1. Using the scale() function, perform K-means clustering with K = 3 on the data after scaling each variable to have standard deviation one. How do these results compare to those obtained in (b)? Explain.
km.out <- kmeans(scale(x), 3, nstart = 20)
table(true.labels, km.out$cluster)
##            
## true.labels  1  2  3
##           1  8  2 10
##           2  0 19  1
##           3 11  1  8

We have worse results than with unscaled data, as scaling affects the distance between the observations.

11. On the book website, www.StatLearning.com, there is a gene expression data set (Ch10Ex11.csv) that consists of 40 tissue samples with measurements on 1,000 genes. The first 20 samples are from healthy patients, while the second 20 are from a diseased group.

  1. Load in the data using read.csv(). You will need to select header=F.
genes <- read.csv("Ch10Ex11.csv", header = FALSE)
  1. Apply hierarchical clustering to the samples using correlation- based distance, and plot the dendrogram. Do the genes separate the samples into the two groups? Do your results depend on the type of linkage used?
hc.complete <- hclust(as.dist(1 - cor(genes)), method = "complete")
plot(hc.complete)

hc.single <- hclust(as.dist(1 - cor(genes)), method = "single")
plot(hc.single)

hc.average <- hclust(as.dist(1 - cor(genes)), method = "average")
plot(hc.average)

The results are pretty different when using different linkage methods as we obtain two clusters for complete and single linkages or three clusters for average cluster.

  1. Your collaborator wants to know which genes differ the most across the two groups. Suggest a way to answer this question, and apply it here.

We may use PCA to see which genes differ the most. We will examine the absolute values of the total loadings for each gene as it characterizes the weight of each gene.

pr.out <- prcomp(t(genes))
head(pr.out$rotation)
##               PC1          PC2          PC3          PC4          PC5
## [1,] -0.002434664 -0.030745799  0.009359932  0.009699551 -0.012847866
## [2,] -0.002016598 -0.025927592  0.050300983 -0.026082885  0.003488293
## [3,]  0.011233842 -0.003937802  0.014564920  0.054373032 -0.020411836
## [4,]  0.013912855  0.025625408  0.033998676 -0.011530298 -0.009364524
## [5,]  0.007293322  0.013590353 -0.008229702 -0.001343010  0.030002978
## [6,]  0.017928318 -0.026302699 -0.020728401 -0.024069152 -0.018619253
##               PC6          PC7          PC8          PC9         PC10
## [1,]  0.023439995  0.010152261 -0.024602570 -0.021925557 -0.035003076
## [2,]  0.001605492 -0.037364376 -0.017332292  0.011319311  0.007802611
## [3,]  0.025337127  0.070772412  0.047340581 -0.013963868  0.023624407
## [4,]  0.029529539  0.002885764 -0.093667774 -0.008391226 -0.019226470
## [5,] -0.017042934  0.003555111 -0.053227214 -0.010479774  0.008446406
## [6,] -0.049103273 -0.040473304 -0.005455454 -0.003882692  0.028472950
##              PC11         PC12         PC13         PC14         PC15
## [1,]  0.068133070  0.002322824 -0.050042837 -0.043957087  0.007542896
## [2,] -0.092523227  0.036265781  0.002951734  0.021272662 -0.040075267
## [3,]  0.017649621  0.021512568  0.013587072  0.005264628 -0.002918920
## [4,]  0.006695624  0.025918069 -0.081179098  0.017689681  0.045951951
## [5,]  0.053250618 -0.076682641 -0.049516326 -0.003282028  0.060755699
## [6,] -0.018103035  0.015433035  0.015967833 -0.006985293 -0.025237500
##             PC16         PC17        PC18         PC19         PC20
## [1,] -0.04567334 -0.019899716  0.02946561 -0.009362957 -0.029855408
## [2,]  0.03433259  0.003735211 -0.01218600 -0.023466062 -0.005495696
## [3,]  0.01881913  0.003284517  0.02597233  0.021581732  0.016808524
## [4,] -0.01062858  0.018342677 -0.03334608 -0.052262385 -0.030868339
## [5,] -0.02562691  0.049934804 -0.04221058 -0.012279815  0.018004932
## [6,] -0.00394582  0.037319024 -0.02541592 -0.029423771 -0.012043007
##              PC21          PC22         PC23         PC24         PC25
## [1,] -0.009190761  0.0230209664 -0.028970518  0.033060132  0.021453017
## [2,] -0.002808309  0.0079065160 -0.007921167 -0.034424716  0.011932971
## [3,]  0.010683143 -0.0392265342  0.004592080  0.026463736 -0.038085712
## [4,]  0.079419742 -0.0001627164  0.070396594 -0.002015954  0.006459925
## [5,] -0.038364004 -0.0230993500 -0.047439556 -0.001129421 -0.001285153
## [6,] -0.004522525  0.0304001071  0.016062043 -0.019329595 -0.034486284
##              PC26         PC27         PC28         PC29         PC30
## [1,]  0.034447853  0.017729906  0.034708970 -0.028136309 -0.009873440
## [2,]  0.051079165  0.032435028 -0.006934708 -0.026307151 -0.008143422
## [3,] -0.064720318 -0.004616608  0.038015189  0.006455198  0.004570640
## [4,]  0.022138389 -0.017120199  0.074901678  0.015812685  0.016391804
## [5,] -0.010772594  0.010889806 -0.005305488  0.015248277  0.029303828
## [6,]  0.001489549  0.028082907 -0.036617970 -0.054760935  0.023337598
##             PC31         PC32        PC33          PC34        PC35
## [1,] -0.03576788  0.016708304 -0.01823350  0.0007957941 -0.01443692
## [2,] -0.04439239  0.011968530  0.04168309  0.0123210140  0.02739196
## [3,]  0.02932866  0.026066011  0.02055204 -0.0716448783  0.02726941
## [4,] -0.03954720  0.014714963  0.02846397  0.0316775643  0.01866774
## [5,]  0.05494446 -0.005416152  0.03476606  0.0245476439 -0.04037835
## [6,]  0.01132569  0.006320203 -0.00237484  0.0061140832  0.01402898
##              PC36         PC37         PC38          PC39        PC40
## [1,]  0.010652118 -0.009366629 -0.012754402  0.0020214363  0.07000786
## [2,] -0.002733484 -0.001318693  0.031410461 -0.0108377476 -0.06326465
## [3,]  0.020891497 -0.001380233 -0.025857254  0.0008800921 -0.32824953
## [4,] -0.027363133 -0.006080650 -0.025316130 -0.0235404170 -0.01675446
## [5,] -0.046869227 -0.017973802  0.002917167  0.0342753219  0.04896111
## [6,]  0.042083325  0.055817170 -0.010080327  0.0029965594  0.05407104
total.load <- apply(pr.out$rotation, 1, sum)
index <- order(abs(total.load), decreasing = TRUE)
index[1:10]
##  [1] 865  68 911 428 624  11 524 803 980 822

These are the 10 most different genes across the two groups.