Read Data using read.csv and view MBA strating salary

MBAstartingsalaries <- read.csv(paste("MBAStartingsalariesData.csv", sep=""))
View(MBAstartingsalaries)

Describe MBA strating salaries

attach(MBAstartingsalaries)
library(psych)
## Warning: package 'psych' was built under R version 3.4.3
describe(MBAstartingsalaries)
##          vars   n     mean       sd median  trimmed     mad min    max
## age         1 274    27.36     3.71     27    26.76    2.97  22     48
## sex         2 274     1.25     0.43      1     1.19    0.00   1      2
## gmat_tot    3 274   619.45    57.54    620   618.86   59.30 450    790
## gmat_qpc    4 274    80.64    14.87     83    82.31   14.83  28     99
## gmat_vpc    5 274    78.32    16.86     81    80.33   14.83  16     99
## gmat_tpc    6 274    84.20    14.02     87    86.12   11.86   0     99
## s_avg       7 274     3.03     0.38      3     3.03    0.44   2      4
## f_avg       8 274     3.06     0.53      3     3.09    0.37   0      4
## quarter     9 274     2.48     1.11      2     2.47    1.48   1      4
## work_yrs   10 274     3.87     3.23      3     3.29    1.48   0     22
## frstlang   11 274     1.12     0.32      1     1.02    0.00   1      2
## salary     12 274 39025.69 50951.56    999 33607.86 1481.12   0 220000
## satis      13 274   172.18   371.61      6    91.50    1.48   1    998
##           range  skew kurtosis      se
## age          26  2.16     6.45    0.22
## sex           1  1.16    -0.66    0.03
## gmat_tot    340 -0.01     0.06    3.48
## gmat_qpc     71 -0.92     0.30    0.90
## gmat_vpc     83 -1.04     0.74    1.02
## gmat_tpc     99 -2.28     9.02    0.85
## s_avg         2 -0.06    -0.38    0.02
## f_avg         4 -2.08    10.85    0.03
## quarter       3  0.02    -1.35    0.07
## work_yrs     22  2.78     9.80    0.20
## frstlang      1  2.37     3.65    0.02
## salary   220000  0.70    -1.05 3078.10
## satis       997  1.77     1.13   22.45

summarize

summary(MBAstartingsalaries)
##       age             sex           gmat_tot        gmat_qpc    
##  Min.   :22.00   Min.   :1.000   Min.   :450.0   Min.   :28.00  
##  1st Qu.:25.00   1st Qu.:1.000   1st Qu.:580.0   1st Qu.:72.00  
##  Median :27.00   Median :1.000   Median :620.0   Median :83.00  
##  Mean   :27.36   Mean   :1.248   Mean   :619.5   Mean   :80.64  
##  3rd Qu.:29.00   3rd Qu.:1.000   3rd Qu.:660.0   3rd Qu.:93.00  
##  Max.   :48.00   Max.   :2.000   Max.   :790.0   Max.   :99.00  
##     gmat_vpc        gmat_tpc        s_avg           f_avg      
##  Min.   :16.00   Min.   : 0.0   Min.   :2.000   Min.   :0.000  
##  1st Qu.:71.00   1st Qu.:78.0   1st Qu.:2.708   1st Qu.:2.750  
##  Median :81.00   Median :87.0   Median :3.000   Median :3.000  
##  Mean   :78.32   Mean   :84.2   Mean   :3.025   Mean   :3.062  
##  3rd Qu.:91.00   3rd Qu.:94.0   3rd Qu.:3.300   3rd Qu.:3.250  
##  Max.   :99.00   Max.   :99.0   Max.   :4.000   Max.   :4.000  
##     quarter         work_yrs         frstlang         salary      
##  Min.   :1.000   Min.   : 0.000   Min.   :1.000   Min.   :     0  
##  1st Qu.:1.250   1st Qu.: 2.000   1st Qu.:1.000   1st Qu.:     0  
##  Median :2.000   Median : 3.000   Median :1.000   Median :   999  
##  Mean   :2.478   Mean   : 3.872   Mean   :1.117   Mean   : 39026  
##  3rd Qu.:3.000   3rd Qu.: 4.000   3rd Qu.:1.000   3rd Qu.: 97000  
##  Max.   :4.000   Max.   :22.000   Max.   :2.000   Max.   :220000  
##      satis      
##  Min.   :  1.0  
##  1st Qu.:  5.0  
##  Median :  6.0  
##  Mean   :172.2  
##  3rd Qu.:  7.0  
##  Max.   :998.0

Boxploting of indivisual variables

boxplot(MBAstartingsalaries$age,MBAstartingsalaries$s_avg,
        MBAstartingsalaries$f_avg)

boxplot(MBAstartingsalaries$gmat_tot,MBAstartingsalaries$gmat_qpc,
        MBAstartingsalaries$gmat_vpc,MBAstartingsalaries$gmat_tpc)

boxplot(MBAstartingsalaries$quarter,MBAstartingsalaries$work_yrs,
        MBAstartingsalaries$frstlang)

boxplot(MBAstartingsalaries$salary,MBAstartingsalaries$satis)

# Scatterploting to find correlation between different variable

library(car)
## Warning: package 'car' was built under R version 3.4.3
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
scatterplot(MBAstartingsalaries$gmat_tpc~ MBAstartingsalaries$gmat_qpc,MBAstartingsalaries$gmat_vpc, data= MBAstartingsalaries,
            spread=FALSE, smoother.args=list(lty=2), pch=19,
            main="Scatter plot of gmat taotal percentile vs gmat subject",
            xlab="Gmat totaol percentile",
            ylab="Subject percentile")

# relation between gmat total percentile and Strating salary

scatterplot(MBAstartingsalaries$gmat_tpc~ MBAstartingsalaries$salary, data= MBAstartingsalaries,
            spread=FALSE, smoother.args=list(lty=2), pch=19,
            main="Scatter plot of gmat taotal percentile vs gmat subject",
            xlab="Strating salaries", ylab="Gmat total percentiles")

# relation between quaterile rank and strating salary

scatterplot(MBAstartingsalaries$quarter~ MBAstartingsalaries$salary, data= MBAstartingsalaries,
            spread=FALSE, smoother.args=list(lty=2), pch=19,
            main="Scatter plot of gmat taotal percentile vs gmat subject",
            xlab="Strating salaries", ylab="Quartile ranking")

#Corrgram analysis of MBA strating salary

library(corrgram)
## Warning: package 'corrgram' was built under R version 3.4.3
corrgram(MBAstartingsalaries, order=TRUE, lower.panel=panel.shade,
         upper.panel=panel.pie, text.panel=panel.txt,
         main="MBA starting salary analysis Corrgram")

Variance and covariance matrix

x <- MBAstartingsalaries[,c("age", "gmat_tot", "gmat_qpc", "gmat_vpc","gmat_tpc","s_avg","f_avg","work_yrs","salary")]
   y <- MBAstartingsalaries[,c("age", "gmat_tot", "gmat_qpc", "gmat_vpc","gmat_tpc","s_avg","f_avg","work_yrs","salary")]
   cov(x,y)
##                    age      gmat_tot      gmat_qpc     gmat_vpc
## age       1.376904e+01 -3.115879e+01 -1.192655e+01    -2.763643
## gmat_tot -3.115879e+01  3.310688e+03  6.200233e+02   726.000642
## gmat_qpc -1.192655e+01  6.200233e+02  2.210731e+02    38.148258
## gmat_vpc -2.763643e+00  7.260006e+02  3.814826e+01   284.248122
## gmat_tpc -8.839978e+00  6.839911e+02  1.357997e+02   157.493249
## s_avg     2.116874e-01  2.480257e+00 -1.691233e-01     1.313570
## f_avg    -3.399348e-02  3.154688e+00  5.753854e-01     0.672070
## work_yrs  1.029494e+01 -3.391634e+01 -1.137186e+01    -3.618165
## salary   -1.183042e+04 -1.611600e+05 -3.335823e+04 -5273.852384
##              gmat_tpc        s_avg        f_avg     work_yrs        salary
## age        -8.8399775    0.2116874  -0.03399348   10.2949386 -1.183042e+04
## gmat_tot  683.9910698    2.4802572   3.15468838  -33.9163391 -1.611600e+05
## gmat_qpc  135.7996845   -0.1691233   0.57538542  -11.3718617 -3.335823e+04
## gmat_vpc  157.4932488    1.3135702   0.67207000   -3.6181653 -5.273852e+03
## gmat_tpc  196.6057057    0.6271001   0.58698618   -7.8575172  3.522750e+03
## s_avg       0.6271001    0.1452176   0.11016898    0.1592639  2.831601e+03
## f_avg       0.5869862    0.1101690   0.27567237   -0.0662870  7.876560e+02
## work_yrs   -7.8575172    0.1592639  -0.06628700   10.4488249  1.486147e+03
## salary   3522.7500067 2831.6009858 787.65597177 1486.1470415  2.596062e+09

MBA student Who havejob

 job.df <- MBAstartingsalaries[ which(MBAstartingsalaries$salary !="998" & MBAstartingsalaries$salary !="999" & MBAstartingsalaries$salary!="0"), ]
  job.df
##     age sex gmat_tot gmat_qpc gmat_vpc gmat_tpc s_avg f_avg quarter
## 35   22   2      660       90       92       94  3.50  3.75       1
## 36   27   2      700       94       98       98  3.30  3.25       1
## 37   25   2      680       87       96       96  3.50  2.67       1
## 38   25   2      650       82       91       93  3.40  3.25       1
## 39   27   1      710       96       96       98  3.30  3.50       1
## 40   28   2      620       52       98       87  3.40  3.75       1
## 41   24   1      670       84       96       95  3.30  3.25       1
## 42   25   2      560       52       81       72  3.30  3.50       1
## 43   25   2      530       50       62       61  3.60  3.67       1
## 44   25   1      650       79       93       93  3.30  3.50       1
## 45   26   2      590       56       89       81  3.30  3.25       1
## 46   23   2      650       93       81       93  3.40  3.00       1
## 47   24   1      560       81       50       71  3.40  3.67       1
## 48   27   1      610       72       84       86  3.30  3.50       1
## 49   25   1      650       95       84       93  3.30  3.00       1
## 50   25   1      550       74       50       68  3.50  3.50       1
## 51   26   1      570       68       74       75  3.80  3.50       1
## 52   26   1      580       79       71       78  3.45  3.50       1
## 53   30   1      600       60       91       83  3.30  3.25       1
## 54   31   1      570       72       71       75  3.60  3.50       1
## 55   30   1      620       60       96       87  3.50  3.00       1
## 56   30   2      680       96       87       96  3.70  3.60       1
## 57   27   1      630       93       75       91  3.30  3.25       1
## 58   25   1      600       82       74       83  3.50  3.25       1
## 59   28   2      640       89       81       91  3.60  3.50       1
## 60   39   1      600       72       81       83  3.60  3.50       1
## 61   27   1      570       95       33       75  3.70  4.00       1
## 62   27   1      710       95       98       98  3.60  3.50       1
## 63   33   1      620       72       89       87  3.50  3.50       1
## 64   27   1      600       67       84       83  3.50  3.00       1
## 65   28   1      700       95       95       98  3.80  4.00       1
## 66   30   1      600       77       81       84  3.50  3.25       1
## 67   30   2      670       87       95       95  3.30  3.25       1
## 68   40   1      630       71       95       91  4.00  0.00       1
## 69   25   1      700       98       93       98  3.60  3.75       1
## 115  26   2      670       87       95       95  3.10  3.33       2
## 116  25   2      620       89       74       87  3.10  3.50       2
## 117  31   1      540       60       62       65  3.10  3.00       2
## 118  25   1      670       95       89       95  3.20  3.50       2
## 119  25   1      610       87       71       86  3.27  3.25       2
## 120  24   1      560       52       81       72  3.20  3.25       2
## 121  24   1      500       78       30       52  3.00  2.75       2
## 122  23   1      590       72       81       81  3.20  3.25       2
## 123  24   1      570       82       58       75  3.20  3.25       2
## 124  26   2      570       93       37       75  3.00  2.75       2
## 125  28   2      580       83       58       79  3.10  3.00       2
## 126  24   2      580       72       71       78  3.00  3.25       2
## 127  31   1      560       68       67       72  3.09  3.00       2
## 128  25   2      620       89       74       87  3.10  3.50       2
## 129  27   1      620       97       63       88  3.20  3.00       2
## 130  28   1      560       75       58       72  3.20  3.25       2
## 131  26   1      680       84       96       96  3.20  3.25       2
## 132  27   1      620       81       87       89  3.00  3.00       2
## 133  34   1      550       72       58       69  3.00  3.00       2
## 134  26   1      600       84       67       83  3.09  3.50       2
## 135  29   1      670       91       93       95  3.10  3.00       2
## 136  24   1      620       84       81       87  3.00  3.25       2
## 137  27   1      630       72       95       89  3.20  3.00       2
## 138  26   1      650       89       87       93  3.20  3.25       2
## 139  24   1      620       88       74       87  3.10  3.00       2
## 186  23   2      520       43       67       58  2.90  2.75       3
## 187  27   1      620       87       74       87  2.70  2.75       3
## 188  25   1      580       78       67       80  2.90  3.25       3
## 189  25   1      630       75       93       89  2.70  2.50       3
## 190  25   1      610       89       74       87  2.70  2.75       3
## 191  29   2      560       64       71       72  2.90  3.00       3
## 192  27   1      620       79       87       88  2.90  2.75       3
## 193  28   1      580       72       71       78  2.80  3.00       3
## 194  24   2      670       83       98       96  2.90  3.25       3
## 195  25   2      560       39       91       72  2.90  3.00       3
## 196  25   2      580       72       71       78  2.80  3.25       3
## 197  27   1      680       97       90       97  2.90  2.75       3
## 198  28   1      610       89       67       86  2.70  3.00       3
## 199  29   1      710       93       98       99  2.90  3.25       3
## 200  24   1      710       99       92       99  2.90  3.00       3
## 201  25   2      630       84       87       89  2.80  2.75       3
## 202  24   2      600       89       67       85  2.80  3.00       3
## 203  29   1      660       91       90       95  2.80  3.00       3
## 204  30   1      670       83       97       96  2.80  2.75       3
## 205  24   1      580       89       54       78  2.91  2.83       3
## 206  29   1      680       79       99       96  2.90  3.00       3
## 207  32   1      660       83       95       94  2.90  3.50       3
## 208  28   1      570       56       84       75  2.90  3.00       3
## 209  24   1      680       96       87       97  2.80  2.75       3
## 256  24   2      560       55       78       71  3.50  3.25       4
## 257  23   1      660       81       98       95  2.50  3.00       4
## 258  25   2      720       96       98       99  3.50  3.60       4
## 259  26   1      620       78       87       89  2.40  2.00       4
## 260  26   2      630       85       81       90  2.90  3.25       4
## 261  27   1      650       89       89       93  2.40  2.25       4
## 262  25   1      660       99       71       95  3.40  3.25       4
## 263  25   1      610       83       81       86  2.40  2.75       4
## 264  26   1      600       87       62       83  2.50  2.50       4
## 265  24   1      570       75       62       75  2.30  2.50       4
## 266  24   2      600       77       78       84  2.60  3.00       4
## 267  26   2      650       91       84       93  2.60  3.00       4
## 268  29   1      630       72       95       89  2.60  2.50       4
## 269  26   1      630       96       71       91  2.60  2.75       4
## 270  31   1      530       75       45       62  2.40  2.75       4
## 271  23   1      580       64       81       78  2.20  2.00       4
## 272  25   1      540       79       45       65  2.60  2.50       4
## 273  26   1      550       72       58       69  2.60  2.75       4
## 274  40   2      500       60       45       51  2.50  2.75       4
##     work_yrs frstlang salary satis
## 35         1        1  85000     5
## 36         2        1  85000     6
## 37         2        1  86000     5
## 38         3        1  88000     7
## 39         2        1  92000     6
## 40         5        1  93000     5
## 41         0        1  95000     4
## 42         1        1  95000     5
## 43         3        1  95000     3
## 44         1        1  96000     7
## 45         4        1  96000     5
## 46         2        1 100000     7
## 47         2        1 100000     6
## 48         6        1 100000     6
## 49         2        1 105000     7
## 50         3        1 105000     6
## 51         3        1 105000     6
## 52         2        1 105000     5
## 53         5        1 105000     6
## 54         6        1 105000     6
## 55         8        1 106000     7
## 56         6        1 106000     6
## 57         3        1 107500     5
## 58         3        1 108000     6
## 59         6        1 110000     5
## 60        16        1 112000     7
## 61         4        1 115000     5
## 62         1        1 115000     5
## 63        10        2 118000     7
## 64         3        1 120000     5
## 65         5        1 120000     5
## 66         5        1 120000     6
## 67         8        1 120000     6
## 68        15        1 146000     6
## 69         1        1 162000     5
## 115        1        1  82000     7
## 116        2        1  92000     5
## 117        8        1  93000     6
## 118        2        1  95000     6
## 119        3        1  95000     6
## 120        2        1  96000     7
## 121        2        1  96500     6
## 122        2        1  98000     6
## 123        2        1  98000     6
## 124        3        2  98000     5
## 125        5        2  99000     6
## 126        2        1 100000     5
## 127        4        1 100000     6
## 128        2        1 101000     5
## 129        3        1 103000     6
## 130        4        1 104000     5
## 131        3        1 105000     6
## 132        3        1 105000     5
## 133       16        1 105000     5
## 134        2        1 107000     5
## 135        6        1 112000     6
## 136        1        1 115000     6
## 137        4        1 115000     6
## 138        4        1 130000     7
## 139        2        1 145800     6
## 186        1        1  78256     5
## 187        3        1  88500     6
## 188        2        1  90000     7
## 189        2        1  90000     5
## 190        4        1  93000     6
## 191        5        1  95000     7
## 192        4        1  97000     7
## 193        3        1  97000     6
## 194        2        1  98000     7
## 195        2        1  98000     7
## 196        2        1  98000     6
## 197        2        2  98000     6
## 198        4        1  98000     7
## 199        7        1  98000     5
## 200        3        1 100000     6
## 201        2        1 100000     6
## 202        2        1 101000     6
## 203        8        1 101100     6
## 204        6        1 102500     5
## 205        2        1 105000     5
## 206        6        1 106000     6
## 207        2        2 107300     7
## 208        4        1 108000     6
## 209        2        1 112000     6
## 256        2        1  64000     7
## 257        2        1  77000     6
## 258        3        1  85000     6
## 259        2        1  85000     6
## 260        3        1  86000     5
## 261        5        1  90000     5
## 262        2        1  92000     7
## 263        2        1  95000     7
## 264        2        1  96000     6
## 265        2        1  98000     6
## 266        2        1 100000     6
## 267        2        1 100000     7
## 268        3        1 100400     7
## 269        3        1 101600     6
## 270        4        2 104000     6
## 271        2        1 105000     6
## 272        3        1 115000     5
## 273        3        1 126710     6
## 274       15        2 220000     6

Contingency Tables of different variables

 tab1 <-xtabs(~salary+sex,data=job.df)
    tab1
##         sex
## salary    1  2
##   64000   0  1
##   77000   1  0
##   78256   0  1
##   82000   0  1
##   85000   1  3
##   86000   0  2
##   88000   0  1
##   88500   1  0
##   90000   3  0
##   92000   2  1
##   93000   2  1
##   95000   4  3
##   96000   3  1
##   96500   1  0
##   97000   2  0
##   98000   6  4
##   99000   0  1
##   100000  4  5
##   100400  1  0
##   101000  0  2
##   101100  1  0
##   101600  1  0
##   102500  1  0
##   103000  1  0
##   104000  2  0
##   105000 11  0
##   106000  2  1
##   107000  1  0
##   107300  1  0
##   107500  1  0
##   108000  2  0
##   110000  0  1
##   112000  3  0
##   115000  5  0
##   118000  1  0
##   120000  3  1
##   126710  1  0
##   130000  1  0
##   145800  1  0
##   146000  1  0
##   162000  1  0
##   220000  0  1
 tab2<-xtabs(~salary+gmat_tot,data=job.df)
    tab2
##         gmat_tot
## salary   500 520 530 540 550 560 570 580 590 600 610 620 630 640 650 660
##   64000    0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0
##   77000    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1
##   78256    0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##   82000    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##   85000    0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   1
##   86000    0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0
##   88000    0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0
##   88500    0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0
##   90000    0   0   0   0   0   0   0   1   0   0   0   0   1   0   1   0
##   92000    0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   1
##   93000    0   0   0   1   0   0   0   0   0   0   1   1   0   0   0   0
##   95000    0   0   1   0   0   2   0   0   0   0   2   0   0   0   0   0
##   96000    0   0   0   0   0   1   0   0   1   1   0   0   0   0   1   0
##   96500    1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##   97000    0   0   0   0   0   0   0   1   0   0   0   1   0   0   0   0
##   98000    0   0   0   0   0   1   3   1   1   0   1   0   0   0   0   0
##   99000    0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0
##   100000   0   0   0   0   0   2   0   1   0   1   1   0   1   0   2   0
##   100400   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0
##   101000   0   0   0   0   0   0   0   0   0   1   0   1   0   0   0   0
##   101100   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1
##   101600   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0
##   102500   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##   103000   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0
##   104000   0   0   1   0   0   1   0   0   0   0   0   0   0   0   0   0
##   105000   0   0   0   0   2   0   2   3   0   1   0   1   0   0   1   0
##   106000   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0
##   107000   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0
##   107300   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1
##   107500   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0
##   108000   0   0   0   0   0   0   1   0   0   1   0   0   0   0   0   0
##   110000   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0
##   112000   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0
##   115000   0   0   0   1   0   0   1   0   0   0   0   1   1   0   0   0
##   118000   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0
##   120000   0   0   0   0   0   0   0   0   0   2   0   0   0   0   0   0
##   126710   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0
##   130000   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0
##   145800   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0
##   146000   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0
##   162000   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##   220000   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##         gmat_tot
## salary   670 680 700 710 720
##   64000    0   0   0   0   0
##   77000    0   0   0   0   0
##   78256    0   0   0   0   0
##   82000    1   0   0   0   0
##   85000    0   0   1   0   1
##   86000    0   1   0   0   0
##   88000    0   0   0   0   0
##   88500    0   0   0   0   0
##   90000    0   0   0   0   0
##   92000    0   0   0   1   0
##   93000    0   0   0   0   0
##   95000    2   0   0   0   0
##   96000    0   0   0   0   0
##   96500    0   0   0   0   0
##   97000    0   0   0   0   0
##   98000    1   1   0   1   0
##   99000    0   0   0   0   0
##   100000   0   0   0   1   0
##   100400   0   0   0   0   0
##   101000   0   0   0   0   0
##   101100   0   0   0   0   0
##   101600   0   0   0   0   0
##   102500   1   0   0   0   0
##   103000   0   0   0   0   0
##   104000   0   0   0   0   0
##   105000   0   1   0   0   0
##   106000   0   2   0   0   0
##   107000   0   0   0   0   0
##   107300   0   0   0   0   0
##   107500   0   0   0   0   0
##   108000   0   0   0   0   0
##   110000   0   0   0   0   0
##   112000   1   1   0   0   0
##   115000   0   0   0   1   0
##   118000   0   0   0   0   0
##   120000   1   0   1   0   0
##   126710   0   0   0   0   0
##   130000   0   0   0   0   0
##   145800   0   0   0   0   0
##   146000   0   0   0   0   0
##   162000   0   0   1   0   0
##   220000   0   0   0   0   0
tab3<-xtabs(~salary+satis,data=job.df)
tab3
##         satis
## salary   3 4 5 6 7
##   64000  0 0 0 0 1
##   77000  0 0 0 1 0
##   78256  0 0 1 0 0
##   82000  0 0 0 0 1
##   85000  0 0 1 3 0
##   86000  0 0 2 0 0
##   88000  0 0 0 0 1
##   88500  0 0 0 1 0
##   90000  0 0 2 0 1
##   92000  0 0 1 1 1
##   93000  0 0 1 2 0
##   95000  1 1 1 2 2
##   96000  0 0 1 1 2
##   96500  0 0 0 1 0
##   97000  0 0 0 1 1
##   98000  0 0 2 5 3
##   99000  0 0 0 1 0
##   100000 0 0 1 6 2
##   100400 0 0 0 0 1
##   101000 0 0 1 1 0
##   101100 0 0 0 1 0
##   101600 0 0 0 1 0
##   102500 0 0 1 0 0
##   103000 0 0 0 1 0
##   104000 0 0 1 1 0
##   105000 0 0 4 6 1
##   106000 0 0 0 2 1
##   107000 0 0 1 0 0
##   107300 0 0 0 0 1
##   107500 0 0 1 0 0
##   108000 0 0 0 2 0
##   110000 0 0 1 0 0
##   112000 0 0 0 2 1
##   115000 0 0 3 2 0
##   118000 0 0 0 0 1
##   120000 0 0 2 2 0
##   126710 0 0 0 1 0
##   130000 0 0 0 0 1
##   145800 0 0 0 1 0
##   146000 0 0 0 1 0
##   162000 0 0 1 0 0
##   220000 0 0 0 1 0

Chi square test

chisq.test(tab1)
## Warning in chisq.test(tab1): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  tab1
## X-squared = 52.681, df = 41, p-value = 0.1045
chisq.test(tab2)
## Warning in chisq.test(tab2): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  tab2
## X-squared = 927.24, df = 820, p-value = 0.005279
chisq.test(tab3)
## Warning in chisq.test(tab3): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  tab3
## X-squared = 109.1, df = 164, p-value = 0.9997

regression model for MBA student who have job

 fit <- lm(job.df$salary ~ job.df$sex+job.df$gmat_tot+job.df$gmat_qpc+job.df$gmat_vpc+job.df$gmat_tpc, data = job.df)
summary(fit)
## 
## Call:
## lm(formula = job.df$salary ~ job.df$sex + job.df$gmat_tot + job.df$gmat_qpc + 
##     job.df$gmat_vpc + job.df$gmat_tpc, data = job.df)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -36775  -8676  -1384   4527 103963 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)  
## (Intercept)     107444.0    47632.9   2.256   0.0263 *
## job.df$sex       -6469.3     3859.2  -1.676   0.0969 .
## job.df$gmat_tot    103.3      182.3   0.567   0.5724  
## job.df$gmat_qpc    585.9      542.7   1.080   0.2830  
## job.df$gmat_vpc    460.2      541.3   0.850   0.3973  
## job.df$gmat_tpc  -1685.9      794.4  -2.122   0.0364 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 17510 on 97 degrees of freedom
## Multiple R-squared:  0.08733,    Adjusted R-squared:  0.04028 
## F-statistic: 1.856 on 5 and 97 DF,  p-value: 0.1091
fit <- lm(job.df$salary ~ job.df$quarter+job.df$work_yrs+job.df$frstlang+job.df$satis, data = job.df)
summary(fit)
## 
## Call:
## lm(formula = job.df$salary ~ job.df$quarter + job.df$work_yrs + 
##     job.df$frstlang + job.df$satis, data = job.df)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -30022  -9509   -533   4151  78717 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      90632.0    13061.5   6.939 4.30e-10 ***
## job.df$quarter   -1328.4     1456.8  -0.912   0.3641    
## job.df$work_yrs   2424.2      536.8   4.516 1.76e-05 ***
## job.df$frstlang  14260.1     6360.1   2.242   0.0272 *  
## job.df$satis     -1486.5     2055.7  -0.723   0.4713    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15760 on 98 degrees of freedom
## Multiple R-squared:  0.2529, Adjusted R-squared:  0.2224 
## F-statistic: 8.293 on 4 and 98 DF,  p-value: 8.366e-06

t.test for job holding MBA

t.test(job.df$salary~ job.df$sex, var.equal = TRUE)
## 
##  Two Sample t-test
## 
## data:  job.df$salary by job.df$sex
## t = 1.6948, df = 101, p-value = 0.0932
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1099.123 13992.293
## sample estimates:
## mean in group 1 mean in group 2 
##       104970.97        98524.39