Daer was pleased to have located the data which could help her understand about MBA courses. She wondered whether it could answer some important questions that would help her decide whether to enroll in the MBA program at this particular school. In particular, she wondered about starting salaries, whether gender and/or age made a difference, and whether students liked this particular program. She also wondered whether her GMAT score made a difference in marks. Since her native language was not English, Daer had a relatively low GMAT.
We read the dataset and view it in R.
mbasalary.df <- read.csv(paste("MBA Starting Salaries Data.csv",sep=""))
head(mbasalary.df)
## age sex gmat_tot gmat_qpc gmat_vpc gmat_tpc s_avg f_avg quarter work_yrs
## 1 23 2 620 77 87 87 3.4 3.00 1 2
## 2 24 1 610 90 71 87 3.5 4.00 1 2
## 3 24 1 670 99 78 95 3.3 3.25 1 2
## 4 24 1 570 56 81 75 3.3 2.67 1 1
## 5 24 2 710 93 98 98 3.6 3.75 1 2
## 6 24 1 640 82 89 91 3.9 3.75 1 2
## frstlang salary satis
## 1 1 0 7
## 2 1 0 6
## 3 1 0 6
## 4 1 0 7
## 5 1 999 5
## 6 1 0 6
Create summary statistics (e.g. mean, standard deviation, median, mode) for the important variables in the dataset.
summary(mbasalary.df)
## age sex gmat_tot gmat_qpc
## Min. :22.00 Min. :1.000 Min. :450.0 Min. :28.00
## 1st Qu.:25.00 1st Qu.:1.000 1st Qu.:580.0 1st Qu.:72.00
## Median :27.00 Median :1.000 Median :620.0 Median :83.00
## Mean :27.36 Mean :1.248 Mean :619.5 Mean :80.64
## 3rd Qu.:29.00 3rd Qu.:1.000 3rd Qu.:660.0 3rd Qu.:93.00
## Max. :48.00 Max. :2.000 Max. :790.0 Max. :99.00
## gmat_vpc gmat_tpc s_avg f_avg
## Min. :16.00 Min. : 0.0 Min. :2.000 Min. :0.000
## 1st Qu.:71.00 1st Qu.:78.0 1st Qu.:2.708 1st Qu.:2.750
## Median :81.00 Median :87.0 Median :3.000 Median :3.000
## Mean :78.32 Mean :84.2 Mean :3.025 Mean :3.062
## 3rd Qu.:91.00 3rd Qu.:94.0 3rd Qu.:3.300 3rd Qu.:3.250
## Max. :99.00 Max. :99.0 Max. :4.000 Max. :4.000
## quarter work_yrs frstlang salary
## Min. :1.000 Min. : 0.000 Min. :1.000 Min. : 0
## 1st Qu.:1.250 1st Qu.: 2.000 1st Qu.:1.000 1st Qu.: 0
## Median :2.000 Median : 3.000 Median :1.000 Median : 999
## Mean :2.478 Mean : 3.872 Mean :1.117 Mean : 39026
## 3rd Qu.:3.000 3rd Qu.: 4.000 3rd Qu.:1.000 3rd Qu.: 97000
## Max. :4.000 Max. :22.000 Max. :2.000 Max. :220000
## satis
## Min. : 1.0
## 1st Qu.: 5.0
## Median : 6.0
## Mean :172.2
## 3rd Qu.: 7.0
## Max. :998.0
library(psych)
describe(mbasalary.df)
## vars n mean sd median trimmed mad min max
## age 1 274 27.36 3.71 27 26.76 2.97 22 48
## sex 2 274 1.25 0.43 1 1.19 0.00 1 2
## gmat_tot 3 274 619.45 57.54 620 618.86 59.30 450 790
## gmat_qpc 4 274 80.64 14.87 83 82.31 14.83 28 99
## gmat_vpc 5 274 78.32 16.86 81 80.33 14.83 16 99
## gmat_tpc 6 274 84.20 14.02 87 86.12 11.86 0 99
## s_avg 7 274 3.03 0.38 3 3.03 0.44 2 4
## f_avg 8 274 3.06 0.53 3 3.09 0.37 0 4
## quarter 9 274 2.48 1.11 2 2.47 1.48 1 4
## work_yrs 10 274 3.87 3.23 3 3.29 1.48 0 22
## frstlang 11 274 1.12 0.32 1 1.02 0.00 1 2
## salary 12 274 39025.69 50951.56 999 33607.86 1481.12 0 220000
## satis 13 274 172.18 371.61 6 91.50 1.48 1 998
## range skew kurtosis se
## age 26 2.16 6.45 0.22
## sex 1 1.16 -0.66 0.03
## gmat_tot 340 -0.01 0.06 3.48
## gmat_qpc 71 -0.92 0.30 0.90
## gmat_vpc 83 -1.04 0.74 1.02
## gmat_tpc 99 -2.28 9.02 0.85
## s_avg 2 -0.06 -0.38 0.02
## f_avg 4 -2.08 10.85 0.03
## quarter 3 0.02 -1.35 0.07
## work_yrs 22 2.78 9.80 0.20
## frstlang 1 2.37 3.65 0.02
## salary 220000 0.70 -1.05 3078.10
## satis 997 1.77 1.13 22.45
Draw Box Plots / Bar Plots to visualize the distribution of each variable independently
hist(mbasalary.df$age, breaks=10,col="yellow",xlab="Age in years", main="Histogram for age")
barplot(table(mbasalary.df$sex),col="yellow",xlab="Sex of students", main="Histogram for sex")
hist(mbasalary.df$gmat_tot, breaks=10,col="yellow",xlab="GMAT total score", main="Histogram for total gMAT score")
hist(mbasalary.df$gmat_qpc, breaks=10,col="yellow",xlab="GMAT quantitative percentile", main="Histogram for quantitative gMAT percentile")
hist(mbasalary.df$gmat_vpc, breaks=10,col="yellow",xlab="GMAT verbal percentile", main="Histogram for verbal gMAT percentile")
hist(mbasalary.df$gmat_tpc, breaks=10,col="yellow",xlab="GMAT total percentile", main="Histogram for total gMAT percentile")
plot(mbasalary.df$s_avg,main="Spring average")
plot(mbasalary.df$f_avg,main="Fall average")
barplot(table(mbasalary.df$quarter),col="yellow",xlab="Quarter of students", main="Histogram for quarter")
hist(mbasalary.df$work_yrs, breaks=10,col="yellow",xlab="Work experience in years", main="Histogram for work years")
barplot(table(mbasalary.df$quarter),col="yellow",xlab="Quarter of students", main="Histogram for quarter")
hist(mbasalary.df$work_yrs, breaks=10,col="yellow",xlab="Work experience in years", main="Histogram for work years")
plot(mbasalary.df$frstlang, main = "First language")
hist(mbasalary.df$salary, main = "Starting salaries", xlab = "Starting salary", col = "blue")
satis7 <- mbasalary.df[ which(mbasalary.df$satis<='7'), ]
hist(satis7$satis, breaks=5,col="pink",xlab="Degree of Satisfaction", main="Satisfaction for MBA programme")
attach(mbasalary.df)
boxplot(age , horizontal =TRUE, main="Boxplot of age" ,col="lightblue")
boxplot(sex , horizontal =TRUE, main="Boxplot of sex" ,col="lightblue")
boxplot(gmat_qpc , horizontal =TRUE, main="Boxplot of gmat_qpc" ,col="lightblue")
boxplot(gmat_tot , horizontal =TRUE, main="Boxplot of gmat_tot" ,col="lightblue")
boxplot(gmat_vpc , horizontal =TRUE, main="Boxplot of gmat_vpc" ,col="lightblue")
boxplot(gmat_tpc , horizontal =TRUE, main="Boxplot of gmat_tpc" ,col="lightblue")
boxplot(f_avg , horizontal =TRUE, main="Boxplot of fall avg" ,col="lightblue")
boxplot(s_avg , horizontal =TRUE, main="Boxplot of spring avg" ,col="lightblue")
boxplot(work_yrs , horizontal =TRUE, main="Boxplot of work experience" ,col="lightblue")
boxplot(quarter , horizontal =TRUE, main="Boxplot of quarter" ,col="lightblue")
boxplot( frstlang , horizontal =TRUE, main="Boxplot of first language" ,col="lightblue")
boxplot(salary , horizontal =TRUE, main="Boxplot of salary" ,col="lightblue")
boxplot(satis , horizontal =TRUE, main="Boxplot of satisfaction" ,col="lightblue")
Draw Scatter Plots to understand how are the variables correlated pair-wise
library(car)
attach(mbasalary.df)
scatterplot(salary ~age,
spread=FALSE, smoother.args=list(lty=2),
main="Scatter plot of salary vs age",
xlab="age",
ylab="salary")
scatterplot(salary ~sex,
spread=FALSE, smoother.args=list(lty=2),
main="Scatter plot of salary vs sex",
xlab="sex",
ylab="salary")
scatterplot(salary ~frstlang,
main="Scatter plot of salary vs first language",
xlab="first language",
ylab="salary")
scatterplot(salary ~gmat_tpc,
main="Scatter plot of salary vs gmat percentile",
xlab="Percentile",
ylab="salary")
scatterplot(salary ~ gmat_tot,
main="Scatter plot of salary vs first language",
xlab="first language",
ylab="salary")
scatterplot(salary ~work_yrs,
main="Scatter plot of salary vs Work exp.",
xlab="Work experience in years",
ylab="salary")
scatterplotMatrix(mbasalary.df[,c("salary","age","gmat_tpc","gmat_qpc","satis","gmat_tot")], spread=FALSE, smoother.args=list(lty=2), main="Scatter Plot Matrix")
Draw a Corrgram; Create a Variance-Covariance Matrix
library(corrgram)
corr.test(mbasalary.df)
## Call:corr.test(x = mbasalary.df)
## Correlation matrix
## age sex gmat_tot gmat_qpc gmat_vpc gmat_tpc s_avg f_avg
## age 1.00 -0.03 -0.15 -0.22 -0.04 -0.17 0.15 -0.02
## sex -0.03 1.00 -0.05 -0.16 0.07 -0.01 0.13 0.09
## gmat_tot -0.15 -0.05 1.00 0.72 0.75 0.85 0.11 0.10
## gmat_qpc -0.22 -0.16 0.72 1.00 0.15 0.65 -0.03 0.07
## gmat_vpc -0.04 0.07 0.75 0.15 1.00 0.67 0.20 0.08
## gmat_tpc -0.17 -0.01 0.85 0.65 0.67 1.00 0.12 0.08
## s_avg 0.15 0.13 0.11 -0.03 0.20 0.12 1.00 0.55
## f_avg -0.02 0.09 0.10 0.07 0.08 0.08 0.55 1.00
## quarter -0.05 -0.13 -0.09 0.04 -0.17 -0.08 -0.76 -0.45
## work_yrs 0.86 -0.01 -0.18 -0.24 -0.07 -0.17 0.13 -0.04
## frstlang 0.06 0.00 -0.14 0.14 -0.39 -0.10 -0.14 -0.04
## salary -0.06 0.07 -0.05 -0.04 -0.01 0.00 0.15 0.03
## satis -0.13 -0.05 0.08 0.06 0.06 0.09 -0.03 0.01
## quarter work_yrs frstlang salary satis
## age -0.05 0.86 0.06 -0.06 -0.13
## sex -0.13 -0.01 0.00 0.07 -0.05
## gmat_tot -0.09 -0.18 -0.14 -0.05 0.08
## gmat_qpc 0.04 -0.24 0.14 -0.04 0.06
## gmat_vpc -0.17 -0.07 -0.39 -0.01 0.06
## gmat_tpc -0.08 -0.17 -0.10 0.00 0.09
## s_avg -0.76 0.13 -0.14 0.15 -0.03
## f_avg -0.45 -0.04 -0.04 0.03 0.01
## quarter 1.00 -0.09 0.10 -0.16 0.00
## work_yrs -0.09 1.00 -0.03 0.01 -0.11
## frstlang 0.10 -0.03 1.00 -0.09 0.08
## salary -0.16 0.01 -0.09 1.00 -0.34
## satis 0.00 -0.11 0.08 -0.34 1.00
## Sample Size
## [1] 274
## Probability values (Entries above the diagonal are adjusted for multiple tests.)
## age sex gmat_tot gmat_qpc gmat_vpc gmat_tpc s_avg f_avg quarter
## age 0.00 1.00 0.87 0.02 1.00 0.29 0.75 1.00 1.00
## sex 0.64 0.00 1.00 0.39 1.00 1.00 1.00 1.00 1.00
## gmat_tot 0.02 0.38 0.00 0.00 0.00 0.00 1.00 1.00 1.00
## gmat_qpc 0.00 0.01 0.00 0.00 0.68 0.00 1.00 1.00 1.00
## gmat_vpc 0.47 0.22 0.00 0.01 0.00 0.00 0.04 1.00 0.24
## gmat_tpc 0.00 0.89 0.00 0.00 0.00 0.00 1.00 1.00 1.00
## s_avg 0.01 0.04 0.06 0.62 0.00 0.05 0.00 0.00 0.00
## f_avg 0.77 0.13 0.08 0.22 0.21 0.19 0.00 0.00 0.00
## quarter 0.41 0.03 0.13 0.55 0.00 0.17 0.00 0.00 0.00
## work_yrs 0.00 0.85 0.00 0.00 0.27 0.00 0.03 0.52 0.16
## frstlang 0.35 0.98 0.03 0.02 0.00 0.09 0.02 0.54 0.10
## salary 0.30 0.26 0.36 0.47 0.92 0.94 0.02 0.63 0.01
## satis 0.03 0.37 0.17 0.32 0.30 0.12 0.59 0.86 1.00
## work_yrs frstlang salary satis
## age 0.00 1.00 1.00 1
## sex 1.00 1.00 1.00 1
## gmat_tot 0.16 1.00 1.00 1
## gmat_qpc 0.01 1.00 1.00 1
## gmat_vpc 1.00 0.00 1.00 1
## gmat_tpc 0.25 1.00 1.00 1
## s_avg 1.00 1.00 0.87 1
## f_avg 1.00 1.00 1.00 1
## quarter 1.00 1.00 0.38 1
## work_yrs 0.00 1.00 1.00 1
## frstlang 0.65 0.00 1.00 1
## salary 0.88 0.15 0.00 0
## satis 0.07 0.19 0.00 0
##
## To see confidence intervals of the correlations, print with the short=FALSE option
cov(mbasalary.df)
## age sex gmat_tot gmat_qpc
## age 1.376904e+01 -4.513248e-02 -3.115879e+01 -1.192655e+01
## sex -4.513248e-02 1.872677e-01 -1.328841e+00 -1.053769e+00
## gmat_tot -3.115879e+01 -1.328841e+00 3.310688e+03 6.200233e+02
## gmat_qpc -1.192655e+01 -1.053769e+00 6.200233e+02 2.210731e+02
## gmat_vpc -2.763643e+00 5.463758e-01 7.260006e+02 3.814826e+01
## gmat_tpc -8.839978e+00 -4.908960e-02 6.839911e+02 1.357997e+02
## s_avg 2.116874e-01 2.096227e-02 2.480257e+00 -1.691233e-01
## f_avg -3.399348e-02 2.082698e-02 3.154688e+00 5.753854e-01
## quarter -2.045935e-01 -6.414267e-02 -5.891153e+00 6.001979e-01
## work_yrs 1.029494e+01 -1.580172e-02 -3.391634e+01 -1.137186e+01
## frstlang 6.796610e-02 2.138980e-04 -2.499933e+00 6.646346e-01
## salary -1.183042e+04 1.518264e+03 -1.611600e+05 -3.335823e+04
## satis -1.763499e+02 -8.780808e+00 1.765263e+03 3.348371e+02
## gmat_vpc gmat_tpc s_avg f_avg
## age -2.7636427 -8.8399775 0.21168739 -0.03399348
## sex 0.5463758 -0.0490896 0.02096227 0.02082698
## gmat_tot 726.0006417 683.9910698 2.48025721 3.15468838
## gmat_qpc 38.1482581 135.7996845 -0.16912329 0.57538542
## gmat_vpc 284.2481217 157.4932488 1.31357023 0.67207000
## gmat_tpc 157.4932488 196.6057057 0.62710008 0.58698618
## s_avg 1.3135702 0.6271001 0.14521760 0.11016898
## f_avg 0.6720700 0.5869862 0.11016898 0.27567237
## quarter -3.2676666 -1.2923719 -0.32237213 -0.26080880
## work_yrs -3.6181653 -7.8575172 0.15926392 -0.06628700
## frstlang -2.1145691 -0.4663244 -0.01671372 -0.00626026
## salary -5273.8523836 3522.7500067 2831.60098580 787.65597177
## satis 392.3562739 484.2466779 -4.62884495 2.12532927
## quarter work_yrs frstlang salary
## age -2.045935e-01 10.29493864 6.796610e-02 -1.183042e+04
## sex -6.414267e-02 -0.01580172 2.138980e-04 1.518264e+03
## gmat_tot -5.891153e+00 -33.91633914 -2.499933e+00 -1.611600e+05
## gmat_qpc 6.001979e-01 -11.37186171 6.646346e-01 -3.335823e+04
## gmat_vpc -3.267667e+00 -3.61816529 -2.114569e+00 -5.273852e+03
## gmat_tpc -1.292372e+00 -7.85751718 -4.663244e-01 3.522750e+03
## s_avg -3.223721e-01 0.15926392 -1.671372e-02 2.831601e+03
## f_avg -2.608088e-01 -0.06628700 -6.260260e-03 7.876560e+02
## quarter 1.232119e+00 -0.30866822 3.553381e-02 -9.296214e+03
## work_yrs -3.086682e-01 10.44882490 -2.898318e-02 1.486147e+03
## frstlang 3.553381e-02 -0.02898318 1.035266e-01 -1.419586e+03
## salary -9.296214e+03 1486.14704152 -1.419586e+03 2.596062e+09
## satis -5.227133e-03 -131.24080907 9.484532e+00 -6.347115e+06
## satis
## age -1.763499e+02
## sex -8.780808e+00
## gmat_tot 1.765263e+03
## gmat_qpc 3.348371e+02
## gmat_vpc 3.923563e+02
## gmat_tpc 4.842467e+02
## s_avg -4.628845e+00
## f_avg 2.125329e+00
## quarter -5.227133e-03
## work_yrs -1.312408e+02
## frstlang 9.484532e+00
## salary -6.347115e+06
## satis 1.380974e+05
cor(mbasalary.df)
## age sex gmat_tot gmat_qpc gmat_vpc
## age 1.00000000 -0.028106442 -0.14593840 -0.21616985 -0.04417547
## sex -0.02810644 1.000000000 -0.05336820 -0.16377435 0.07488782
## gmat_tot -0.14593840 -0.053368202 1.00000000 0.72473781 0.74839187
## gmat_qpc -0.21616985 -0.163774346 0.72473781 1.00000000 0.15218014
## gmat_vpc -0.04417547 0.074887816 0.74839187 0.15218014 1.00000000
## gmat_tpc -0.16990307 -0.008090213 0.84779965 0.65137754 0.66621604
## s_avg 0.14970402 0.127115144 0.11311702 -0.02984873 0.20445365
## f_avg -0.01744806 0.091663891 0.10442409 0.07370455 0.07592225
## quarter -0.04967221 -0.133533171 -0.09223903 0.03636638 -0.17460736
## work_yrs 0.85829810 -0.011296374 -0.18235434 -0.23660827 -0.06639049
## frstlang 0.05692649 0.001536205 -0.13503402 0.13892774 -0.38980465
## salary -0.06257355 0.068858628 -0.05497188 -0.04403293 -0.00613934
## satis -0.12788825 -0.054602220 0.08255770 0.06060004 0.06262375
## gmat_tpc s_avg f_avg quarter work_yrs
## age -0.169903066 0.14970402 -0.01744806 -4.967221e-02 0.858298096
## sex -0.008090213 0.12711514 0.09166389 -1.335332e-01 -0.011296374
## gmat_tot 0.847799647 0.11311702 0.10442409 -9.223903e-02 -0.182354339
## gmat_qpc 0.651377538 -0.02984873 0.07370455 3.636638e-02 -0.236608270
## gmat_vpc 0.666216035 0.20445365 0.07592225 -1.746074e-01 -0.066390490
## gmat_tpc 1.000000000 0.11736245 0.07973210 -8.303535e-02 -0.173361859
## s_avg 0.117362449 1.00000000 0.55062139 -7.621166e-01 0.129292714
## f_avg 0.079732099 0.55062139 1.00000000 -4.475064e-01 -0.039056921
## quarter -0.083035351 -0.76211664 -0.44750637 1.000000e+00 -0.086026406
## work_yrs -0.173361859 0.12929271 -0.03905692 -8.602641e-02 1.000000000
## frstlang -0.103362747 -0.13631308 -0.03705695 9.949226e-02 -0.027866747
## salary 0.004930901 0.14583606 0.02944303 -1.643699e-01 0.009023407
## satis 0.092934266 -0.03268664 0.01089273 -1.267198e-05 -0.109255286
## frstlang salary satis
## age 0.056926486 -0.062573547 -1.278882e-01
## sex 0.001536205 0.068858628 -5.460222e-02
## gmat_tot -0.135034017 -0.054971880 8.255770e-02
## gmat_qpc 0.138927742 -0.044032933 6.060004e-02
## gmat_vpc -0.389804653 -0.006139340 6.262375e-02
## gmat_tpc -0.103362747 0.004930901 9.293427e-02
## s_avg -0.136313080 0.145836062 -3.268664e-02
## f_avg -0.037056954 0.029443027 1.089273e-02
## quarter 0.099492259 -0.164369865 -1.267198e-05
## work_yrs -0.027866747 0.009023407 -1.092553e-01
## frstlang 1.000000000 -0.086592096 7.932264e-02
## salary -0.086592096 1.000000000 -3.352171e-01
## satis 0.079322637 -0.335217114 1.000000e+00
corrgram(mbasalary.df, order=TRUE, lower.panel=panel.shade,
upper.panel=panel.pie, text.panel=panel.txt,
main="MBA starting salary analysis")
Take a subset of the dataset consisting of only those people who actually got a job. Using this subset of data: Think about the problem as y = f(x), where y = Starting Salary and x = various factors that it could depend upon Examples: impact of {gender; first language; prior work experience; GMAT performance; MBA performance} etc in determining the Starting Salary Draw Draw Contingency Tables, as appropriate Run chi-square tests, as appropriate Run t-tests, as appropriate Write more than one regression model as, as y = f(x) where the vector of variables x may be different in different models Estimate the regression models using lm() in R; Compare multiple models (e.g. using the R-Square measure given by lm()); Select the ???best??? model that ???fits??? the data;
Interpret the output
newdata <- mbasalary.df[ which(mbasalary.df$salary !="998" & mbasalary.df$salary !="999"), ]
gotjob <- subset(newdata, salary>0)
chisq.test(gotjob)
## Warning in chisq.test(gotjob): Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: gotjob
## X-squared = 3620.8, df = 1224, p-value < 2.2e-16
detach(mbasalary.df)
attach(gotjob)
tablenew <- xtabs(~salary+age)
tablenew
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 85000 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0
## 95000 0 0 1 5 0 0 0 1 0 0 0 0 0 0 0
## 96000 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
## 98000 0 1 3 2 1 1 1 1 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 100000 0 1 4 1 1 1 0 0 0 1 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## 101000 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## 101600 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## 103000 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
## 105000 0 1 1 2 3 1 0 0 1 1 0 0 1 0 0
## 106000 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0
## 107000 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
## 107500 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 112000 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0
## 115000 0 0 1 1 0 3 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
## 120000 0 0 0 0 0 1 1 0 2 0 0 0 0 0 0
## 126710 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## 162000 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
tablenew <- xtabs(~salary+sex)
tablenew
## sex
## salary 1 2
## 64000 0 1
## 77000 1 0
## 78256 0 1
## 82000 0 1
## 85000 1 3
## 86000 0 2
## 88000 0 1
## 88500 1 0
## 90000 3 0
## 92000 2 1
## 93000 2 1
## 95000 4 3
## 96000 3 1
## 96500 1 0
## 97000 2 0
## 98000 6 4
## 99000 0 1
## 100000 4 5
## 100400 1 0
## 101000 0 2
## 101100 1 0
## 101600 1 0
## 102500 1 0
## 103000 1 0
## 104000 2 0
## 105000 11 0
## 106000 2 1
## 107000 1 0
## 107300 1 0
## 107500 1 0
## 108000 2 0
## 110000 0 1
## 112000 3 0
## 115000 5 0
## 118000 1 0
## 120000 3 1
## 126710 1 0
## 130000 1 0
## 145800 1 0
## 146000 1 0
## 162000 1 0
## 220000 0 1
tablenew <- xtabs(~salary+gmat_tot)
tablenew
## gmat_tot
## salary 500 520 530 540 550 560 570 580 590 600 610 620 630 640 650 660
## 64000 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## 78256 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
## 90000 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
## 93000 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0
## 95000 0 0 1 0 0 2 0 0 0 0 2 0 0 0 0 0
## 96000 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0
## 96500 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
## 98000 0 0 0 0 0 1 3 1 1 0 1 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 2 0 1 0 1 1 0 1 0 2 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
## 104000 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 2 0 2 3 0 1 0 1 0 0 1 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
## 108000 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## 112000 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## 115000 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
## 126710 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## gmat_tot
## salary 670 680 700 710 720
## 64000 0 0 0 0 0
## 77000 0 0 0 0 0
## 78256 0 0 0 0 0
## 82000 1 0 0 0 0
## 85000 0 0 1 0 1
## 86000 0 1 0 0 0
## 88000 0 0 0 0 0
## 88500 0 0 0 0 0
## 90000 0 0 0 0 0
## 92000 0 0 0 1 0
## 93000 0 0 0 0 0
## 95000 2 0 0 0 0
## 96000 0 0 0 0 0
## 96500 0 0 0 0 0
## 97000 0 0 0 0 0
## 98000 1 1 0 1 0
## 99000 0 0 0 0 0
## 100000 0 0 0 1 0
## 100400 0 0 0 0 0
## 101000 0 0 0 0 0
## 101100 0 0 0 0 0
## 101600 0 0 0 0 0
## 102500 1 0 0 0 0
## 103000 0 0 0 0 0
## 104000 0 0 0 0 0
## 105000 0 1 0 0 0
## 106000 0 2 0 0 0
## 107000 0 0 0 0 0
## 107300 0 0 0 0 0
## 107500 0 0 0 0 0
## 108000 0 0 0 0 0
## 110000 0 0 0 0 0
## 112000 1 1 0 0 0
## 115000 0 0 0 1 0
## 118000 0 0 0 0 0
## 120000 1 0 1 0 0
## 126710 0 0 0 0 0
## 130000 0 0 0 0 0
## 145800 0 0 0 0 0
## 146000 0 0 0 0 0
## 162000 0 0 1 0 0
## 220000 0 0 0 0 0
tablenew <- xtabs(~salary+frstlang)
tablenew
## frstlang
## salary 1 2
## 64000 1 0
## 77000 1 0
## 78256 1 0
## 82000 1 0
## 85000 4 0
## 86000 2 0
## 88000 1 0
## 88500 1 0
## 90000 3 0
## 92000 3 0
## 93000 3 0
## 95000 7 0
## 96000 4 0
## 96500 1 0
## 97000 2 0
## 98000 8 2
## 99000 0 1
## 100000 9 0
## 100400 1 0
## 101000 2 0
## 101100 1 0
## 101600 1 0
## 102500 1 0
## 103000 1 0
## 104000 1 1
## 105000 11 0
## 106000 3 0
## 107000 1 0
## 107300 0 1
## 107500 1 0
## 108000 2 0
## 110000 1 0
## 112000 3 0
## 115000 5 0
## 118000 0 1
## 120000 4 0
## 126710 1 0
## 130000 1 0
## 145800 1 0
## 146000 1 0
## 162000 1 0
## 220000 0 1
tablenew <- xtabs(~salary+work_yrs)
tablenew
## work_yrs
## salary 0 1 2 3 4 5 6 7 8 10 15 16
## 64000 0 0 1 0 0 0 0 0 0 0 0 0
## 77000 0 0 1 0 0 0 0 0 0 0 0 0
## 78256 0 1 0 0 0 0 0 0 0 0 0 0
## 82000 0 1 0 0 0 0 0 0 0 0 0 0
## 85000 0 1 2 1 0 0 0 0 0 0 0 0
## 86000 0 0 1 1 0 0 0 0 0 0 0 0
## 88000 0 0 0 1 0 0 0 0 0 0 0 0
## 88500 0 0 0 1 0 0 0 0 0 0 0 0
## 90000 0 0 2 0 0 1 0 0 0 0 0 0
## 92000 0 0 3 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 1 1 0 0 1 0 0 0
## 95000 1 1 2 2 0 1 0 0 0 0 0 0
## 96000 0 1 2 0 1 0 0 0 0 0 0 0
## 96500 0 0 1 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 1 1 0 0 0 0 0 0 0
## 98000 0 0 7 1 1 0 0 1 0 0 0 0
## 99000 0 0 0 0 0 1 0 0 0 0 0 0
## 100000 0 0 6 1 1 0 1 0 0 0 0 0
## 100400 0 0 0 1 0 0 0 0 0 0 0 0
## 101000 0 0 2 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 1 0 0 0
## 101600 0 0 0 1 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 1 0 0 0 0 0
## 103000 0 0 0 1 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 2 0 0 0 0 0 0 0
## 105000 0 0 4 4 0 1 1 0 0 0 0 1
## 106000 0 0 0 0 0 0 2 0 1 0 0 0
## 107000 0 0 1 0 0 0 0 0 0 0 0 0
## 107300 0 0 1 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 1 0 0 0 0 0 0 0 0
## 108000 0 0 0 1 1 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 1 0 0 0 0 0
## 112000 0 0 1 0 0 0 1 0 0 0 0 1
## 115000 0 2 0 1 2 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 1 0 0
## 120000 0 0 0 1 0 2 0 0 1 0 0 0
## 126710 0 0 0 1 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 1 0 0 0 0 0 0 0
## 145800 0 0 1 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 1 0
## 162000 0 1 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 1 0
tablenew <- xtabs(~salary+age+sex+work_yrs+gmat_tot)
tablenew
## , , sex = 1, work_yrs = 0, gmat_tot = 500
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 0, gmat_tot = 500
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 1, gmat_tot = 500
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 1, gmat_tot = 500
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 2, gmat_tot = 500
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 2, gmat_tot = 500
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 3, gmat_tot = 500
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 3, gmat_tot = 500
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 4, gmat_tot = 500
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 4, gmat_tot = 500
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 5, gmat_tot = 500
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 5, gmat_tot = 500
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 6, gmat_tot = 500
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 6, gmat_tot = 500
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 7, gmat_tot = 500
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 7, gmat_tot = 500
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 8, gmat_tot = 500
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 8, gmat_tot = 500
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 10, gmat_tot = 500
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 10, gmat_tot = 500
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 15, gmat_tot = 500
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 15, gmat_tot = 500
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
##
## , , sex = 1, work_yrs = 16, gmat_tot = 500
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 16, gmat_tot = 500
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 0, gmat_tot = 520
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 0, gmat_tot = 520
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 1, gmat_tot = 520
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 1, gmat_tot = 520
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 2, gmat_tot = 520
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 2, gmat_tot = 520
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 3, gmat_tot = 520
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 3, gmat_tot = 520
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 4, gmat_tot = 520
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 4, gmat_tot = 520
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 5, gmat_tot = 520
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 5, gmat_tot = 520
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 6, gmat_tot = 520
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 6, gmat_tot = 520
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 7, gmat_tot = 520
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 7, gmat_tot = 520
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 8, gmat_tot = 520
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 8, gmat_tot = 520
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 10, gmat_tot = 520
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 10, gmat_tot = 520
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 15, gmat_tot = 520
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 15, gmat_tot = 520
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 16, gmat_tot = 520
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 16, gmat_tot = 520
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 0, gmat_tot = 530
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 0, gmat_tot = 530
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 1, gmat_tot = 530
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 1, gmat_tot = 530
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 2, gmat_tot = 530
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 2, gmat_tot = 530
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 3, gmat_tot = 530
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 3, gmat_tot = 530
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 4, gmat_tot = 530
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 4, gmat_tot = 530
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 5, gmat_tot = 530
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 5, gmat_tot = 530
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 6, gmat_tot = 530
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 6, gmat_tot = 530
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 7, gmat_tot = 530
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 7, gmat_tot = 530
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 8, gmat_tot = 530
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 8, gmat_tot = 530
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 10, gmat_tot = 530
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 10, gmat_tot = 530
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 15, gmat_tot = 530
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 15, gmat_tot = 530
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 16, gmat_tot = 530
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 16, gmat_tot = 530
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 0, gmat_tot = 540
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 0, gmat_tot = 540
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 1, gmat_tot = 540
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 1, gmat_tot = 540
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 2, gmat_tot = 540
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 2, gmat_tot = 540
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 3, gmat_tot = 540
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 3, gmat_tot = 540
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 4, gmat_tot = 540
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 4, gmat_tot = 540
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 5, gmat_tot = 540
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 5, gmat_tot = 540
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 6, gmat_tot = 540
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 6, gmat_tot = 540
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 7, gmat_tot = 540
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 7, gmat_tot = 540
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 8, gmat_tot = 540
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 8, gmat_tot = 540
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 10, gmat_tot = 540
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 10, gmat_tot = 540
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 15, gmat_tot = 540
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 15, gmat_tot = 540
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 16, gmat_tot = 540
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 16, gmat_tot = 540
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 0, gmat_tot = 550
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 0, gmat_tot = 550
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 1, gmat_tot = 550
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 1, gmat_tot = 550
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 2, gmat_tot = 550
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 2, gmat_tot = 550
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 3, gmat_tot = 550
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 3, gmat_tot = 550
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 4, gmat_tot = 550
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 4, gmat_tot = 550
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 5, gmat_tot = 550
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 5, gmat_tot = 550
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 6, gmat_tot = 550
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 6, gmat_tot = 550
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 7, gmat_tot = 550
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 7, gmat_tot = 550
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 8, gmat_tot = 550
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 8, gmat_tot = 550
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 10, gmat_tot = 550
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 10, gmat_tot = 550
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 15, gmat_tot = 550
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 15, gmat_tot = 550
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 16, gmat_tot = 550
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 16, gmat_tot = 550
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 0, gmat_tot = 560
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 0, gmat_tot = 560
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 1, gmat_tot = 560
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 1, gmat_tot = 560
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 2, gmat_tot = 560
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 2, gmat_tot = 560
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 3, gmat_tot = 560
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 3, gmat_tot = 560
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 4, gmat_tot = 560
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 4, gmat_tot = 560
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 5, gmat_tot = 560
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 5, gmat_tot = 560
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 6, gmat_tot = 560
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 6, gmat_tot = 560
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 7, gmat_tot = 560
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 7, gmat_tot = 560
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 8, gmat_tot = 560
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 8, gmat_tot = 560
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 10, gmat_tot = 560
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 10, gmat_tot = 560
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 15, gmat_tot = 560
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 15, gmat_tot = 560
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 16, gmat_tot = 560
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 16, gmat_tot = 560
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 0, gmat_tot = 570
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 0, gmat_tot = 570
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 1, gmat_tot = 570
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 1, gmat_tot = 570
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 2, gmat_tot = 570
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 2, gmat_tot = 570
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 3, gmat_tot = 570
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 3, gmat_tot = 570
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 4, gmat_tot = 570
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 4, gmat_tot = 570
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 5, gmat_tot = 570
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 5, gmat_tot = 570
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 6, gmat_tot = 570
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 2, work_yrs = 6, gmat_tot = 570
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 108000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 110000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 112000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 115000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 118000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 126710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 130000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 145800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 146000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 162000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 220000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## , , sex = 1, work_yrs = 7, gmat_tot = 570
##
## age
## salary 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
## 64000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 77000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 78256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 82000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 85000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 86000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 88500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 90000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 92000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 93000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 95000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 96500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 97000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 98000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 99000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 100400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 101600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 102500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 103000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 104000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 105000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 106000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 107500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## [ reached getOption("max.print") -- omitted 12 row(s) and 345 matrix slice(s) ]
chisq.test(xtabs(~salary + gmat_tpc, data = gotjob))
## Warning in chisq.test(xtabs(~salary + gmat_tpc, data = gotjob)): Chi-
## squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: xtabs(~salary + gmat_tpc, data = gotjob)
## X-squared = 1422.2, df = 1230, p-value = 0.0001065
chisq.test(xtabs(~salary + age, data = gotjob))
## Warning in chisq.test(xtabs(~salary + age, data = gotjob)): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: xtabs(~salary + age, data = gotjob)
## X-squared = 717.62, df = 574, p-value = 3.929e-05
chisq.test(xtabs(~salary + sex, data = gotjob))
## Warning in chisq.test(xtabs(~salary + sex, data = gotjob)): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: xtabs(~salary + sex, data = gotjob)
## X-squared = 52.681, df = 41, p-value = 0.1045
chisq.test(xtabs(~salary + gmat_tot, data = gotjob))
## Warning in chisq.test(xtabs(~salary + gmat_tot, data = gotjob)): Chi-
## squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: xtabs(~salary + gmat_tot, data = gotjob)
## X-squared = 927.24, df = 820, p-value = 0.005279
chisq.test(xtabs(~salary + work_yrs, data = gotjob))
## Warning in chisq.test(xtabs(~salary + work_yrs, data = gotjob)): Chi-
## squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: xtabs(~salary + work_yrs, data = gotjob)
## X-squared = 535.23, df = 451, p-value = 0.003809
chisq.test(xtabs(~salary + frstlang, data = gotjob))
## Warning in chisq.test(xtabs(~salary + frstlang, data = gotjob)): Chi-
## squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: xtabs(~salary + frstlang, data = gotjob)
## X-squared = 69.847, df = 41, p-value = 0.003296
t.test(salary,gmat_tpc, data = gotjob)
##
## Welch Two Sample t-test
##
## data: salary and gmat_tpc
## t = 58.47, df = 102, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 99453.94 106438.49
## sample estimates:
## mean of x mean of y
## 103030.73786 84.52427
t.test(salary,age, data = gotjob)
##
## Welch Two Sample t-test
##
## data: salary and age
## t = 58.503, df = 102, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 99511.69 106496.23
## sample estimates:
## mean of x mean of y
## 103030.7379 26.7767
t.test(salary,sex, data = gotjob)
##
## Welch Two Sample t-test
##
## data: salary and sex
## t = 58.517, df = 102, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 99537.17 106521.71
## sample estimates:
## mean of x mean of y
## 1.030307e+05 1.300971e+00
t.test(salary,gmat_tot, data = gotjob)
##
## Welch Two Sample t-test
##
## data: salary and gmat_tot
## t = 58.168, df = 102, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 98922.43 105907.00
## sample estimates:
## mean of x mean of y
## 103030.7379 616.0194
t.test(salary,work_yrs, data = gotjob)
##
## Welch Two Sample t-test
##
## data: salary and work_yrs
## t = 58.516, df = 102, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 99534.79 106519.33
## sample estimates:
## mean of x mean of y
## 1.030307e+05 3.679612e+00
t.test(salary,frstlang, data = gotjob)
##
## Welch Two Sample t-test
##
## data: salary and frstlang
## t = 58.517, df = 102, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 99537.4 106521.9
## sample estimates:
## mean of x mean of y
## 1.030307e+05 1.067961e+00
From the t-tests and chi-square tests, using the p-value < 0.05, we can reject the null hypothesis and say that the salary is affected by the factors - age, sex, gmat total score and percentile, work experience as well as first language.
fit1 <- lm(salary ~ age+quarter+gmat_tpc+gmat_qpc+gmat_vpc+frstlang, data=gotjob)
summary(fit1)
##
## Call:
## lm(formula = salary ~ age + quarter + gmat_tpc + gmat_qpc + gmat_vpc +
## frstlang, data = gotjob)
##
## Residuals:
## Min 1Q Median 3Q Max
## -26852 -9178 -615 5382 68168
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 44716.7 19552.1 2.287 0.0244 *
## age 2583.0 508.3 5.082 1.84e-06 ***
## quarter -1744.3 1375.4 -1.268 0.2078
## gmat_tpc -1424.6 683.3 -2.085 0.0397 *
## gmat_qpc 834.1 350.0 2.383 0.0191 *
## gmat_vpc 535.2 351.3 1.523 0.1309
## frstlang 4649.7 6617.1 0.703 0.4840
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15120 on 96 degrees of freedom
## Multiple R-squared: 0.3262, Adjusted R-squared: 0.284
## F-statistic: 7.744 on 6 and 96 DF, p-value: 8.366e-07
fit2 <- lm(salary ~ age+sex+gmat_tot+work_yrs, data=gotjob)
summary(fit2)
##
## Call:
## lm(formula = salary ~ age + sex + gmat_tot + work_yrs, data = gotjob)
##
## Residuals:
## Min 1Q Median 3Q Max
## -30250 -8730 -2148 5632 82607
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 56162.20 30473.15 1.843 0.0684 .
## age 2298.17 1009.90 2.276 0.0250 *
## sex -3898.40 3407.50 -1.144 0.2554
## gmat_tot -18.01 30.88 -0.583 0.5610
## work_yrs 407.10 1095.76 0.372 0.7111
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15650 on 98 degrees of freedom
## Multiple R-squared: 0.2628, Adjusted R-squared: 0.2327
## F-statistic: 8.733 on 4 and 98 DF, p-value: 4.512e-06
From the above 2 regression models, it can be inferred that salary is most affected by age, sex, gmat_tpc, work experience and first language.
fit2 <- lm(salary ~ age+sex+gmat_tot+work_yrs+frstlang, data=gotjob)
summary(fit2)
##
## Call:
## lm(formula = salary ~ age + sex + gmat_tot + work_yrs + frstlang,
## data = gotjob)
##
## Residuals:
## Min 1Q Median 3Q Max
## -29716 -9228 -2126 5892 78157
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 58246.31 30361.47 1.918 0.058 .
## age 1667.25 1101.40 1.514 0.133
## sex -4655.65 3433.79 -1.356 0.178
## gmat_tot -11.76 31.05 -0.379 0.706
## work_yrs 854.08 1136.21 0.752 0.454
## frstlang 9642.71 6887.30 1.400 0.165
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15580 on 97 degrees of freedom
## Multiple R-squared: 0.2774, Adjusted R-squared: 0.2401
## F-statistic: 7.447 on 5 and 97 DF, p-value: 5.982e-06
fitted(fit2)
## 35 36 37 38 39 40 41
## 88351.29 97071.33 93971.97 95178.79 101609.40 102241.44 95369.78
## 42 43 44 45 46 47 48
## 94528.81 96589.71 98126.27 98405.59 90990.20 98371.29 106201.51
## 49 50 51 52 53 54 55
## 98980.36 101010.21 102442.31 101470.64 110466.75 113340.82 112793.86
## 56 57 58 59 60 61 62
## 105724.57 103404.10 100422.32 102860.38 134866.96 104963.64 100755.32
## 63 64 65 66 67 68 69
## 129146.49 103756.83 105956.48 110466.75 107550.32 135327.39 97538.39
## 115 116 117 118 119 120 121
## 94902.72 94677.43 115401.72 98745.20 100304.75 98371.29 99076.75
## 122 123 124 125 126 127 128
## 96351.31 98253.72 107429.36 112354.46 93480.49 111750.23 94677.43
## 129 130 131 132 133 134 135
## 103521.67 106748.47 101148.96 103521.67 127118.58 101235.49 108830.55
## 136 137 138 139 186 187 188
## 96811.75 104258.18 102355.78 97665.83 91664.61 103521.67 99803.39
## 189 190 191 192 193 194 195
## 99215.51 101158.83 104614.16 104375.76 105659.23 92422.30 95382.89
## 196 197 198 199 200 201 202
## 95147.74 111604.84 106160.59 109214.33 97461.73 94559.86 93245.33
## 203 204 205 206 207 208 209
## 110656.30 110497.80 98136.14 108712.97 120176.25 106630.89 96960.37
## 256 257 258 259 260 261 262
## 93715.64 95528.27 94355.75 101000.34 97081.19 104877.11 98862.78
## 263 264 265 266 267 268 269
## 99450.66 101235.49 98253.72 93245.33 95991.96 106738.60 101736.85
## 270 271 272 273 274
## 121745.66 96468.89 101127.78 102677.46 141842.94
residuals(fit2)
## 35 36 37 38 39 40
## -3351.2862 -12071.3254 -7971.9743 -7178.7890 -9609.4004 -9241.4448
## 41 42 43 44 45 46
## -369.7805 471.1916 -1589.7079 -2126.2707 -2405.5854 9009.8002
## 47 48 49 50 51 52
## 1628.7073 -6201.5057 6019.6444 3989.7937 2557.6948 3529.3562
## 53 54 55 56 57 58
## -5466.7538 -8340.8205 -6793.8552 275.4255 4095.9021 7577.6766
## 59 60 61 62 63 64
## 7139.6234 -22866.9566 10036.3578 14244.6845 -11146.4877 16243.1724
## 65 66 67 68 69 115
## 14043.5163 9533.2462 12449.6792 10672.6059 64461.6122 -12902.7182
## 116 117 118 119 120 121
## -2677.4338 -22401.7200 -3745.2024 -5304.7468 -2371.2927 -2576.7522
## 122 123 124 125 126 127
## 1648.6892 -253.7161 -9429.3601 -13354.4575 6519.5120 -11750.2274
## 128 129 130 131 132 133
## 6322.5662 -521.6745 -2748.4710 3851.0371 1478.3255 -22118.5788
## 134 135 136 137 138 139
## 5764.5094 3169.4495 18188.2517 10741.8172 27644.2225 48134.1668
## 186 187 188 189 190 191
## -13408.6105 -15021.6745 -9803.3917 -9215.5087 -8158.8317 -9614.1565
## 192 193 194 195 196 197
## -7375.7593 -8659.2329 5577.7012 2617.1067 2852.2599 -13604.8365
## 198 199 200 201 202 203
## -8160.5881 -11214.3290 2538.2712 5440.1428 7754.6651 -9556.2968
## 204 205 206 207 208 209
## -7997.8026 6863.8605 -2712.9739 -12876.2503 1369.1056 15039.6263
## 256 257 258 259 260 261
## -29715.6412 -18528.2747 -9355.7529 -16000.3375 -11081.1943 -14877.1145
## 262 263 264 265 266 267
## -6862.7790 -4450.6619 -5235.4906 -253.7161 6754.6651 4008.0438
## 268 269 270 271 272 273
## -6338.6022 -136.8458 -17745.6634 8531.1126 13872.2172 24032.5416
## 274
## 78157.0555
TASK 2c: COMPARE THOSE WHO GOT A JOB WITH THOSE WHO DID NOT GET A JOB? IDENTIFY WHY?
Compare the remaining subset of those people who did not get a job and compare them with those people who got a job. Here, we are not analyzing what drives a higher salary. Instead, we are analysing the two groups who got a job / did not get a job. Draw Contingency Tables as appropriate Run Chi-Square test Run a Logistic Regression
nojob <- subset(mbasalary.df,salary==0)
nojob
## age sex gmat_tot gmat_qpc gmat_vpc gmat_tpc s_avg f_avg quarter
## 1 23 2 620 77 87 87 3.40 3.00 1
## 2 24 1 610 90 71 87 3.50 4.00 1
## 3 24 1 670 99 78 95 3.30 3.25 1
## 4 24 1 570 56 81 75 3.30 2.67 1
## 6 24 1 640 82 89 91 3.90 3.75 1
## 7 25 1 610 89 74 87 3.40 3.50 1
## 8 25 2 650 88 89 92 3.30 3.75 1
## 22 27 1 740 99 96 99 3.50 3.50 1
## 23 27 1 750 99 98 99 3.40 3.50 1
## 24 28 2 540 75 50 65 3.60 4.00 1
## 25 29 1 580 56 87 78 3.64 3.33 1
## 27 31 2 560 60 78 72 3.30 3.75 1
## 28 32 1 760 99 99 99 3.40 3.00 1
## 29 32 1 640 79 91 91 3.60 3.75 1
## 31 34 2 620 75 89 87 3.30 3.00 1
## 32 37 2 560 43 87 72 3.40 3.50 1
## 33 42 2 650 75 98 93 3.38 3.00 1
## 34 48 1 590 84 62 81 3.80 4.00 1
## 70 22 1 600 95 54 83 3.00 3.00 2
## 71 23 1 640 89 87 92 3.00 3.00 2
## 72 24 1 550 73 63 69 3.10 3.00 2
## 73 24 1 570 82 58 75 3.09 3.50 2
## 74 24 1 620 82 84 87 3.10 3.50 2
## 75 25 2 570 61 81 76 3.00 3.25 2
## 76 25 1 660 94 84 94 3.27 3.75 2
## 77 25 1 680 94 92 97 3.17 3.50 2
## 88 26 2 560 64 71 72 3.20 3.25 2
## 89 26 1 560 87 41 72 3.00 3.00 2
## 90 26 1 530 68 54 62 3.09 3.17 2
## 92 27 1 720 99 95 99 3.10 3.25 2
## 93 27 1 590 60 87 81 3.00 2.75 2
## 97 28 1 620 81 90 89 3.20 3.00 2
## 98 28 2 610 85 78 86 3.10 3.00 2
## 100 29 1 660 94 87 94 3.00 3.00 2
## 102 29 1 510 57 50 55 3.27 3.40 2
## 103 29 2 640 90 84 92 3.20 3.00 2
## 104 29 1 610 91 62 86 3.10 3.67 2
## 106 29 1 580 79 67 78 3.00 3.25 2
## 107 30 1 680 97 87 96 3.00 3.00 2
## 109 32 2 610 64 89 86 3.25 0.00 2
## 110 35 1 540 43 78 65 3.20 3.25 2
## 111 35 1 630 66 95 90 3.08 3.25 2
## 112 36 2 530 48 71 62 3.00 2.50 2
## 113 36 1 650 87 89 93 3.00 3.20 2
## 114 43 1 630 82 87 89 3.10 3.00 2
## 140 23 1 720 95 98 99 2.80 2.50 3
## 141 24 2 640 94 78 92 2.90 3.25 3
## 142 24 1 710 96 97 99 2.80 2.75 3
## 143 24 1 670 94 89 96 2.70 3.00 3
## 144 24 2 710 97 97 99 2.80 3.00 3
## 146 24 1 600 89 62 83 2.90 3.00 3
## 147 24 2 640 96 71 91 2.70 2.50 3
## 150 25 1 550 72 58 69 2.90 3.00 3
## 151 25 1 710 99 91 98 2.90 3.25 3
## 159 26 1 560 56 81 72 2.80 3.25 3
## 160 26 1 540 52 71 65 2.70 2.75 3
## 162 26 2 570 48 89 75 2.82 2.50 3
## 163 26 1 610 82 81 86 2.90 2.75 3
## 164 27 1 650 89 84 93 2.90 3.00 3
## 165 27 2 550 66 63 69 2.90 3.00 3
## 167 27 1 610 97 45 86 2.70 2.50 3
## 168 27 2 630 82 89 89 2.70 3.25 3
## 169 27 2 560 61 74 73 2.80 3.25 3
## 180 29 1 590 92 58 81 2.80 2.75 3
## 182 32 1 550 52 78 71 2.70 2.75 3
## 183 34 1 610 79 81 86 2.80 3.00 3
## 184 34 1 610 82 78 86 2.70 3.00 3
## 185 43 1 480 49 41 45 2.90 3.25 3
## 213 25 1 730 98 96 99 2.40 2.75 4
## 218 25 1 700 99 87 98 2.00 2.00 4
## 219 26 1 660 93 87 95 2.60 2.00 4
## 220 26 1 450 28 46 34 2.10 2.00 4
## 222 26 1 600 75 78 83 2.20 2.25 4
## 227 27 2 560 59 74 73 2.40 2.50 4
## 229 27 1 630 93 78 91 2.10 2.50 4
## 230 27 1 580 84 58 78 2.70 2.75 4
## 232 27 1 670 89 91 95 3.60 3.25 4
## 233 27 1 580 74 70 78 3.40 3.25 4
## 234 28 1 560 74 67 73 3.60 3.60 4
## 236 28 1 710 94 98 99 3.40 3.75 4
## 237 28 1 570 69 71 0 2.30 2.50 4
## 238 29 1 530 35 81 62 3.30 2.75 4
## 241 29 1 670 91 91 95 3.30 3.25 4
## 242 29 1 630 99 50 89 2.90 3.25 4
## 243 29 2 680 89 96 96 2.80 3.00 4
## 244 30 1 650 88 92 93 3.45 3.83 4
## 250 31 1 570 75 62 75 2.80 3.00 4
## 253 32 1 510 79 22 54 2.30 2.25 4
## 254 35 1 570 72 71 75 3.30 4.00 4
## 255 39 2 700 89 98 98 3.30 3.25 4
## work_yrs frstlang salary satis
## 1 2 1 0 7
## 2 2 1 0 6
## 3 2 1 0 6
## 4 1 1 0 7
## 6 2 1 0 6
## 7 2 1 0 5
## 8 2 1 0 6
## 22 3 1 0 6
## 23 1 2 0 5
## 24 5 1 0 5
## 25 3 1 0 5
## 27 10 1 0 7
## 28 5 1 0 5
## 29 7 1 0 6
## 31 7 1 0 6
## 32 9 1 0 6
## 33 13 1 0 5
## 34 22 1 0 6
## 70 1 1 0 5
## 71 2 1 0 7
## 72 0 2 0 5
## 73 2 1 0 6
## 74 1 1 0 5
## 75 3 1 0 4
## 76 2 1 0 5
## 77 2 1 0 6
## 88 3 1 0 6
## 89 3 1 0 6
## 90 4 2 0 5
## 92 5 1 0 5
## 93 3 1 0 6
## 97 4 1 0 6
## 98 5 1 0 6
## 100 1 1 0 6
## 102 5 1 0 5
## 103 3 1 0 5
## 104 7 1 0 5
## 106 4 1 0 6
## 107 4 1 0 5
## 109 11 1 0 7
## 110 8 1 0 5
## 111 12 1 0 5
## 112 7 1 0 5
## 113 18 1 0 6
## 114 16 1 0 5
## 140 1 1 0 5
## 141 2 2 0 4
## 142 2 1 0 7
## 143 2 1 0 7
## 144 2 1 0 7
## 146 1 1 0 6
## 147 2 1 0 6
## 150 3 1 0 6
## 151 1 1 0 6
## 159 4 1 0 6
## 160 2 1 0 6
## 162 3 1 0 5
## 163 3 1 0 6
## 164 2 1 0 6
## 165 3 1 0 4
## 167 4 2 0 5
## 168 5 1 0 6
## 169 5 1 0 6
## 180 3 2 0 5
## 182 7 1 0 6
## 183 11 1 0 6
## 184 12 1 0 5
## 185 22 1 0 5
## 213 2 1 0 6
## 218 1 1 0 7
## 219 2 1 0 5
## 220 4 1 0 6
## 222 2 1 0 6
## 227 2 1 0 5
## 229 4 1 0 5
## 230 1 1 0 5
## 232 5 1 0 6
## 233 3 1 0 6
## 234 5 1 0 5
## 236 6 1 0 6
## 237 5 1 0 5
## 238 6 1 0 7
## 241 3 1 0 5
## 242 1 2 0 4
## 243 4 1 0 5
## 244 2 1 0 6
## 250 1 1 0 6
## 253 5 2 0 5
## 254 8 1 0 6
## 255 5 1 0 5
dim(nojob)
## [1] 90 13
gotjob <- gotjob[1:90,]
table1 <- xtabs(~gotjob$age+nojob$age)
table1
## nojob$age
## gotjob$age 22 23 24 25 26 27 28 29 30 31 32 34 35 36 37 39 42 43 48
## 22 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 23 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0
## 24 0 0 1 2 1 3 1 2 0 0 1 0 2 1 0 0 0 0 0
## 25 0 0 3 2 1 4 1 3 1 1 2 1 0 0 1 0 0 0 0
## 26 0 0 1 0 1 1 0 2 0 0 1 0 1 0 0 0 1 1 1
## 27 0 0 4 1 4 2 0 0 0 0 1 1 0 0 0 1 0 0 0
## 28 0 1 1 2 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0
## 29 0 0 0 0 1 2 1 0 0 0 0 1 0 0 0 0 0 0 0
## 30 1 0 2 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0
## 31 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## 32 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## 33 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 34 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 39 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 40 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
table1 <- xtabs(~gotjob$sex+nojob$sex)
table1
## nojob$sex
## gotjob$sex 1 2
## 1 45 17
## 2 22 6
table1 <- xtabs(~gotjob$work_yrs+nojob$work_yrs)
table1
## nojob$work_yrs
## gotjob$work_yrs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 16 18 22
## 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 1 0 0 1 4 1 2 0 0 0 0 0 0 0 0 0 0 0
## 2 0 3 8 2 4 4 2 3 1 0 1 0 1 0 0 1 1
## 3 0 4 2 2 1 2 0 0 1 1 0 1 0 1 1 0 1
## 4 0 1 3 4 0 0 0 1 0 0 0 0 1 0 0 0 0
## 5 0 2 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0
## 6 0 0 4 0 0 2 0 1 0 0 0 0 0 0 0 0 0
## 7 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 8 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 15 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 16 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
table1 <- xtabs(~gotjob$quarter+nojob$quarter)
table1
## nojob$quarter
## gotjob$quarter 1 2 3 4
## 1 18 17 0 0
## 2 0 10 15 0
## 3 0 0 8 16
## 4 0 0 0 6
table1 <- xtabs(~gotjob$gmat_tot+nojob$gmat_tot)
table1
## nojob$gmat_tot
## gotjob$gmat_tot 450 480 510 530 540 550 560 570 580 590 600 610 620 630
## 500 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## 520 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## 530 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 540 0 0 0 0 0 0 0 0 1 0 0 0 0 0
## 550 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## 560 0 0 0 0 1 0 0 0 0 0 1 1 0 0
## 570 0 0 0 0 0 0 1 0 0 0 0 0 0 1
## 580 0 1 0 0 0 0 1 0 0 1 0 0 0 0
## 590 0 0 0 1 0 0 0 0 1 0 0 0 0 0
## 600 0 0 0 0 0 0 1 1 0 0 1 0 1 0
## 610 0 0 0 0 0 1 0 0 0 0 1 1 0 0
## 620 0 0 1 1 0 3 0 1 0 0 0 3 0 1
## 630 0 0 0 0 0 0 0 1 1 1 0 1 1 0
## 640 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 650 0 0 0 0 1 0 1 1 0 0 0 0 1 0
## 660 0 0 0 1 0 0 0 0 1 0 0 0 1 0
## 670 0 0 0 0 1 0 1 0 0 0 0 1 0 0
## 680 1 0 0 0 0 0 0 2 0 0 0 0 0 1
## 700 0 0 1 0 0 0 0 0 0 1 0 1 0 0
## 710 0 0 0 0 0 0 2 0 0 0 0 0 0 1
## 720 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## nojob$gmat_tot
## gotjob$gmat_tot 640 650 660 670 680 700 710 720 730 740 750 760
## 500 0 0 0 0 0 0 0 0 0 0 0 0
## 520 0 0 0 0 0 0 0 0 0 0 0 0
## 530 0 0 0 0 0 0 0 0 0 0 1 0
## 540 0 0 0 0 0 0 0 0 0 0 0 0
## 550 0 0 0 0 0 0 1 0 0 0 0 0
## 560 0 0 0 0 1 1 1 0 0 1 0 1
## 570 1 2 0 1 0 0 0 0 0 0 0 0
## 580 1 0 1 0 0 0 1 1 0 0 0 0
## 590 0 0 0 0 0 0 0 0 0 0 0 0
## 600 0 0 0 1 1 0 0 1 0 0 0 0
## 610 1 0 0 0 0 0 0 0 0 0 0 0
## 620 0 0 0 1 0 0 1 0 0 0 0 0
## 630 0 0 1 0 0 0 0 0 0 0 0 0
## 640 0 0 1 0 0 0 0 0 0 0 0 0
## 650 0 1 0 0 0 1 0 0 0 0 0 0
## 660 0 1 0 0 0 0 0 0 0 0 0 0
## 670 1 1 0 0 1 0 0 0 1 0 0 0
## 680 1 0 0 1 0 0 0 0 0 0 0 0
## 700 0 0 0 0 0 0 0 0 0 0 0 0
## 710 1 0 0 0 0 0 0 0 0 0 0 0
## 720 0 0 0 0 0 0 0 0 0 0 0 0
chisq.test(table(gotjob$age,nojob$age))
## Warning in chisq.test(table(gotjob$age, nojob$age)): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: table(gotjob$age, nojob$age)
## X-squared = 229.27, df = 252, p-value = 0.8449
chisq.test(table(gotjob$sex,nojob$sex))
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(gotjob$sex, nojob$sex)
## X-squared = 0.11711, df = 1, p-value = 0.7322
chisq.test(table(gotjob$gmat_tot,nojob$gmat_tot))
## Warning in chisq.test(table(gotjob$gmat_tot, nojob$gmat_tot)): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: table(gotjob$gmat_tot, nojob$gmat_tot)
## X-squared = 496.72, df = 500, p-value = 0.533
chisq.test(table(gotjob$gmat_tpc,nojob$gmat_tpc))
## Warning in chisq.test(table(gotjob$gmat_tpc, nojob$gmat_tpc)): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: table(gotjob$gmat_tpc, nojob$gmat_tpc)
## X-squared = 776.54, df = 784, p-value = 0.5683
chisq.test(table(gotjob$quarter,nojob$quarter))
## Warning in chisq.test(table(gotjob$quarter, nojob$quarter)): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: table(gotjob$quarter, nojob$quarter)
## X-squared = 110.98, df = 9, p-value < 2.2e-16
chisq.test(table(gotjob$frstlang,nojob$frstlang))
## Warning in chisq.test(table(gotjob$frstlang, nojob$frstlang)): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(gotjob$frstlang, nojob$frstlang)
## X-squared = 0.0080703, df = 1, p-value = 0.9284
chisq.test(table(gotjob$work_yrs,nojob$work_yrs))
## Warning in chisq.test(table(gotjob$work_yrs, nojob$work_yrs)): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: table(gotjob$work_yrs, nojob$work_yrs)
## X-squared = 117.66, df = 176, p-value = 0.9998
fit2 <- lm(quarter ~ age+sex+gmat_tot+work_yrs+frstlang, data=gotjob)
summary(fit2)
##
## Call:
## lm(formula = quarter ~ age + sex + gmat_tot + work_yrs + frstlang,
## data = gotjob)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3254 -0.9471 -0.1178 0.8653 2.0223
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.8812823 2.0382214 1.904 0.0603 .
## age -0.1021945 0.0729769 -1.400 0.1651
## sex -0.0928392 0.2296646 -0.404 0.6871
## gmat_tot 0.0005992 0.0020753 0.289 0.7735
## work_yrs 0.0394908 0.0741173 0.533 0.5956
## frstlang 0.4431674 0.4705635 0.942 0.3490
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9693 on 84 degrees of freedom
## Multiple R-squared: 0.04908, Adjusted R-squared: -0.007527
## F-statistic: 0.867 on 5 and 84 DF, p-value: 0.5069
fit2 <- lm(quarter ~ age+sex+gmat_tot+work_yrs+frstlang, data=nojob)
summary(fit2)
##
## Call:
## lm(formula = quarter ~ age + sex + gmat_tot + work_yrs + frstlang,
## data = nojob)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8850 -0.7868 0.1552 0.9121 1.8054
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.335263 1.664639 2.004 0.0483 *
## age 0.047580 0.046252 1.029 0.3066
## sex -0.400300 0.259810 -1.541 0.1271
## gmat_tot -0.001978 0.001851 -1.069 0.2882
## work_yrs -0.092225 0.054185 -1.702 0.0924 .
## frstlang -0.005743 0.405212 -0.014 0.9887
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.063 on 84 degrees of freedom
## Multiple R-squared: 0.07193, Adjusted R-squared: 0.01669
## F-statistic: 1.302 on 5 and 84 DF, p-value: 0.2709
The above tests show that major factor that differentiates between getting a job and not getting a job is quarters, and not age, sex, work experience, gmat or first language.
Data cleaning
library(Amelia)
mbasalary.df<-subset(mbasalary.df, salary != 998 & salary != 999)
missmap(mbasalary.df, main = "Missing value before Cleaning",horizontal=FALSE)
Model fitting
mbasalary.df$hasJob <- ifelse(mbasalary.df$salary > 0,1, 0)
mbasalary.df$salary <- NULL
trainingSet <- mbasalary.df[1:120,]
testSet <- mbasalary.df[121:193,]
Annova Test
newmodel <- glm(formula = hasJob ~ age+sex+gmat_tpc+gmat_tot+frstlang+quarter+work_yrs, family = binomial(link = "logit"), data = trainingSet)
anova(newmodel,test="Chisq")
## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: hasJob
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 119 166.35
## age 1 1.6519 118 164.70 0.1987
## sex 1 0.0001 117 164.70 0.9923
## gmat_tpc 1 0.0087 116 164.69 0.9258
## gmat_tot 1 2.2166 115 162.48 0.1365
## frstlang 1 0.0797 114 162.40 0.7777
## quarter 1 24.3127 113 138.09 8.19e-07 ***
## work_yrs 1 1.1351 112 136.95 0.2867
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
newmodel1 <- glm(formula = hasJob ~ age+quarter+gmat_tot, family = binomial(link = "logit"), data = trainingSet)
library(caret)
varImp(newmodel1)
## Overall
## age 2.2981348
## quarter 4.3625038
## gmat_tot 0.9828324
ctrl <- trainControl(method = "repeatedcv", number = 10, savePredictions = TRUE)
mod_fit <- train(hasJob ~ age+quarter+gmat_tot,data=testSet, method="glm",family="binomial",
trControl = ctrl, tuneLength = 5)
## Warning in train.default(x, y, weights = w, ...): You are trying to do
## regression and your outcome only has two possible values Are you trying to
## do classification? If so, use a 2 level factor as your outcome column.
library(ROCR)
p <- predict(newmodel1,testSet,type='response')
pr <- prediction(p, testSet$hasJob)
prf <- performance(pr, measure = "tpr", x.measure = "fpr")
auc <- performance(pr, measure = "auc")
auc <- auc@y.values[[1]]
auc
## [1] 0.7596899
plot(prf)
logit_ks <- max(prf@y.values[[1]]-prf@x.values[[1]])*100
logit_ks
## [1] 47.75194
lift.obj <- performance(pr, measure="lift", x.measure="rpp")
plot(lift.obj,main="Lift Chart",xlab="Population percentage",ylab="Lift", col="green")
abline(1,0,col="blue")
lift.obj <- performance(pr, "tpr", x.measure="rpp")
plot(lift.obj,main="Gain Chart",xlab="Rate of positive prediction",ylab="True positive rate", col="green")
abline(0,1,col="blue")