Salary.df <- read.csv(paste("MBA Starting Salaries Data.csv",sep=""))
View(Salary.df)
library(psych)
describe(Salary.df)
##          vars   n     mean       sd median  trimmed     mad min    max
## age         1 274    27.36     3.71     27    26.76    2.97  22     48
## sex         2 274     1.25     0.43      1     1.19    0.00   1      2
## gmat_tot    3 274   619.45    57.54    620   618.86   59.30 450    790
## gmat_qpc    4 274    80.64    14.87     83    82.31   14.83  28     99
## gmat_vpc    5 274    78.32    16.86     81    80.33   14.83  16     99
## gmat_tpc    6 274    84.20    14.02     87    86.12   11.86   0     99
## s_avg       7 274     3.03     0.38      3     3.03    0.44   2      4
## f_avg       8 274     3.06     0.53      3     3.09    0.37   0      4
## quarter     9 274     2.48     1.11      2     2.47    1.48   1      4
## work_yrs   10 274     3.87     3.23      3     3.29    1.48   0     22
## frstlang   11 274     1.12     0.32      1     1.02    0.00   1      2
## salary     12 274 39025.69 50951.56    999 33607.86 1481.12   0 220000
## satis      13 274   172.18   371.61      6    91.50    1.48   1    998
##           range  skew kurtosis      se
## age          26  2.16     6.45    0.22
## sex           1  1.16    -0.66    0.03
## gmat_tot    340 -0.01     0.06    3.48
## gmat_qpc     71 -0.92     0.30    0.90
## gmat_vpc     83 -1.04     0.74    1.02
## gmat_tpc     99 -2.28     9.02    0.85
## s_avg         2 -0.06    -0.38    0.02
## f_avg         4 -2.08    10.85    0.03
## quarter       3  0.02    -1.35    0.07
## work_yrs     22  2.78     9.80    0.20
## frstlang      1  2.37     3.65    0.02
## salary   220000  0.70    -1.05 3078.10
## satis       997  1.77     1.13   22.45
#plot for age of students

barplot(table(Salary.df$age), xlab="Age", ylab="Number of students", main = "Age Distribution of the students")

#plot for gender of students
barplot(  table(Salary.df$sex),xlab = "Females - 2 nd Males - 1", ylab="Number of students", main = "Gender Distribution of the students")

#plot for gmat total of students
barplot(  table(Salary.df$gmat_tot),xlab = "GMAT score", ylab="Number of students", main = "GMAT score  Distribution of the students")

#plot for GMAT percentile quantitative of students
barplot(  table(Salary.df$gmat_qpc),xlab = "Quatitative GMAT score", ylab="Number of students", main = "GMAT quantitative percentile  Distribution of the students")

#plot for GMAT verbal percentile  of students
barplot(  table(Salary.df$gmat_vpc),xlab = "Verbal GMAT score", ylab="Number of students", main = "GMAT verbal percentile  Distribution of the students")

#plot for GMAT total percentile  of students
barplot(  table(Salary.df$gmat_tpc),xlab = "Total GMAT score", ylab="Number of students", main = "Total GMAT  percentile  Distribution of the students")

#plot for MBA Fall Average  of students
barplot(  table(Salary.df$f_avg),xlab = "Fall MBA average", ylab="Number of students", main = "MBA Fall Average of the students")

#plot for MBA performance in the quarters
barplot(  table(Salary.df$quarter),xlab = "Quartile ranking", ylab="Number of students", main = "MBA students in quarters")

#plot for MBA intial work experience
barplot(  table(Salary.df$work_yrs),xlab = "Years of work experience", ylab="Number of students", main = "MBA students work experience")

#plot for First language of the students 
barplot(  table(Salary.df$frstlang),xlab = "1 = english 2 = other", ylab="Number of students", main = "First Language of Students")

#plot for salary of the students 
barplot(  table(Salary.df$salary),xlab = "Starting salary", ylab="Number of students", main = "Salary Distribution")

#plot for salary of the students 
barplot(  table(Salary.df$satis),xlab = "Degree staisfaction on MBA Program", ylab="Number of students", main = "Degree staisfaction Distribution")

Scatterplot

library(car)
## Warning: package 'car' was built under R version 3.4.3
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
scatterplot(salary ~age,     data=Salary.df,
            spread=FALSE, smoother.args=list(lty=2),
            main=" salary vs age",
            xlab="age",
            ylab="salary")

scatterplot(salary ~sex,     data=Salary.df,
            spread=FALSE, smoother.args=list(lty=2),
            main="salary vs sex",
            xlab="sex",
            ylab="salary")

scatterplot(salary ~frstlang,     data=Salary.df,
            main="salary vs first language",
            xlab="first language",
            ylab="salary")

 scatterplot(salary ~ gmat_tot,     data=Salary.df,
            main=" Plot of salary vs first language",
            xlab="first language",
            ylab="salary")

scatterplot(salary ~work_yrs,     data=Salary.df,
            main=" plot of salary vs Work exp.",
            xlab="Work Experience in years",
            ylab="salary")

library(corrgram)
corr.test(Salary.df)
## Call:corr.test(x = Salary.df)
## Correlation matrix 
##            age   sex gmat_tot gmat_qpc gmat_vpc gmat_tpc s_avg f_avg
## age       1.00 -0.03    -0.15    -0.22    -0.04    -0.17  0.15 -0.02
## sex      -0.03  1.00    -0.05    -0.16     0.07    -0.01  0.13  0.09
## gmat_tot -0.15 -0.05     1.00     0.72     0.75     0.85  0.11  0.10
## gmat_qpc -0.22 -0.16     0.72     1.00     0.15     0.65 -0.03  0.07
## gmat_vpc -0.04  0.07     0.75     0.15     1.00     0.67  0.20  0.08
## gmat_tpc -0.17 -0.01     0.85     0.65     0.67     1.00  0.12  0.08
## s_avg     0.15  0.13     0.11    -0.03     0.20     0.12  1.00  0.55
## f_avg    -0.02  0.09     0.10     0.07     0.08     0.08  0.55  1.00
## quarter  -0.05 -0.13    -0.09     0.04    -0.17    -0.08 -0.76 -0.45
## work_yrs  0.86 -0.01    -0.18    -0.24    -0.07    -0.17  0.13 -0.04
## frstlang  0.06  0.00    -0.14     0.14    -0.39    -0.10 -0.14 -0.04
## salary   -0.06  0.07    -0.05    -0.04    -0.01     0.00  0.15  0.03
## satis    -0.13 -0.05     0.08     0.06     0.06     0.09 -0.03  0.01
##          quarter work_yrs frstlang salary satis
## age        -0.05     0.86     0.06  -0.06 -0.13
## sex        -0.13    -0.01     0.00   0.07 -0.05
## gmat_tot   -0.09    -0.18    -0.14  -0.05  0.08
## gmat_qpc    0.04    -0.24     0.14  -0.04  0.06
## gmat_vpc   -0.17    -0.07    -0.39  -0.01  0.06
## gmat_tpc   -0.08    -0.17    -0.10   0.00  0.09
## s_avg      -0.76     0.13    -0.14   0.15 -0.03
## f_avg      -0.45    -0.04    -0.04   0.03  0.01
## quarter     1.00    -0.09     0.10  -0.16  0.00
## work_yrs   -0.09     1.00    -0.03   0.01 -0.11
## frstlang    0.10    -0.03     1.00  -0.09  0.08
## salary     -0.16     0.01    -0.09   1.00 -0.34
## satis       0.00    -0.11     0.08  -0.34  1.00
## Sample Size 
## [1] 274
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##           age  sex gmat_tot gmat_qpc gmat_vpc gmat_tpc s_avg f_avg quarter
## age      0.00 1.00     0.87     0.02     1.00     0.29  0.75  1.00    1.00
## sex      0.64 0.00     1.00     0.39     1.00     1.00  1.00  1.00    1.00
## gmat_tot 0.02 0.38     0.00     0.00     0.00     0.00  1.00  1.00    1.00
## gmat_qpc 0.00 0.01     0.00     0.00     0.68     0.00  1.00  1.00    1.00
## gmat_vpc 0.47 0.22     0.00     0.01     0.00     0.00  0.04  1.00    0.24
## gmat_tpc 0.00 0.89     0.00     0.00     0.00     0.00  1.00  1.00    1.00
## s_avg    0.01 0.04     0.06     0.62     0.00     0.05  0.00  0.00    0.00
## f_avg    0.77 0.13     0.08     0.22     0.21     0.19  0.00  0.00    0.00
## quarter  0.41 0.03     0.13     0.55     0.00     0.17  0.00  0.00    0.00
## work_yrs 0.00 0.85     0.00     0.00     0.27     0.00  0.03  0.52    0.16
## frstlang 0.35 0.98     0.03     0.02     0.00     0.09  0.02  0.54    0.10
## salary   0.30 0.26     0.36     0.47     0.92     0.94  0.02  0.63    0.01
## satis    0.03 0.37     0.17     0.32     0.30     0.12  0.59  0.86    1.00
##          work_yrs frstlang salary satis
## age          0.00     1.00   1.00     1
## sex          1.00     1.00   1.00     1
## gmat_tot     0.16     1.00   1.00     1
## gmat_qpc     0.01     1.00   1.00     1
## gmat_vpc     1.00     0.00   1.00     1
## gmat_tpc     0.25     1.00   1.00     1
## s_avg        1.00     1.00   0.87     1
## f_avg        1.00     1.00   1.00     1
## quarter      1.00     1.00   0.38     1
## work_yrs     0.00     1.00   1.00     1
## frstlang     0.65     0.00   1.00     1
## salary       0.88     0.15   0.00     0
## satis        0.07     0.19   0.00     0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
cov(Salary.df)
##                    age           sex      gmat_tot      gmat_qpc
## age       1.376904e+01 -4.513248e-02 -3.115879e+01 -1.192655e+01
## sex      -4.513248e-02  1.872677e-01 -1.328841e+00 -1.053769e+00
## gmat_tot -3.115879e+01 -1.328841e+00  3.310688e+03  6.200233e+02
## gmat_qpc -1.192655e+01 -1.053769e+00  6.200233e+02  2.210731e+02
## gmat_vpc -2.763643e+00  5.463758e-01  7.260006e+02  3.814826e+01
## gmat_tpc -8.839978e+00 -4.908960e-02  6.839911e+02  1.357997e+02
## s_avg     2.116874e-01  2.096227e-02  2.480257e+00 -1.691233e-01
## f_avg    -3.399348e-02  2.082698e-02  3.154688e+00  5.753854e-01
## quarter  -2.045935e-01 -6.414267e-02 -5.891153e+00  6.001979e-01
## work_yrs  1.029494e+01 -1.580172e-02 -3.391634e+01 -1.137186e+01
## frstlang  6.796610e-02  2.138980e-04 -2.499933e+00  6.646346e-01
## salary   -1.183042e+04  1.518264e+03 -1.611600e+05 -3.335823e+04
## satis    -1.763499e+02 -8.780808e+00  1.765263e+03  3.348371e+02
##               gmat_vpc     gmat_tpc         s_avg        f_avg
## age         -2.7636427   -8.8399775    0.21168739  -0.03399348
## sex          0.5463758   -0.0490896    0.02096227   0.02082698
## gmat_tot   726.0006417  683.9910698    2.48025721   3.15468838
## gmat_qpc    38.1482581  135.7996845   -0.16912329   0.57538542
## gmat_vpc   284.2481217  157.4932488    1.31357023   0.67207000
## gmat_tpc   157.4932488  196.6057057    0.62710008   0.58698618
## s_avg        1.3135702    0.6271001    0.14521760   0.11016898
## f_avg        0.6720700    0.5869862    0.11016898   0.27567237
## quarter     -3.2676666   -1.2923719   -0.32237213  -0.26080880
## work_yrs    -3.6181653   -7.8575172    0.15926392  -0.06628700
## frstlang    -2.1145691   -0.4663244   -0.01671372  -0.00626026
## salary   -5273.8523836 3522.7500067 2831.60098580 787.65597177
## satis      392.3562739  484.2466779   -4.62884495   2.12532927
##                quarter      work_yrs      frstlang        salary
## age      -2.045935e-01   10.29493864  6.796610e-02 -1.183042e+04
## sex      -6.414267e-02   -0.01580172  2.138980e-04  1.518264e+03
## gmat_tot -5.891153e+00  -33.91633914 -2.499933e+00 -1.611600e+05
## gmat_qpc  6.001979e-01  -11.37186171  6.646346e-01 -3.335823e+04
## gmat_vpc -3.267667e+00   -3.61816529 -2.114569e+00 -5.273852e+03
## gmat_tpc -1.292372e+00   -7.85751718 -4.663244e-01  3.522750e+03
## s_avg    -3.223721e-01    0.15926392 -1.671372e-02  2.831601e+03
## f_avg    -2.608088e-01   -0.06628700 -6.260260e-03  7.876560e+02
## quarter   1.232119e+00   -0.30866822  3.553381e-02 -9.296214e+03
## work_yrs -3.086682e-01   10.44882490 -2.898318e-02  1.486147e+03
## frstlang  3.553381e-02   -0.02898318  1.035266e-01 -1.419586e+03
## salary   -9.296214e+03 1486.14704152 -1.419586e+03  2.596062e+09
## satis    -5.227133e-03 -131.24080907  9.484532e+00 -6.347115e+06
##                  satis
## age      -1.763499e+02
## sex      -8.780808e+00
## gmat_tot  1.765263e+03
## gmat_qpc  3.348371e+02
## gmat_vpc  3.923563e+02
## gmat_tpc  4.842467e+02
## s_avg    -4.628845e+00
## f_avg     2.125329e+00
## quarter  -5.227133e-03
## work_yrs -1.312408e+02
## frstlang  9.484532e+00
## salary   -6.347115e+06
## satis     1.380974e+05
cor(Salary.df)
##                  age          sex    gmat_tot    gmat_qpc    gmat_vpc
## age       1.00000000 -0.028106442 -0.14593840 -0.21616985 -0.04417547
## sex      -0.02810644  1.000000000 -0.05336820 -0.16377435  0.07488782
## gmat_tot -0.14593840 -0.053368202  1.00000000  0.72473781  0.74839187
## gmat_qpc -0.21616985 -0.163774346  0.72473781  1.00000000  0.15218014
## gmat_vpc -0.04417547  0.074887816  0.74839187  0.15218014  1.00000000
## gmat_tpc -0.16990307 -0.008090213  0.84779965  0.65137754  0.66621604
## s_avg     0.14970402  0.127115144  0.11311702 -0.02984873  0.20445365
## f_avg    -0.01744806  0.091663891  0.10442409  0.07370455  0.07592225
## quarter  -0.04967221 -0.133533171 -0.09223903  0.03636638 -0.17460736
## work_yrs  0.85829810 -0.011296374 -0.18235434 -0.23660827 -0.06639049
## frstlang  0.05692649  0.001536205 -0.13503402  0.13892774 -0.38980465
## salary   -0.06257355  0.068858628 -0.05497188 -0.04403293 -0.00613934
## satis    -0.12788825 -0.054602220  0.08255770  0.06060004  0.06262375
##              gmat_tpc       s_avg       f_avg       quarter     work_yrs
## age      -0.169903066  0.14970402 -0.01744806 -4.967221e-02  0.858298096
## sex      -0.008090213  0.12711514  0.09166389 -1.335332e-01 -0.011296374
## gmat_tot  0.847799647  0.11311702  0.10442409 -9.223903e-02 -0.182354339
## gmat_qpc  0.651377538 -0.02984873  0.07370455  3.636638e-02 -0.236608270
## gmat_vpc  0.666216035  0.20445365  0.07592225 -1.746074e-01 -0.066390490
## gmat_tpc  1.000000000  0.11736245  0.07973210 -8.303535e-02 -0.173361859
## s_avg     0.117362449  1.00000000  0.55062139 -7.621166e-01  0.129292714
## f_avg     0.079732099  0.55062139  1.00000000 -4.475064e-01 -0.039056921
## quarter  -0.083035351 -0.76211664 -0.44750637  1.000000e+00 -0.086026406
## work_yrs -0.173361859  0.12929271 -0.03905692 -8.602641e-02  1.000000000
## frstlang -0.103362747 -0.13631308 -0.03705695  9.949226e-02 -0.027866747
## salary    0.004930901  0.14583606  0.02944303 -1.643699e-01  0.009023407
## satis     0.092934266 -0.03268664  0.01089273 -1.267198e-05 -0.109255286
##              frstlang       salary         satis
## age       0.056926486 -0.062573547 -1.278882e-01
## sex       0.001536205  0.068858628 -5.460222e-02
## gmat_tot -0.135034017 -0.054971880  8.255770e-02
## gmat_qpc  0.138927742 -0.044032933  6.060004e-02
## gmat_vpc -0.389804653 -0.006139340  6.262375e-02
## gmat_tpc -0.103362747  0.004930901  9.293427e-02
## s_avg    -0.136313080  0.145836062 -3.268664e-02
## f_avg    -0.037056954  0.029443027  1.089273e-02
## quarter   0.099492259 -0.164369865 -1.267198e-05
## work_yrs -0.027866747  0.009023407 -1.092553e-01
## frstlang  1.000000000 -0.086592096  7.932264e-02
## salary   -0.086592096  1.000000000 -3.352171e-01
## satis     0.079322637 -0.335217114  1.000000e+00
corrgram(Salary.df, order=TRUE, lower.panel=panel.shade,
         upper.panel=panel.pie, text.panel=panel.txt,
         main="MBA  salary analysis")

data <- Salary.df[ which(Salary.df$salary !="998" & Salary.df$salary !="999"), ]
job <- subset(data, salary>0)
chisq.test(job)
## Warning in chisq.test(job): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  job
## X-squared = 3620.8, df = 1224, p-value < 2.2e-16
attach(job)
standdata <- xtabs(~salary+age)
standdata
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  1  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  1  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  1  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   85000   1  0  0  1  1  1  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  1  1  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  1  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  2  0  1  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  2  0  1  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  1  0  0  1  0  0  1  0  0  0  0  0
##   95000   0  0  1  5  0  0  0  1  0  0  0  0  0  0  0
##   96000   0  0  1  1  2  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  1  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  1  1  0  0  0  0  0  0  0  0
##   98000   0  1  3  2  1  1  1  1  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   100000  0  1  4  1  1  1  0  0  0  1  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0
##   101000  0  0  1  1  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0
##   101600  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0
##   103000  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  1  0  0  1  0  0  0  0  0
##   105000  0  1  1  2  3  1  0  0  1  1  0  0  1  0  0
##   106000  0  0  0  0  0  0  0  1  2  0  0  0  0  0  0
##   107000  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0
##   107500  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  1  0  0  1  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   112000  0  0  1  0  0  0  0  1  0  0  0  0  0  1  0
##   115000  0  0  1  1  0  3  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0
##   120000  0  0  0  0  0  1  1  0  2  0  0  0  0  0  0
##   126710  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1
##   162000  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1
standdata1 <- xtabs(~salary+sex)
standdata1
##         sex
## salary    1  2
##   64000   0  1
##   77000   1  0
##   78256   0  1
##   82000   0  1
##   85000   1  3
##   86000   0  2
##   88000   0  1
##   88500   1  0
##   90000   3  0
##   92000   2  1
##   93000   2  1
##   95000   4  3
##   96000   3  1
##   96500   1  0
##   97000   2  0
##   98000   6  4
##   99000   0  1
##   100000  4  5
##   100400  1  0
##   101000  0  2
##   101100  1  0
##   101600  1  0
##   102500  1  0
##   103000  1  0
##   104000  2  0
##   105000 11  0
##   106000  2  1
##   107000  1  0
##   107300  1  0
##   107500  1  0
##   108000  2  0
##   110000  0  1
##   112000  3  0
##   115000  5  0
##   118000  1  0
##   120000  3  1
##   126710  1  0
##   130000  1  0
##   145800  1  0
##   146000  1  0
##   162000  1  0
##   220000  0  1
standdata2 <- xtabs(~salary+gmat_tot)
standdata2
##         gmat_tot
## salary   500 520 530 540 550 560 570 580 590 600 610 620 630 640 650 660
##   64000    0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0
##   77000    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1
##   78256    0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##   82000    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##   85000    0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   1
##   86000    0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0
##   88000    0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0
##   88500    0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0
##   90000    0   0   0   0   0   0   0   1   0   0   0   0   1   0   1   0
##   92000    0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   1
##   93000    0   0   0   1   0   0   0   0   0   0   1   1   0   0   0   0
##   95000    0   0   1   0   0   2   0   0   0   0   2   0   0   0   0   0
##   96000    0   0   0   0   0   1   0   0   1   1   0   0   0   0   1   0
##   96500    1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##   97000    0   0   0   0   0   0   0   1   0   0   0   1   0   0   0   0
##   98000    0   0   0   0   0   1   3   1   1   0   1   0   0   0   0   0
##   99000    0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0
##   100000   0   0   0   0   0   2   0   1   0   1   1   0   1   0   2   0
##   100400   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0
##   101000   0   0   0   0   0   0   0   0   0   1   0   1   0   0   0   0
##   101100   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1
##   101600   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0
##   102500   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##   103000   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0
##   104000   0   0   1   0   0   1   0   0   0   0   0   0   0   0   0   0
##   105000   0   0   0   0   2   0   2   3   0   1   0   1   0   0   1   0
##   106000   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0
##   107000   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0
##   107300   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1
##   107500   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0
##   108000   0   0   0   0   0   0   1   0   0   1   0   0   0   0   0   0
##   110000   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0
##   112000   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0
##   115000   0   0   0   1   0   0   1   0   0   0   0   1   1   0   0   0
##   118000   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0
##   120000   0   0   0   0   0   0   0   0   0   2   0   0   0   0   0   0
##   126710   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0
##   130000   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0
##   145800   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0
##   146000   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0
##   162000   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##   220000   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##         gmat_tot
## salary   670 680 700 710 720
##   64000    0   0   0   0   0
##   77000    0   0   0   0   0
##   78256    0   0   0   0   0
##   82000    1   0   0   0   0
##   85000    0   0   1   0   1
##   86000    0   1   0   0   0
##   88000    0   0   0   0   0
##   88500    0   0   0   0   0
##   90000    0   0   0   0   0
##   92000    0   0   0   1   0
##   93000    0   0   0   0   0
##   95000    2   0   0   0   0
##   96000    0   0   0   0   0
##   96500    0   0   0   0   0
##   97000    0   0   0   0   0
##   98000    1   1   0   1   0
##   99000    0   0   0   0   0
##   100000   0   0   0   1   0
##   100400   0   0   0   0   0
##   101000   0   0   0   0   0
##   101100   0   0   0   0   0
##   101600   0   0   0   0   0
##   102500   1   0   0   0   0
##   103000   0   0   0   0   0
##   104000   0   0   0   0   0
##   105000   0   1   0   0   0
##   106000   0   2   0   0   0
##   107000   0   0   0   0   0
##   107300   0   0   0   0   0
##   107500   0   0   0   0   0
##   108000   0   0   0   0   0
##   110000   0   0   0   0   0
##   112000   1   1   0   0   0
##   115000   0   0   0   1   0
##   118000   0   0   0   0   0
##   120000   1   0   1   0   0
##   126710   0   0   0   0   0
##   130000   0   0   0   0   0
##   145800   0   0   0   0   0
##   146000   0   0   0   0   0
##   162000   0   0   1   0   0
##   220000   0   0   0   0   0
standdata3 <- xtabs(~salary+frstlang)
standdata3
##         frstlang
## salary    1  2
##   64000   1  0
##   77000   1  0
##   78256   1  0
##   82000   1  0
##   85000   4  0
##   86000   2  0
##   88000   1  0
##   88500   1  0
##   90000   3  0
##   92000   3  0
##   93000   3  0
##   95000   7  0
##   96000   4  0
##   96500   1  0
##   97000   2  0
##   98000   8  2
##   99000   0  1
##   100000  9  0
##   100400  1  0
##   101000  2  0
##   101100  1  0
##   101600  1  0
##   102500  1  0
##   103000  1  0
##   104000  1  1
##   105000 11  0
##   106000  3  0
##   107000  1  0
##   107300  0  1
##   107500  1  0
##   108000  2  0
##   110000  1  0
##   112000  3  0
##   115000  5  0
##   118000  0  1
##   120000  4  0
##   126710  1  0
##   130000  1  0
##   145800  1  0
##   146000  1  0
##   162000  1  0
##   220000  0  1
standdata4 <- xtabs(~salary+work_yrs)
standdata4
##         work_yrs
## salary   0 1 2 3 4 5 6 7 8 10 15 16
##   64000  0 0 1 0 0 0 0 0 0  0  0  0
##   77000  0 0 1 0 0 0 0 0 0  0  0  0
##   78256  0 1 0 0 0 0 0 0 0  0  0  0
##   82000  0 1 0 0 0 0 0 0 0  0  0  0
##   85000  0 1 2 1 0 0 0 0 0  0  0  0
##   86000  0 0 1 1 0 0 0 0 0  0  0  0
##   88000  0 0 0 1 0 0 0 0 0  0  0  0
##   88500  0 0 0 1 0 0 0 0 0  0  0  0
##   90000  0 0 2 0 0 1 0 0 0  0  0  0
##   92000  0 0 3 0 0 0 0 0 0  0  0  0
##   93000  0 0 0 0 1 1 0 0 1  0  0  0
##   95000  1 1 2 2 0 1 0 0 0  0  0  0
##   96000  0 1 2 0 1 0 0 0 0  0  0  0
##   96500  0 0 1 0 0 0 0 0 0  0  0  0
##   97000  0 0 0 1 1 0 0 0 0  0  0  0
##   98000  0 0 7 1 1 0 0 1 0  0  0  0
##   99000  0 0 0 0 0 1 0 0 0  0  0  0
##   100000 0 0 6 1 1 0 1 0 0  0  0  0
##   100400 0 0 0 1 0 0 0 0 0  0  0  0
##   101000 0 0 2 0 0 0 0 0 0  0  0  0
##   101100 0 0 0 0 0 0 0 0 1  0  0  0
##   101600 0 0 0 1 0 0 0 0 0  0  0  0
##   102500 0 0 0 0 0 0 1 0 0  0  0  0
##   103000 0 0 0 1 0 0 0 0 0  0  0  0
##   104000 0 0 0 0 2 0 0 0 0  0  0  0
##   105000 0 0 4 4 0 1 1 0 0  0  0  1
##   106000 0 0 0 0 0 0 2 0 1  0  0  0
##   107000 0 0 1 0 0 0 0 0 0  0  0  0
##   107300 0 0 1 0 0 0 0 0 0  0  0  0
##   107500 0 0 0 1 0 0 0 0 0  0  0  0
##   108000 0 0 0 1 1 0 0 0 0  0  0  0
##   110000 0 0 0 0 0 0 1 0 0  0  0  0
##   112000 0 0 1 0 0 0 1 0 0  0  0  1
##   115000 0 2 0 1 2 0 0 0 0  0  0  0
##   118000 0 0 0 0 0 0 0 0 0  1  0  0
##   120000 0 0 0 1 0 2 0 0 1  0  0  0
##   126710 0 0 0 1 0 0 0 0 0  0  0  0
##   130000 0 0 0 0 1 0 0 0 0  0  0  0
##   145800 0 0 1 0 0 0 0 0 0  0  0  0
##   146000 0 0 0 0 0 0 0 0 0  0  1  0
##   162000 0 1 0 0 0 0 0 0 0  0  0  0
##   220000 0 0 0 0 0 0 0 0 0  0  1  0
standdata5 <- xtabs(~salary+age+sex+work_yrs+gmat_tot)
standdata5
## , , sex = 1, work_yrs = 0, gmat_tot = 500
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 0, gmat_tot = 500
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 1, gmat_tot = 500
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 1, gmat_tot = 500
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 2, gmat_tot = 500
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  1  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 2, gmat_tot = 500
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 3, gmat_tot = 500
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 3, gmat_tot = 500
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 4, gmat_tot = 500
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 4, gmat_tot = 500
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 5, gmat_tot = 500
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 5, gmat_tot = 500
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 6, gmat_tot = 500
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 6, gmat_tot = 500
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 7, gmat_tot = 500
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 7, gmat_tot = 500
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 8, gmat_tot = 500
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 8, gmat_tot = 500
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 10, gmat_tot = 500
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 10, gmat_tot = 500
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 15, gmat_tot = 500
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 15, gmat_tot = 500
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1
## 
## , , sex = 1, work_yrs = 16, gmat_tot = 500
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 16, gmat_tot = 500
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 0, gmat_tot = 520
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 0, gmat_tot = 520
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 1, gmat_tot = 520
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 1, gmat_tot = 520
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  1  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 2, gmat_tot = 520
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 2, gmat_tot = 520
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 3, gmat_tot = 520
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 3, gmat_tot = 520
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 4, gmat_tot = 520
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 4, gmat_tot = 520
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 5, gmat_tot = 520
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 5, gmat_tot = 520
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 6, gmat_tot = 520
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 6, gmat_tot = 520
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 7, gmat_tot = 520
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 7, gmat_tot = 520
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 8, gmat_tot = 520
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 8, gmat_tot = 520
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 10, gmat_tot = 520
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 10, gmat_tot = 520
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 15, gmat_tot = 520
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 15, gmat_tot = 520
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 16, gmat_tot = 520
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 16, gmat_tot = 520
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 0, gmat_tot = 530
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 0, gmat_tot = 530
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 1, gmat_tot = 530
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 1, gmat_tot = 530
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 2, gmat_tot = 530
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 2, gmat_tot = 530
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 3, gmat_tot = 530
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 3, gmat_tot = 530
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 4, gmat_tot = 530
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 4, gmat_tot = 530
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 5, gmat_tot = 530
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 5, gmat_tot = 530
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 6, gmat_tot = 530
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 6, gmat_tot = 530
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 7, gmat_tot = 530
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 7, gmat_tot = 530
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 8, gmat_tot = 530
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 8, gmat_tot = 530
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 10, gmat_tot = 530
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 10, gmat_tot = 530
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 15, gmat_tot = 530
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 15, gmat_tot = 530
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 16, gmat_tot = 530
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 16, gmat_tot = 530
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 0, gmat_tot = 540
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 0, gmat_tot = 540
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 1, gmat_tot = 540
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 1, gmat_tot = 540
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 2, gmat_tot = 540
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 2, gmat_tot = 540
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 3, gmat_tot = 540
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 3, gmat_tot = 540
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 4, gmat_tot = 540
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 4, gmat_tot = 540
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 5, gmat_tot = 540
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 5, gmat_tot = 540
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 6, gmat_tot = 540
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 6, gmat_tot = 540
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 7, gmat_tot = 540
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 7, gmat_tot = 540
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 8, gmat_tot = 540
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  1  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 8, gmat_tot = 540
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 10, gmat_tot = 540
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 10, gmat_tot = 540
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 15, gmat_tot = 540
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 15, gmat_tot = 540
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 16, gmat_tot = 540
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 16, gmat_tot = 540
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 0, gmat_tot = 550
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 0, gmat_tot = 550
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 1, gmat_tot = 550
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 1, gmat_tot = 550
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 2, gmat_tot = 550
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 2, gmat_tot = 550
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 3, gmat_tot = 550
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 3, gmat_tot = 550
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 4, gmat_tot = 550
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 4, gmat_tot = 550
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 5, gmat_tot = 550
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 5, gmat_tot = 550
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 6, gmat_tot = 550
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 6, gmat_tot = 550
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 7, gmat_tot = 550
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 7, gmat_tot = 550
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 8, gmat_tot = 550
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 8, gmat_tot = 550
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 10, gmat_tot = 550
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 10, gmat_tot = 550
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 15, gmat_tot = 550
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 15, gmat_tot = 550
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 16, gmat_tot = 550
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 16, gmat_tot = 550
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 0, gmat_tot = 560
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 0, gmat_tot = 560
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 1, gmat_tot = 560
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 1, gmat_tot = 560
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 2, gmat_tot = 560
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  1  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 2, gmat_tot = 560
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  1  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 3, gmat_tot = 560
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 3, gmat_tot = 560
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 4, gmat_tot = 560
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 4, gmat_tot = 560
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 5, gmat_tot = 560
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 5, gmat_tot = 560
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  1  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 6, gmat_tot = 560
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 6, gmat_tot = 560
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 7, gmat_tot = 560
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 7, gmat_tot = 560
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 8, gmat_tot = 560
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 8, gmat_tot = 560
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 10, gmat_tot = 560
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 10, gmat_tot = 560
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 15, gmat_tot = 560
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 15, gmat_tot = 560
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 16, gmat_tot = 560
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 16, gmat_tot = 560
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 0, gmat_tot = 570
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 0, gmat_tot = 570
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 1, gmat_tot = 570
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 1, gmat_tot = 570
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 2, gmat_tot = 570
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  2  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 2, gmat_tot = 570
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 3, gmat_tot = 570
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 3, gmat_tot = 570
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 4, gmat_tot = 570
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 4, gmat_tot = 570
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 5, gmat_tot = 570
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 5, gmat_tot = 570
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 6, gmat_tot = 570
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 2, work_yrs = 6, gmat_tot = 570
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   112000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   126710  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   162000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## , , sex = 1, work_yrs = 7, gmat_tot = 570
## 
##         age
## salary   22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   64000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   98000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   101600  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   103000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   105000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   106000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   107500  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
##  [ reached getOption("max.print") -- omitted 12 row(s) and 345 matrix slice(s) ]
#chi -square and t-tests
chisq.test(xtabs(~salary + gmat_tpc, data = job))
## Warning in chisq.test(xtabs(~salary + gmat_tpc, data = job)): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~salary + gmat_tpc, data = job)
## X-squared = 1422.2, df = 1230, p-value = 0.0001065
chisq.test(xtabs(~salary + age, data = job))
## Warning in chisq.test(xtabs(~salary + age, data = job)): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~salary + age, data = job)
## X-squared = 717.62, df = 574, p-value = 3.929e-05
chisq.test(xtabs(~salary + sex, data = job))
## Warning in chisq.test(xtabs(~salary + sex, data = job)): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~salary + sex, data = job)
## X-squared = 52.681, df = 41, p-value = 0.1045
chisq.test(xtabs(~salary + gmat_tot, data = job))
## Warning in chisq.test(xtabs(~salary + gmat_tot, data = job)): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~salary + gmat_tot, data = job)
## X-squared = 927.24, df = 820, p-value = 0.005279
chisq.test(xtabs(~salary + work_yrs, data = job))
## Warning in chisq.test(xtabs(~salary + work_yrs, data = job)): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~salary + work_yrs, data = job)
## X-squared = 535.23, df = 451, p-value = 0.003809
chisq.test(xtabs(~salary + frstlang, data = job))
## Warning in chisq.test(xtabs(~salary + frstlang, data = job)): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~salary + frstlang, data = job)
## X-squared = 69.847, df = 41, p-value = 0.003296
t.test(salary,gmat_tpc, data = job)
## 
##  Welch Two Sample t-test
## 
## data:  salary and gmat_tpc
## t = 58.47, df = 102, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   99453.94 106438.49
## sample estimates:
##    mean of x    mean of y 
## 103030.73786     84.52427
t.test(salary,age, data = job)
## 
##  Welch Two Sample t-test
## 
## data:  salary and age
## t = 58.503, df = 102, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   99511.69 106496.23
## sample estimates:
##   mean of x   mean of y 
## 103030.7379     26.7767
t.test(salary,sex, data = job)
## 
##  Welch Two Sample t-test
## 
## data:  salary and sex
## t = 58.517, df = 102, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   99537.17 106521.71
## sample estimates:
##    mean of x    mean of y 
## 1.030307e+05 1.300971e+00
t.test(salary,gmat_tot, data = job)
## 
##  Welch Two Sample t-test
## 
## data:  salary and gmat_tot
## t = 58.168, df = 102, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   98922.43 105907.00
## sample estimates:
##   mean of x   mean of y 
## 103030.7379    616.0194
t.test(salary,work_yrs, data = job)
## 
##  Welch Two Sample t-test
## 
## data:  salary and work_yrs
## t = 58.516, df = 102, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   99534.79 106519.33
## sample estimates:
##    mean of x    mean of y 
## 1.030307e+05 3.679612e+00
t.test(salary,frstlang, data = job)
## 
##  Welch Two Sample t-test
## 
## data:  salary and frstlang
## t = 58.517, df = 102, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   99537.4 106521.9
## sample estimates:
##    mean of x    mean of y 
## 1.030307e+05 1.067961e+00
t.test(salary,age, data = job)
## 
##  Welch Two Sample t-test
## 
## data:  salary and age
## t = 58.503, df = 102, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   99511.69 106496.23
## sample estimates:
##   mean of x   mean of y 
## 103030.7379     26.7767
#Running Regression Model 1
fit1 <- lm(salary ~ age+quarter+gmat_tpc+gmat_qpc+gmat_vpc+frstlang, data=job)
summary(fit1)
## 
## Call:
## lm(formula = salary ~ age + quarter + gmat_tpc + gmat_qpc + gmat_vpc + 
##     frstlang, data = job)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -26852  -9178   -615   5382  68168 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  44716.7    19552.1   2.287   0.0244 *  
## age           2583.0      508.3   5.082 1.84e-06 ***
## quarter      -1744.3     1375.4  -1.268   0.2078    
## gmat_tpc     -1424.6      683.3  -2.085   0.0397 *  
## gmat_qpc       834.1      350.0   2.383   0.0191 *  
## gmat_vpc       535.2      351.3   1.523   0.1309    
## frstlang      4649.7     6617.1   0.703   0.4840    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15120 on 96 degrees of freedom
## Multiple R-squared:  0.3262, Adjusted R-squared:  0.284 
## F-statistic: 7.744 on 6 and 96 DF,  p-value: 8.366e-07
fit2 <- lm(salary ~ age+sex+gmat_tot+work_yrs, data=job)
summary(fit2)
## 
## Call:
## lm(formula = salary ~ age + sex + gmat_tot + work_yrs, data = job)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -30250  -8730  -2148   5632  82607 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept) 56162.20   30473.15   1.843   0.0684 .
## age          2298.17    1009.90   2.276   0.0250 *
## sex         -3898.40    3407.50  -1.144   0.2554  
## gmat_tot      -18.01      30.88  -0.583   0.5610  
## work_yrs      407.10    1095.76   0.372   0.7111  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15650 on 98 degrees of freedom
## Multiple R-squared:  0.2628, Adjusted R-squared:  0.2327 
## F-statistic: 8.733 on 4 and 98 DF,  p-value: 4.512e-06

comparing both regression models salary is most affected by age sex gmat_tpc work experience and first language

fit2 <- lm(salary ~ age+sex+gmat_tot+work_yrs+frstlang, data=job)
summary(fit2)
## 
## Call:
## lm(formula = salary ~ age + sex + gmat_tot + work_yrs + frstlang, 
##     data = job)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -29716  -9228  -2126   5892  78157 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept) 58246.31   30361.47   1.918    0.058 .
## age          1667.25    1101.40   1.514    0.133  
## sex         -4655.65    3433.79  -1.356    0.178  
## gmat_tot      -11.76      31.05  -0.379    0.706  
## work_yrs      854.08    1136.21   0.752    0.454  
## frstlang     9642.71    6887.30   1.400    0.165  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15580 on 97 degrees of freedom
## Multiple R-squared:  0.2774, Adjusted R-squared:  0.2401 
## F-statistic: 7.447 on 5 and 97 DF,  p-value: 5.982e-06
fitted(fit2)
##        35        36        37        38        39        40        41 
##  88351.29  97071.33  93971.97  95178.79 101609.40 102241.44  95369.78 
##        42        43        44        45        46        47        48 
##  94528.81  96589.71  98126.27  98405.59  90990.20  98371.29 106201.51 
##        49        50        51        52        53        54        55 
##  98980.36 101010.21 102442.31 101470.64 110466.75 113340.82 112793.86 
##        56        57        58        59        60        61        62 
## 105724.57 103404.10 100422.32 102860.38 134866.96 104963.64 100755.32 
##        63        64        65        66        67        68        69 
## 129146.49 103756.83 105956.48 110466.75 107550.32 135327.39  97538.39 
##       115       116       117       118       119       120       121 
##  94902.72  94677.43 115401.72  98745.20 100304.75  98371.29  99076.75 
##       122       123       124       125       126       127       128 
##  96351.31  98253.72 107429.36 112354.46  93480.49 111750.23  94677.43 
##       129       130       131       132       133       134       135 
## 103521.67 106748.47 101148.96 103521.67 127118.58 101235.49 108830.55 
##       136       137       138       139       186       187       188 
##  96811.75 104258.18 102355.78  97665.83  91664.61 103521.67  99803.39 
##       189       190       191       192       193       194       195 
##  99215.51 101158.83 104614.16 104375.76 105659.23  92422.30  95382.89 
##       196       197       198       199       200       201       202 
##  95147.74 111604.84 106160.59 109214.33  97461.73  94559.86  93245.33 
##       203       204       205       206       207       208       209 
## 110656.30 110497.80  98136.14 108712.97 120176.25 106630.89  96960.37 
##       256       257       258       259       260       261       262 
##  93715.64  95528.27  94355.75 101000.34  97081.19 104877.11  98862.78 
##       263       264       265       266       267       268       269 
##  99450.66 101235.49  98253.72  93245.33  95991.96 106738.60 101736.85 
##       270       271       272       273       274 
## 121745.66  96468.89 101127.78 102677.46 141842.94

task 2c

jobless <- subset(Salary.df,salary==0)
jobless
##     age sex gmat_tot gmat_qpc gmat_vpc gmat_tpc s_avg f_avg quarter
## 1    23   2      620       77       87       87  3.40  3.00       1
## 2    24   1      610       90       71       87  3.50  4.00       1
## 3    24   1      670       99       78       95  3.30  3.25       1
## 4    24   1      570       56       81       75  3.30  2.67       1
## 6    24   1      640       82       89       91  3.90  3.75       1
## 7    25   1      610       89       74       87  3.40  3.50       1
## 8    25   2      650       88       89       92  3.30  3.75       1
## 22   27   1      740       99       96       99  3.50  3.50       1
## 23   27   1      750       99       98       99  3.40  3.50       1
## 24   28   2      540       75       50       65  3.60  4.00       1
## 25   29   1      580       56       87       78  3.64  3.33       1
## 27   31   2      560       60       78       72  3.30  3.75       1
## 28   32   1      760       99       99       99  3.40  3.00       1
## 29   32   1      640       79       91       91  3.60  3.75       1
## 31   34   2      620       75       89       87  3.30  3.00       1
## 32   37   2      560       43       87       72  3.40  3.50       1
## 33   42   2      650       75       98       93  3.38  3.00       1
## 34   48   1      590       84       62       81  3.80  4.00       1
## 70   22   1      600       95       54       83  3.00  3.00       2
## 71   23   1      640       89       87       92  3.00  3.00       2
## 72   24   1      550       73       63       69  3.10  3.00       2
## 73   24   1      570       82       58       75  3.09  3.50       2
## 74   24   1      620       82       84       87  3.10  3.50       2
## 75   25   2      570       61       81       76  3.00  3.25       2
## 76   25   1      660       94       84       94  3.27  3.75       2
## 77   25   1      680       94       92       97  3.17  3.50       2
## 88   26   2      560       64       71       72  3.20  3.25       2
## 89   26   1      560       87       41       72  3.00  3.00       2
## 90   26   1      530       68       54       62  3.09  3.17       2
## 92   27   1      720       99       95       99  3.10  3.25       2
## 93   27   1      590       60       87       81  3.00  2.75       2
## 97   28   1      620       81       90       89  3.20  3.00       2
## 98   28   2      610       85       78       86  3.10  3.00       2
## 100  29   1      660       94       87       94  3.00  3.00       2
## 102  29   1      510       57       50       55  3.27  3.40       2
## 103  29   2      640       90       84       92  3.20  3.00       2
## 104  29   1      610       91       62       86  3.10  3.67       2
## 106  29   1      580       79       67       78  3.00  3.25       2
## 107  30   1      680       97       87       96  3.00  3.00       2
## 109  32   2      610       64       89       86  3.25  0.00       2
## 110  35   1      540       43       78       65  3.20  3.25       2
## 111  35   1      630       66       95       90  3.08  3.25       2
## 112  36   2      530       48       71       62  3.00  2.50       2
## 113  36   1      650       87       89       93  3.00  3.20       2
## 114  43   1      630       82       87       89  3.10  3.00       2
## 140  23   1      720       95       98       99  2.80  2.50       3
## 141  24   2      640       94       78       92  2.90  3.25       3
## 142  24   1      710       96       97       99  2.80  2.75       3
## 143  24   1      670       94       89       96  2.70  3.00       3
## 144  24   2      710       97       97       99  2.80  3.00       3
## 146  24   1      600       89       62       83  2.90  3.00       3
## 147  24   2      640       96       71       91  2.70  2.50       3
## 150  25   1      550       72       58       69  2.90  3.00       3
## 151  25   1      710       99       91       98  2.90  3.25       3
## 159  26   1      560       56       81       72  2.80  3.25       3
## 160  26   1      540       52       71       65  2.70  2.75       3
## 162  26   2      570       48       89       75  2.82  2.50       3
## 163  26   1      610       82       81       86  2.90  2.75       3
## 164  27   1      650       89       84       93  2.90  3.00       3
## 165  27   2      550       66       63       69  2.90  3.00       3
## 167  27   1      610       97       45       86  2.70  2.50       3
## 168  27   2      630       82       89       89  2.70  3.25       3
## 169  27   2      560       61       74       73  2.80  3.25       3
## 180  29   1      590       92       58       81  2.80  2.75       3
## 182  32   1      550       52       78       71  2.70  2.75       3
## 183  34   1      610       79       81       86  2.80  3.00       3
## 184  34   1      610       82       78       86  2.70  3.00       3
## 185  43   1      480       49       41       45  2.90  3.25       3
## 213  25   1      730       98       96       99  2.40  2.75       4
## 218  25   1      700       99       87       98  2.00  2.00       4
## 219  26   1      660       93       87       95  2.60  2.00       4
## 220  26   1      450       28       46       34  2.10  2.00       4
## 222  26   1      600       75       78       83  2.20  2.25       4
## 227  27   2      560       59       74       73  2.40  2.50       4
## 229  27   1      630       93       78       91  2.10  2.50       4
## 230  27   1      580       84       58       78  2.70  2.75       4
## 232  27   1      670       89       91       95  3.60  3.25       4
## 233  27   1      580       74       70       78  3.40  3.25       4
## 234  28   1      560       74       67       73  3.60  3.60       4
## 236  28   1      710       94       98       99  3.40  3.75       4
## 237  28   1      570       69       71        0  2.30  2.50       4
## 238  29   1      530       35       81       62  3.30  2.75       4
## 241  29   1      670       91       91       95  3.30  3.25       4
## 242  29   1      630       99       50       89  2.90  3.25       4
## 243  29   2      680       89       96       96  2.80  3.00       4
## 244  30   1      650       88       92       93  3.45  3.83       4
## 250  31   1      570       75       62       75  2.80  3.00       4
## 253  32   1      510       79       22       54  2.30  2.25       4
## 254  35   1      570       72       71       75  3.30  4.00       4
## 255  39   2      700       89       98       98  3.30  3.25       4
##     work_yrs frstlang salary satis
## 1          2        1      0     7
## 2          2        1      0     6
## 3          2        1      0     6
## 4          1        1      0     7
## 6          2        1      0     6
## 7          2        1      0     5
## 8          2        1      0     6
## 22         3        1      0     6
## 23         1        2      0     5
## 24         5        1      0     5
## 25         3        1      0     5
## 27        10        1      0     7
## 28         5        1      0     5
## 29         7        1      0     6
## 31         7        1      0     6
## 32         9        1      0     6
## 33        13        1      0     5
## 34        22        1      0     6
## 70         1        1      0     5
## 71         2        1      0     7
## 72         0        2      0     5
## 73         2        1      0     6
## 74         1        1      0     5
## 75         3        1      0     4
## 76         2        1      0     5
## 77         2        1      0     6
## 88         3        1      0     6
## 89         3        1      0     6
## 90         4        2      0     5
## 92         5        1      0     5
## 93         3        1      0     6
## 97         4        1      0     6
## 98         5        1      0     6
## 100        1        1      0     6
## 102        5        1      0     5
## 103        3        1      0     5
## 104        7        1      0     5
## 106        4        1      0     6
## 107        4        1      0     5
## 109       11        1      0     7
## 110        8        1      0     5
## 111       12        1      0     5
## 112        7        1      0     5
## 113       18        1      0     6
## 114       16        1      0     5
## 140        1        1      0     5
## 141        2        2      0     4
## 142        2        1      0     7
## 143        2        1      0     7
## 144        2        1      0     7
## 146        1        1      0     6
## 147        2        1      0     6
## 150        3        1      0     6
## 151        1        1      0     6
## 159        4        1      0     6
## 160        2        1      0     6
## 162        3        1      0     5
## 163        3        1      0     6
## 164        2        1      0     6
## 165        3        1      0     4
## 167        4        2      0     5
## 168        5        1      0     6
## 169        5        1      0     6
## 180        3        2      0     5
## 182        7        1      0     6
## 183       11        1      0     6
## 184       12        1      0     5
## 185       22        1      0     5
## 213        2        1      0     6
## 218        1        1      0     7
## 219        2        1      0     5
## 220        4        1      0     6
## 222        2        1      0     6
## 227        2        1      0     5
## 229        4        1      0     5
## 230        1        1      0     5
## 232        5        1      0     6
## 233        3        1      0     6
## 234        5        1      0     5
## 236        6        1      0     6
## 237        5        1      0     5
## 238        6        1      0     7
## 241        3        1      0     5
## 242        1        2      0     4
## 243        4        1      0     5
## 244        2        1      0     6
## 250        1        1      0     6
## 253        5        2      0     5
## 254        8        1      0     6
## 255        5        1      0     5
dim(jobless)
## [1] 90 13
job <- job[1:90,]

table1 <- xtabs(~job$age+jobless$age)
table1
##        jobless$age
## job$age 22 23 24 25 26 27 28 29 30 31 32 34 35 36 37 39 42 43 48
##      22  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##      23  0  0  0  0  0  1  0  0  1  1  0  0  0  1  0  0  0  0  0
##      24  0  0  1  2  1  3  1  2  0  0  1  0  2  1  0  0  0  0  0
##      25  0  0  3  2  1  4  1  3  1  1  2  1  0  0  1  0  0  0  0
##      26  0  0  1  0  1  1  0  2  0  0  1  0  1  0  0  0  1  1  1
##      27  0  0  4  1  4  2  0  0  0  0  1  1  0  0  0  1  0  0  0
##      28  0  1  1  2  1  1  0  1  0  0  0  0  0  0  0  0  0  1  0
##      29  0  0  0  0  1  2  1  0  0  0  0  1  0  0  0  0  0  0  0
##      30  1  0  2  0  0  0  3  0  0  0  0  0  0  0  0  0  0  0  0
##      31  0  1  1  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
##      32  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
##      33  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##      34  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##      39  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##      40  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
table1 <- xtabs(~job$sex+jobless$sex)
table1
##        jobless$sex
## job$sex  1  2
##       1 45 17
##       2 22  6
table1 <- xtabs(~job$work_yrs+jobless$work_yrs)
table1
##             jobless$work_yrs
## job$work_yrs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 16 18 22
##           0  0 0 1 0 0 0 0 0 0 0  0  0  0  0  0  0  0
##           1  0 0 1 4 1 2 0 0 0 0  0  0  0  0  0  0  0
##           2  0 3 8 2 4 4 2 3 1 0  1  0  1  0  0  1  1
##           3  0 4 2 2 1 2 0 0 1 1  0  1  0  1  1  0  1
##           4  0 1 3 4 0 0 0 1 0 0  0  0  1  0  0  0  0
##           5  0 2 1 1 1 1 0 0 0 0  0  1  0  0  0  0  0
##           6  0 0 4 0 0 2 0 1 0 0  0  0  0  0  0  0  0
##           7  0 0 1 0 0 0 0 0 0 0  0  0  0  0  0  0  0
##           8  1 0 0 1 1 1 0 0 0 0  0  0  0  0  0  0  0
##           10 0 0 0 0 1 0 0 0 0 0  0  0  0  0  0  0  0
##           15 0 1 0 0 0 0 0 0 0 0  0  0  0  0  0  0  0
##           16 0 1 1 0 0 0 0 0 0 0  0  0  0  0  0  0  0
table1 <- xtabs(~job$quarter+jobless$quarter)
table1
##            jobless$quarter
## job$quarter  1  2  3  4
##           1 18 17  0  0
##           2  0 10 15  0
##           3  0  0  8 16
##           4  0  0  0  6
table1 <- xtabs(~job$gmat_tot+jobless$gmat_tot)
table1
##             jobless$gmat_tot
## job$gmat_tot 450 480 510 530 540 550 560 570 580 590 600 610 620 630 640
##          500   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0
##          520   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0
##          530   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##          540   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0
##          550   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0
##          560   0   0   0   0   1   0   0   0   0   0   1   1   0   0   0
##          570   0   0   0   0   0   0   1   0   0   0   0   0   0   1   1
##          580   0   1   0   0   0   0   1   0   0   1   0   0   0   0   1
##          590   0   0   0   1   0   0   0   0   1   0   0   0   0   0   0
##          600   0   0   0   0   0   0   1   1   0   0   1   0   1   0   0
##          610   0   0   0   0   0   1   0   0   0   0   1   1   0   0   1
##          620   0   0   1   1   0   3   0   1   0   0   0   3   0   1   0
##          630   0   0   0   0   0   0   0   1   1   1   0   1   1   0   0
##          640   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##          650   0   0   0   0   1   0   1   1   0   0   0   0   1   0   0
##          660   0   0   0   1   0   0   0   0   1   0   0   0   1   0   0
##          670   0   0   0   0   1   0   1   0   0   0   0   1   0   0   1
##          680   1   0   0   0   0   0   0   2   0   0   0   0   0   1   1
##          700   0   0   1   0   0   0   0   0   0   1   0   1   0   0   0
##          710   0   0   0   0   0   0   2   0   0   0   0   0   0   1   1
##          720   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0
##             jobless$gmat_tot
## job$gmat_tot 650 660 670 680 700 710 720 730 740 750 760
##          500   0   0   0   0   0   0   0   0   0   0   0
##          520   0   0   0   0   0   0   0   0   0   0   0
##          530   0   0   0   0   0   0   0   0   0   1   0
##          540   0   0   0   0   0   0   0   0   0   0   0
##          550   0   0   0   0   0   1   0   0   0   0   0
##          560   0   0   0   1   1   1   0   0   1   0   1
##          570   2   0   1   0   0   0   0   0   0   0   0
##          580   0   1   0   0   0   1   1   0   0   0   0
##          590   0   0   0   0   0   0   0   0   0   0   0
##          600   0   0   1   1   0   0   1   0   0   0   0
##          610   0   0   0   0   0   0   0   0   0   0   0
##          620   0   0   1   0   0   1   0   0   0   0   0
##          630   0   1   0   0   0   0   0   0   0   0   0
##          640   0   1   0   0   0   0   0   0   0   0   0
##          650   1   0   0   0   1   0   0   0   0   0   0
##          660   1   0   0   0   0   0   0   0   0   0   0
##          670   1   0   0   1   0   0   0   1   0   0   0
##          680   0   0   1   0   0   0   0   0   0   0   0
##          700   0   0   0   0   0   0   0   0   0   0   0
##          710   0   0   0   0   0   0   0   0   0   0   0
##          720   0   0   0   0   0   0   0   0   0   0   0
chisq.test(table(job$age,jobless$age))
## Warning in chisq.test(table(job$age, jobless$age)): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(job$age, jobless$age)
## X-squared = 229.27, df = 252, p-value = 0.8449
chisq.test(table(job$sex,jobless$sex))
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table(job$sex, jobless$sex)
## X-squared = 0.11711, df = 1, p-value = 0.7322
chisq.test(table(job$gmat_tot,jobless$gmat_tot))
## Warning in chisq.test(table(job$gmat_tot, jobless$gmat_tot)): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(job$gmat_tot, jobless$gmat_tot)
## X-squared = 496.72, df = 500, p-value = 0.533
chisq.test(table(job$gmat_tpc,jobless$gmat_tpc))
## Warning in chisq.test(table(job$gmat_tpc, jobless$gmat_tpc)): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(job$gmat_tpc, jobless$gmat_tpc)
## X-squared = 776.54, df = 784, p-value = 0.5683
chisq.test(table(job$quarter,jobless$quarter))
## Warning in chisq.test(table(job$quarter, jobless$quarter)): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(job$quarter, jobless$quarter)
## X-squared = 110.98, df = 9, p-value < 2.2e-16
chisq.test(table(job$frstlang,jobless$frstlang))
## Warning in chisq.test(table(job$frstlang, jobless$frstlang)): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table(job$frstlang, jobless$frstlang)
## X-squared = 0.0080703, df = 1, p-value = 0.9284
chisq.test(table(job$work_yrs,jobless$work_yrs))
## Warning in chisq.test(table(job$work_yrs, jobless$work_yrs)): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(job$work_yrs, jobless$work_yrs)
## X-squared = 117.66, df = 176, p-value = 0.9998
fit2 <- lm(quarter ~ age+sex+gmat_tot+work_yrs+frstlang, data=job)
summary(fit2)
## 
## Call:
## lm(formula = quarter ~ age + sex + gmat_tot + work_yrs + frstlang, 
##     data = job)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.3254 -0.9471 -0.1178  0.8653  2.0223 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  3.8812823  2.0382214   1.904   0.0603 .
## age         -0.1021945  0.0729769  -1.400   0.1651  
## sex         -0.0928392  0.2296646  -0.404   0.6871  
## gmat_tot     0.0005992  0.0020753   0.289   0.7735  
## work_yrs     0.0394908  0.0741173   0.533   0.5956  
## frstlang     0.4431674  0.4705635   0.942   0.3490  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9693 on 84 degrees of freedom
## Multiple R-squared:  0.04908,    Adjusted R-squared:  -0.007527 
## F-statistic: 0.867 on 5 and 84 DF,  p-value: 0.5069