Read

airline=read.csv(paste("SixAirlinesDataV2.csv",sep=""))
attach(airline)

View Dataset

View(airline)

Summary

summary(airline)
##       Airline      Aircraft   FlightDuration   TravelMonth
##  AirFrance: 74   AirBus:151   Min.   : 1.250   Aug:127    
##  British  :175   Boeing:307   1st Qu.: 4.260   Jul: 75    
##  Delta    : 46                Median : 7.790   Oct:127    
##  Jet      : 61                Mean   : 7.578   Sep:129    
##  Singapore: 40                3rd Qu.:10.620              
##  Virgin   : 62                Max.   :14.660              
##       IsInternational  SeatsEconomy    SeatsPremium    PitchEconomy  
##  Domestic     : 40    Min.   : 78.0   Min.   : 8.00   Min.   :30.00  
##  International:418    1st Qu.:133.0   1st Qu.:21.00   1st Qu.:31.00  
##                       Median :185.0   Median :36.00   Median :31.00  
##                       Mean   :202.3   Mean   :33.65   Mean   :31.22  
##                       3rd Qu.:243.0   3rd Qu.:40.00   3rd Qu.:32.00  
##                       Max.   :389.0   Max.   :66.00   Max.   :33.00  
##   PitchPremium    WidthEconomy    WidthPremium    PriceEconomy 
##  Min.   :34.00   Min.   :17.00   Min.   :17.00   Min.   :  65  
##  1st Qu.:38.00   1st Qu.:18.00   1st Qu.:19.00   1st Qu.: 413  
##  Median :38.00   Median :18.00   Median :19.00   Median :1242  
##  Mean   :37.91   Mean   :17.84   Mean   :19.47   Mean   :1327  
##  3rd Qu.:38.00   3rd Qu.:18.00   3rd Qu.:21.00   3rd Qu.:1909  
##  Max.   :40.00   Max.   :19.00   Max.   :21.00   Max.   :3593  
##   PricePremium    PriceRelative      SeatsTotal  PitchDifference 
##  Min.   :  86.0   Min.   :0.0200   Min.   : 98   Min.   : 2.000  
##  1st Qu.: 528.8   1st Qu.:0.1000   1st Qu.:166   1st Qu.: 6.000  
##  Median :1737.0   Median :0.3650   Median :227   Median : 7.000  
##  Mean   :1845.3   Mean   :0.4872   Mean   :236   Mean   : 6.688  
##  3rd Qu.:2989.0   3rd Qu.:0.7400   3rd Qu.:279   3rd Qu.: 7.000  
##  Max.   :7414.0   Max.   :1.8900   Max.   :441   Max.   :10.000  
##  WidthDifference PercentPremiumSeats
##  Min.   :0.000   Min.   : 4.71      
##  1st Qu.:1.000   1st Qu.:12.28      
##  Median :1.000   Median :13.21      
##  Mean   :1.633   Mean   :14.65      
##  3rd Qu.:3.000   3rd Qu.:15.36      
##  Max.   :4.000   Max.   :24.69

Data Types

str(airline)
## 'data.frame':    458 obs. of  18 variables:
##  $ Airline            : Factor w/ 6 levels "AirFrance","British",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ Aircraft           : Factor w/ 2 levels "AirBus","Boeing": 2 2 2 2 2 2 2 2 2 2 ...
##  $ FlightDuration     : num  12.25 12.25 12.25 12.25 8.16 ...
##  $ TravelMonth        : Factor w/ 4 levels "Aug","Jul","Oct",..: 2 1 4 3 1 4 3 1 4 4 ...
##  $ IsInternational    : Factor w/ 2 levels "Domestic","International": 2 2 2 2 2 2 2 2 2 2 ...
##  $ SeatsEconomy       : int  122 122 122 122 122 122 122 122 122 122 ...
##  $ SeatsPremium       : int  40 40 40 40 40 40 40 40 40 40 ...
##  $ PitchEconomy       : int  31 31 31 31 31 31 31 31 31 31 ...
##  $ PitchPremium       : int  38 38 38 38 38 38 38 38 38 38 ...
##  $ WidthEconomy       : int  18 18 18 18 18 18 18 18 18 18 ...
##  $ WidthPremium       : int  19 19 19 19 19 19 19 19 19 19 ...
##  $ PriceEconomy       : int  2707 2707 2707 2707 1793 1793 1793 1476 1476 1705 ...
##  $ PricePremium       : int  3725 3725 3725 3725 2999 2999 2999 2997 2997 2989 ...
##  $ PriceRelative      : num  0.38 0.38 0.38 0.38 0.67 0.67 0.67 1.03 1.03 0.75 ...
##  $ SeatsTotal         : int  162 162 162 162 162 162 162 162 162 162 ...
##  $ PitchDifference    : int  7 7 7 7 7 7 7 7 7 7 ...
##  $ WidthDifference    : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ PercentPremiumSeats: num  24.7 24.7 24.7 24.7 24.7 ...

Describe

library(psych)
## Warning: package 'psych' was built under R version 3.4.3
describe(airline[,6:14])
##               vars   n    mean      sd  median trimmed     mad   min
## SeatsEconomy     1 458  202.31   76.37  185.00  194.64   85.99 78.00
## SeatsPremium     2 458   33.65   13.26   36.00   33.35   11.86  8.00
## PitchEconomy     3 458   31.22    0.66   31.00   31.26    0.00 30.00
## PitchPremium     4 458   37.91    1.31   38.00   38.05    0.00 34.00
## WidthEconomy     5 458   17.84    0.56   18.00   17.81    0.00 17.00
## WidthPremium     6 458   19.47    1.10   19.00   19.53    0.00 17.00
## PriceEconomy     7 458 1327.08  988.27 1242.00 1244.40 1159.39 65.00
## PricePremium     8 458 1845.26 1288.14 1737.00 1799.05 1845.84 86.00
## PriceRelative    9 458    0.49    0.45    0.36    0.42    0.41  0.02
##                   max   range  skew kurtosis    se
## SeatsEconomy   389.00  311.00  0.72    -0.36  3.57
## SeatsPremium    66.00   58.00  0.23    -0.46  0.62
## PitchEconomy    33.00    3.00 -0.03    -0.35  0.03
## PitchPremium    40.00    6.00 -1.51     3.52  0.06
## WidthEconomy    19.00    2.00 -0.04    -0.08  0.03
## WidthPremium    21.00    4.00 -0.08    -0.31  0.05
## PriceEconomy  3593.00 3528.00  0.51    -0.88 46.18
## PricePremium  7414.00 7328.00  0.50     0.43 60.19
## PriceRelative    1.89    1.87  1.17     0.72  0.02
#describe(PricePremium)

Comparing variables of the dataset

library(car)
## Warning: package 'car' was built under R version 3.4.3
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
par(mfrow=c(1,2))
boxplot(PriceEconomy, main="Boxplot of PriceEconomy")
boxplot(PricePremium, main="Boxplot of PricePremium")

library(car)
par(mfrow=c(1,2))
hist(PriceEconomy,col="Grey")
hist(PricePremium,xlim = c(0,5000),col="Beige")

library(car)
par(mfrow=c(1,2))
hist(FlightDuration,col="lightblue",xlim=c(0,15),ylim = c(0,60))
boxplot(FlightDuration,main="Boxplot of flight duration",ylab="Fight Duration")

table(IsInternational)
## IsInternational
##      Domestic International 
##            40           418
by(PriceEconomy,IsInternational,mean)
## IsInternational: Domestic
## [1] 356.625
## -------------------------------------------------------- 
## IsInternational: International
## [1] 1419.943
by(PricePremium,IsInternational,mean)
## IsInternational: Domestic
## [1] 385.9
## -------------------------------------------------------- 
## IsInternational: International
## [1] 1984.909

Comparing Domestic and International Flight prices

par(mfrow=c(1,2))
boxplot(PriceEconomy~IsInternational,data=airline, ylab="PriceEconomy",col = c("purple","navy"))
boxplot(PricePremium~IsInternational,data=airline, ylab="PricePremium",col = c("purple","navy"))

From the above tables and boxplots, we can conclude that the Domestic Flights have a much lower price (both PricePremium and PriceEconomy) as compared to International Flights

Pricing based on Aircrafts

table(Aircraft)
## Aircraft
## AirBus Boeing 
##    151    307
by(PriceEconomy,Aircraft,mean)
## Aircraft: AirBus
## [1] 1369.954
## -------------------------------------------------------- 
## Aircraft: Boeing
## [1] 1305.987
by(PricePremium,Aircraft,mean)
## Aircraft: AirBus
## [1] 1869.503
## -------------------------------------------------------- 
## Aircraft: Boeing
## [1] 1833.332

Comparing prices of Airbus and Boeing Aircrafts

par(mfrow=c(1,2))
boxplot(PriceEconomy~Aircraft,data=airline, ylab="PriceEconomy",col = c("purple","navy"))
boxplot(PricePremium~Aircraft,data=airline, ylab="PricePremium",col = c("purple","navy"))

It can be observed that Airbus aircrafts have slightly higher price than Boeing aircrafts. The differnce is higher when we consider only PricePremium

Histogram to compare the number of Economy and Premium Seats

library(car)
par(mfrow=c(1,2))
hist(SeatsEconomy,col="Grey")
hist(SeatsPremium,col="Beige")

There are lower number of Premium Seats in a flight

library(car)
par(mfrow=c(1,2))
hist(WidthEconomy,breaks = 10,xlim = c(17,19), col="lightblue",main="Width of Economy Seat")
hist(WidthPremium,breaks=15,xlim=c(17,21),col="LightGreen",main="Width of Premium Seat")

Premium Seats have higher Width as compared to Economy Seats

Compare Pricing of different Airlines

boxplot(PriceEconomy~Airline,data=airline, ylab="PriceEconomy",col = c("purple","navy"))

par(mfrow=c(1,1))
boxplot(PricePremium~Airline,data=airline, ylab="PricePremium",col = c("purple","navy","yellow","red","pink","darkgreen"))

On an average it can be seen that prices vary with Airlines, with AirFrance being the costliest and Jet and Delta being the cheaper ones of all Airlines

plot(TravelMonth,main = "Comparing Monthly Travels",col="pink",ylim=c(0,140),ylab="Number Of Flights",xlab="Month")

The number of fligts is relatively low in July as compared to Aug, Sept and Oct which have almost similar number of flights

par(mfrow=c(1,1))
boxplot(PriceEconomy~TravelMonth,data=airline, ylab="PriceEconomy",col = c("purple","navy","red","darkgreen"))

par(mfrow=c(1,1))
boxplot(PricePremium~TravelMonth,data=airline, ylab="PricePremium",col = c("purple","navy","red","darkgreen"))

par(mfrow=c(1,1))
boxplot(PriceRelative~WidthDifference,data=airline, ylab="PriceRelative",xlab="WidthDifference",col = c("purple","navy","red","darkgreen"))

scatterplot(WidthDifference,PriceRelative, main="PriceRelative vs WidthDifference")

par(mfrow=c(1,1))
boxplot(PriceRelative~PitchDifference,data=airline, ylab="PriceRelative",xlab="PitchDifference",col = c("purple","navy","red","darkgreen"))

scatterplot(PitchDifference,PriceRelative, main="PriceRelative vs PitchDifference")

scatterplot(FlightDuration,PriceEconomy,main="PriceEconomy vs FlightDuration")

scatterplot(FlightDuration,PricePremium,main="PricePremium vs FlightDuration")

scatterplot(SeatsEconomy,PriceEconomy,main="PriceEconomy vs SeatsEconomy")

scatterplot(SeatsPremium,PricePremium,main="PricePremium vs SeatsPremium")

scatterplot(PercentPremiumSeats,PricePremium,main="PricePremium vs PercentPremiumSeats")

scatterplot(SeatsPremium,PricePremium,main="PricePremium vs SeatsPremium")

Corrgram of Data

library(corrgram)
## Warning: package 'corrgram' was built under R version 3.4.3
corrgram(airline,upper.panel = panel.pie,main="Corrgram of data",cex.labels =.6)

T-Test to check if prove difference in prices of Economy and premium seats

t.test(airline$PricePremium,airline$PriceEconomy, data=airline.df)
## 
##  Welch Two Sample t-test
## 
## data:  airline$PricePremium and airline$PriceEconomy
## t = 6.8304, df = 856.56, p-value = 1.605e-11
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  369.2793 667.0831
## sample estimates:
## mean of x mean of y 
##  1845.258  1327.076

From this test, since p-value<0.05, we can conclude that there is a significant difference between PriceEconomy and PricePremium

Correlation Matrix

cor(airline[,c(3,6:18)])
##                     FlightDuration SeatsEconomy SeatsPremium PitchEconomy
## FlightDuration          1.00000000  0.195621187  0.161236400   0.29377174
## SeatsEconomy            0.19562119  1.000000000  0.625056587   0.14412692
## SeatsPremium            0.16123640  0.625056587  1.000000000  -0.03421296
## PitchEconomy            0.29377174  0.144126924 -0.034212963   1.00000000
## PitchPremium            0.09621471  0.119221250  0.004883123  -0.55060624
## WidthEconomy            0.45647720  0.373670252  0.455782883   0.29448586
## WidthPremium            0.10343747  0.102431959 -0.002717527  -0.53929285
## PriceEconomy            0.56664039  0.128167220  0.113642176   0.36866123
## PricePremium            0.64873981  0.177000928  0.217612376   0.22614179
## PriceRelative           0.12107501  0.003956939 -0.097196009  -0.42302204
## SeatsTotal              0.20023299  0.992607966  0.715171053   0.12373524
## PitchDifference        -0.03749288  0.035318044  0.016365566  -0.78254993
## WidthDifference        -0.11856070 -0.080670148 -0.216168666  -0.63557430
## PercentPremiumSeats     0.06051625 -0.330935223  0.485029771  -0.10280880
##                     PitchPremium WidthEconomy WidthPremium PriceEconomy
## FlightDuration       0.096214708   0.45647720  0.103437469   0.56664039
## SeatsEconomy         0.119221250   0.37367025  0.102431959   0.12816722
## SeatsPremium         0.004883123   0.45578288 -0.002717527   0.11364218
## PitchEconomy        -0.550606241   0.29448586 -0.539292852   0.36866123
## PitchPremium         1.000000000  -0.02374087  0.750259029   0.05038455
## WidthEconomy        -0.023740873   1.00000000  0.081918728   0.06799061
## WidthPremium         0.750259029   0.08191873  1.000000000  -0.05704522
## PriceEconomy         0.050384550   0.06799061 -0.057045224   1.00000000
## PricePremium         0.088539147   0.15054837  0.064020043   0.90138870
## PriceRelative        0.417539056  -0.04396116  0.504247591  -0.28856711
## SeatsTotal           0.107512784   0.40545860  0.091297500   0.13243313
## PitchDifference      0.950591466  -0.12722421  0.760121272  -0.09952511
## WidthDifference      0.703281797  -0.39320512  0.884149655  -0.08449975
## PercentPremiumSeats -0.175487414   0.22714172 -0.183312058   0.06532232
##                     PricePremium PriceRelative  SeatsTotal PitchDifference
## FlightDuration        0.64873981   0.121075014  0.20023299     -0.03749288
## SeatsEconomy          0.17700093   0.003956939  0.99260797      0.03531804
## SeatsPremium          0.21761238  -0.097196009  0.71517105      0.01636557
## PitchEconomy          0.22614179  -0.423022038  0.12373524     -0.78254993
## PitchPremium          0.08853915   0.417539056  0.10751278      0.95059147
## WidthEconomy          0.15054837  -0.043961160  0.40545860     -0.12722421
## WidthPremium          0.06402004   0.504247591  0.09129750      0.76012127
## PriceEconomy          0.90138870  -0.288567110  0.13243313     -0.09952511
## PricePremium          1.00000000   0.031846537  0.19232533     -0.01806629
## PriceRelative         0.03184654   1.000000000 -0.01156894      0.46873025
## SeatsTotal            0.19232533  -0.011568942  1.00000000      0.03416915
## PitchDifference      -0.01806629   0.468730249  0.03416915      1.00000000
## WidthDifference      -0.01151218   0.485802437 -0.10584398      0.76089108
## PercentPremiumSeats   0.11639097  -0.161565556 -0.22091465     -0.09264869
##                     WidthDifference PercentPremiumSeats
## FlightDuration          -0.11856070          0.06051625
## SeatsEconomy            -0.08067015         -0.33093522
## SeatsPremium            -0.21616867          0.48502977
## PitchEconomy            -0.63557430         -0.10280880
## PitchPremium             0.70328180         -0.17548741
## WidthEconomy            -0.39320512          0.22714172
## WidthPremium             0.88414965         -0.18331206
## PriceEconomy            -0.08449975          0.06532232
## PricePremium            -0.01151218          0.11639097
## PriceRelative            0.48580244         -0.16156556
## SeatsTotal              -0.10584398         -0.22091465
## PitchDifference          0.76089108         -0.09264869
## WidthDifference          1.00000000         -0.27559416
## PercentPremiumSeats     -0.27559416          1.00000000

Pearson’s Correlation Tests

cor.test(PriceEconomy,FlightDuration)
## 
##  Pearson's product-moment correlation
## 
## data:  PriceEconomy and FlightDuration
## t = 14.685, df = 456, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.5010266 0.6257772
## sample estimates:
##       cor 
## 0.5666404

Therefore, the PriceEconomy has a high positive correlation with FlightDuration

cor.test(PricePremium,FlightDuration)
## 
##  Pearson's product-moment correlation
## 
## data:  PricePremium and FlightDuration
## t = 18.204, df = 456, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.5923218 0.6988270
## sample estimates:
##       cor 
## 0.6487398

Therefore, the PricePremiuim has a high positive correlation with FlightDuration and it is higher than that of PriceEconomy Therefore with increasing FlightDuration, the PricePremium goes higher as compared to PriceEconomy

cor.test(PriceRelative,FlightDuration)
## 
##  Pearson's product-moment correlation
## 
## data:  PriceRelative and FlightDuration
## t = 2.6046, df = 456, p-value = 0.009498
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.02977856 0.21036806
## sample estimates:
##      cor 
## 0.121075

As FlightDuration increases, the relative price also increases slightly

cor.test(PriceRelative,WidthDifference)
## 
##  Pearson's product-moment correlation
## 
## data:  PriceRelative and WidthDifference
## t = 11.869, df = 456, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4125388 0.5528218
## sample estimates:
##       cor 
## 0.4858024

The WidthDifference is a statistically significant variable which is positively correlated with PriceRelative. As WidthDifference increases, PriceRelative increases

cor.test(PriceRelative,PitchDifference)
## 
##  Pearson's product-moment correlation
## 
## data:  PriceRelative and PitchDifference
## t = 11.331, df = 456, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3940262 0.5372817
## sample estimates:
##       cor 
## 0.4687302

Similar to WidthDifference, PitchDifference is also positively correlated with PriceRelative with nearly same correlation coefficients

cor.test(PriceRelative,SeatsTotal)
## 
##  Pearson's product-moment correlation
## 
## data:  PriceRelative and SeatsTotal
## t = -0.24706, df = 456, p-value = 0.805
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.10308648  0.08014282
## sample estimates:
##         cor 
## -0.01156894

Since p-value is greater than 0.05, therefore SeatsTotal is statistically insignificant for PriceRelative determination

cor.test(PriceRelative,PercentPremiumSeats)
## 
##  Pearson's product-moment correlation
## 
## data:  PriceRelative and PercentPremiumSeats
## t = -3.496, df = 456, p-value = 0.0005185
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.24949885 -0.07098966
## sample estimates:
##        cor 
## -0.1615656

As PercentPremiumSeats increases, the PriceRelative decreases as they have a small negative correlation coefficient

cor.test(PriceRelative,PriceEconomy)
## 
##  Pearson's product-moment correlation
## 
## data:  PriceRelative and PriceEconomy
## t = -6.4359, df = 456, p-value = 3.112e-10
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.3704004 -0.2022889
## sample estimates:
##        cor 
## -0.2885671
cor.test(PriceRelative,PricePremium)
## 
##  Pearson's product-moment correlation
## 
## data:  PriceRelative and PricePremium
## t = 0.6804, df = 456, p-value = 0.4966
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.05995522  0.12311410
## sample estimates:
##        cor 
## 0.03184654

From the above two tests, it is clear that PriceEconomy is statistically significant in determining PriceRelative whereas PricePremium is not. Moreover, PriceEconomy is negatively correlated with PriceRelative.

Linear Regression

model=lm((PricePremium-PriceEconomy)~Airline+TravelMonth+FlightDuration+PitchDifference+WidthDifference+PercentPremiumSeats+PriceRelative)
summary(model)
## 
## Call:
## lm(formula = (PricePremium - PriceEconomy) ~ Airline + TravelMonth + 
##     FlightDuration + PitchDifference + WidthDifference + PercentPremiumSeats + 
##     PriceRelative)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1011.49  -137.89    -7.32   126.76  2639.76 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         -415.6657   249.0686  -1.669 0.095846 .  
## AirlineBritish       207.6631   101.8512   2.039 0.042053 *  
## AirlineDelta         190.0222   123.7042   1.536 0.125226    
## AirlineJet          -470.4240   112.4894  -4.182 3.48e-05 ***
## AirlineSingapore    -246.5516    77.6113  -3.177 0.001593 ** 
## AirlineVirgin        357.4502    97.9908   3.648 0.000296 ***
## TravelMonthJul         3.8222    51.8044   0.074 0.941217    
## TravelMonthOct       -24.8072    44.2275  -0.561 0.575149    
## TravelMonthSep         1.9367    43.9993   0.044 0.964911    
## FlightDuration        51.1047     5.9508   8.588  < 2e-16 ***
## PitchDifference       15.5345    54.4353   0.285 0.775490    
## WidthDifference        0.1372    73.4688   0.002 0.998511    
## PercentPremiumSeats    0.3384     4.3547   0.078 0.938101    
## PriceRelative        781.1639    46.6975  16.728  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 351.8 on 444 degrees of freedom
## Multiple R-squared:  0.6475, Adjusted R-squared:  0.6371 
## F-statistic: 62.72 on 13 and 444 DF,  p-value: < 2.2e-16

Since this model has a very low p-value, therefore it is statistically significant.

Coefficients of Dependent Variables in the Linear Regression Model

model$coefficients
##         (Intercept)      AirlineBritish        AirlineDelta 
##        -415.6656568         207.6631450         190.0221516 
##          AirlineJet    AirlineSingapore       AirlineVirgin 
##        -470.4240358        -246.5516353         357.4502082 
##      TravelMonthJul      TravelMonthOct      TravelMonthSep 
##           3.8222104         -24.8071526           1.9367112 
##      FlightDuration     PitchDifference     WidthDifference 
##          51.1047292          15.5344580           0.1372069 
## PercentPremiumSeats       PriceRelative 
##           0.3383643         781.1638907
# Here is the PriceDifference, as predicted by the OLS model
fitted(model)
##           1           2           3           4           5           6 
##  835.927537  832.105327  834.042038  807.298174  849.624513  851.561224 
##           7           8           9          10          11          12 
##  824.817360 1046.009663 1047.946374 1084.744131 1058.000267  934.386280 
##          13          14          15          16          17          18 
##  703.859324  907.228103  909.164814  882.420950  674.191714  676.128425 
##          19          20          21          22          23          24 
##  649.384561  519.782761  521.719472  494.975608  507.371696  509.308407 
##          25          26          27          28          29          30 
##  482.564544  629.803858  616.117291  589.373428  425.750059  427.686770 
##          31          32          33          34          35          36 
##  400.942906  436.872273  433.050063  434.986774  408.242910 1106.900489 
##          37          38          39          40          41          42 
## 1108.837200 1082.093336  296.262773  292.440562  294.377274  267.633410 
##          43          44          45          46          47          48 
##  318.504562  320.441273  293.697410  393.337243  395.273954  368.530090 
##          49          50          51          52          53          54 
##  967.020636  968.957347  942.213484 1020.796473  756.283479  758.220190 
##          55          56          57          58          59          60 
##  731.476326  485.136555  487.073266  460.329402  711.677611  690.617194 
##          61          62          63          64          65          66 
##  999.336014 1040.817367 1036.995157 1038.931868 1012.188004  817.638569 
##          67          68          69          70          71          72 
##  813.816359  815.753070  789.009206  622.831777  624.768488  598.024624 
##          73          74          75          76          77          78 
##  532.085723    3.446377   11.369726   -8.354691  -39.539290  -23.185777 
##          79          80          81          82          83          84 
##  -47.632074  -23.346683  -27.336111 1095.926338 1092.104128 1094.040839 
##          85          86          87          88          89          90 
## 1067.296975  607.052868  608.989579  582.245716  610.875079 -188.304635 
##          91          92          93          94          95          96 
## -192.126846 -190.190135 -216.933998 -309.301429 -307.364718 -334.108582 
##          97          98          99         100         101         102 
## -360.160691  102.827994  862.994472  859.172261  861.108972  834.365109 
##         103         104         105         106         107         108 
## 1157.354184 1153.531974 1155.468685 1128.724821  941.670063  943.606775 
##         109         110         111         112         113         114 
##  916.862911 1470.416807 1443.672943  757.620955  163.387017  167.144496 
##         115         116         117         118         119         120 
##  169.081208   64.304340  158.091575  160.028286  151.521219   87.509354 
##         121         122         123         124         125         126 
##   68.293769   70.230480  115.163602  156.719339  136.214903  189.207177 
##         127         128         129         130         131         132 
##  253.219042   59.109894  244.035167  140.204332  142.420729  192.516124 
##         133         134         135         136         137         138 
##  239.566694  193.245772  278.590670  169.067271  246.006098  173.056700 
##         139         140         141         142         143         144 
##  179.593425  181.199237  154.455374  204.303256  206.239967  206.239967 
##         145         146         147         148         149         150 
##  259.511927  252.429936  200.579995  202.516706  257.612492  246.464033 
##         151         152         153         154         155         156 
##  207.019398  148.700934  134.464869  121.276589  107.040524 2056.488305 
##         157         158         159         160         161         162 
## 2052.666094 2054.602806 2027.858942 2024.778270 2026.714981 1999.971117 
##         163         164         165         166         167         168 
## 1755.193118 1324.001743 1320.179532 1322.116243 1295.372379 1324.165178 
##         169         170         171         172         173         174 
## 1320.342968 1322.279679 1295.535815 1219.390356 1136.368882 1007.594325 
##         175         176         177         178         179         180 
## 1003.772115 1005.708826  978.964962 1064.691896  992.999346  763.769602 
##         181         182         183         184         185         186 
##  759.947392  761.884103  735.140239  903.956426  673.290973  648.483820 
##         187         188         189         190         191         192 
##  670.590395  672.527106  645.783242  550.241462 1256.294137 1252.471926 
##         193         194         195         196         197         198 
## 1254.408638 1227.664774 1200.371382 1196.549171 1198.485882 1171.742019 
##         199         200         201         202         203         204 
## 1247.681355 1243.859145 1245.795856 1017.468134 1019.404845  758.466695 
##         205         206         207         208         209         210 
##  754.644484  756.581195  729.837332  624.427550  533.681496  531.795997 
##         211         212         213         214         215         216 
##  505.052133 1361.211296 1083.301243  659.536031  173.925568  170.103357 
##         217         218         219         220         221         222 
##  172.040069  145.296205  173.925568  170.103357  172.040069  145.296205 
##         223         224         225         226         227         228 
##  118.998628  120.935339   94.191476   87.571336   60.827472  191.932462 
##         229         230         231         232         233         234 
##  193.869173  167.125309  128.017331  178.306393  174.484183  179.998225 
##         235         236         237         238         239         240 
##  153.254361  177.284299  173.462088  179.998225  153.254361 1319.956228 
##         241         242         243         244         245         246 
## 1295.149076  642.280354  818.916573  820.853284  794.109420  696.729878 
##         247         248         249         250         251         252 
##  692.907668  694.844379  668.100515 1109.259990 1111.196701 1084.452837 
##         253         254         255         256         257         258 
##  749.952055  746.129845  748.066556  721.322692  663.266925  665.203636 
##         259         260         261         262         263         264 
##  638.459772 1245.235846  675.896590  677.833301  651.089437  588.215644 
##         265         266         267         268         269         270 
##  590.152355  563.408491  985.515050  321.743756  323.680467  296.936603 
##         271         272         273         274         275         276 
## 1355.437680 1330.630527 1203.027112  646.515250  960.707898  608.101272 
##         277         278         279         280         281         282 
##  604.279062  606.215773  433.043412  891.937465  139.682861  111.405856 
##         283         284         285         286         287         288 
##  140.009528  142.968333  116.735517  155.345058  153.459559  126.715695 
##         289         290         291         292         293         294 
##  120.336323   87.970939   97.169790  143.711208  105.477500  114.568873 
##         295         296         297         298         299         300 
##  -47.129128  -18.266635  -10.235808  -22.233741    2.573412  104.773544 
##         301         302         303         304         305         306 
##   10.604239  -56.667853  -82.389622  -71.052416  -27.406170  -91.734403 
##         307         308         309         310         311         312 
##  -75.041844  843.917427  446.896079  341.355344   -3.147501  -29.891365 
##         313         314         315         316         317         318 
##   11.381011  -36.330768 1013.555157  796.765979  770.022115  751.781645 
##         319         320         321         322         323         324 
##  538.504479  540.441190  513.697327  422.523023  364.019340  365.956051 
##         325         326         327         328         329         330 
##  286.343091  288.279802  261.535939   30.819445   32.756156    6.012293 
##         331         332         333         334         335         336 
## -286.733832 -290.556043 -288.619332 -315.363195  157.486503  159.423214 
##         337         338         339         340         341         342 
##  132.679350  161.308713  388.892014  390.828725  364.084861  102.942046 
##         343         344         345         346         347         348 
##   85.697391  187.640682  183.818472  185.755183  104.679400   64.199186 
##         349         350         351         352         353         354 
##   37.455322  194.722673  190.900463  192.837174  166.093310  105.235259 
##         355         356         357         358         359         360 
##  101.413048  103.349760   80.694274  186.301037  188.237748  161.493885 
##         361         362         363         364         365         366 
##  309.654176  305.831965  317.885071  314.062860  315.999571  289.255708 
##         367         368         369         370         371         372 
## 1697.048625 1698.985336 1672.241472  695.041397  696.978108  670.234244 
##         373         374         375         376         377         378 
##  961.291745  736.690928  709.947064  425.282273  775.433788  685.003068 
##         379         380         381         382         383         384 
##  916.161342  918.098054  891.354190  904.360275  719.498134  771.197884 
##         385         386         387         388         389         390 
##  656.640493  489.879933  389.521755  387.636255  360.892392  280.523928 
##         391         392         393         394         395         396 
##  278.638429  251.894565  337.735533  267.795313  296.525672  273.870186 
##         397         398         399         400         401         402 
##  199.062744   34.175794   26.729272   76.838186   73.015976   74.952687 
##         403         404         405         406         407         408 
##   48.208823 -167.719755 -423.618339 1317.378319 1290.634455 1159.208829 
##         409         410         411         412         413         414 
##  475.606816  892.829601  889.007391  890.944102  864.200238  526.408693 
##         415         416         417         418         419         420 
##  522.586482  524.523193  497.779330  561.747154  557.924944  559.861655 
##         421         422         423         424         425         426 
##  533.117791  246.942022  243.119812  245.056523  218.312659 1253.138045 
##         427         428         429         430         431         432 
## 1226.394181  126.468321  128.405032  280.147626  282.084337  255.340474 
##         433         434         435         436         437         438 
##  145.549279  146.326494  148.263206  121.519342  293.765754  267.021890 
##         439         440         441         442         443         444 
##  364.496708  896.440431  749.065902  720.436539  579.985447  576.163236 
##         445         446         447         448         449         450 
##  578.099947  551.356084  517.492335  268.733718    4.743808    6.680519 
##         451         452         453         454         455         456 
##  -20.063344  -57.418405 -124.231843 -168.484484 -245.228637 -243.291926 
##         457         458 
## -261.847730 -499.190510
# Compare PriceDifference predicted by the model with the actual profit given in the data
predictedDifference = data.frame(fitted(model)) 
actualDifference = data.frame(PricePremium-PriceEconomy)
DifferenceComparison = cbind(actualDifference, predictedDifference)
View(DifferenceComparison)

Inferences

*The price of Premium seats is higher than price of Economy seats in a flight

*The factors that affect the difference in price of Premium and Economy seats in a flight are FlightDuration, WidthDifference, PitchDifference, Airline, PercentPremiumSeats

*Domestic Flights are cheaper than international flights, but their number is also too low as compared to number of international flights

*AirFrance is the most expensive flight whereas Jet and Delta are the cheaper ones.

*In the month of July, the number of flights goes down and so does the price due to low demand. In the other three months, it is similar.