store.df=read.csv(paste("store24.csv",sep=""))
View(store.df)
library(psych)
## Warning: package 'psych' was built under R version 3.4.3
# PROFIT
p=describe(store.df$Profit)
p[,3:4]
## mean sd
## X1 276313.6 89404.08
# MTenure
mt=describe(store.df$MTenure)
mt[,3:4]
## mean sd
## X1 45.3 57.67
# CTenure
ct=describe(store.df$CTenure)
ct[,3:4]
## mean sd
## X1 13.93 17.7
sortstore=store.df[order(-store.df$Profit),]
#View(sortstore)
sortstore[1:10,1:5]
## store Sales Profit MTenure CTenure
## 74 74 1782957 518998 171.09720 29.519510
## 7 7 1809256 476355 62.53080 7.326488
## 9 9 2113089 474725 108.99350 6.061602
## 6 6 1703140 469050 149.93590 11.351130
## 44 44 1807740 439781 182.23640 114.151900
## 2 2 1619874 424007 86.22219 6.636550
## 45 45 1602362 410149 47.64565 9.166325
## 18 18 1704826 394039 239.96980 33.774130
## 11 11 1583446 389886 44.81977 2.036961
## 47 47 1665657 387853 12.84790 6.636550
sortstore[66:75,1:5]
## store Sales Profit MTenure CTenure
## 37 37 1202917 187765 23.1985000 1.347023
## 61 61 716589 177046 21.8184200 13.305950
## 52 52 1073008 169201 24.1185600 3.416838
## 54 54 811190 159792 6.6703910 3.876797
## 13 13 857843 152513 0.6571813 1.577002
## 32 32 828918 149033 36.0792600 6.636550
## 55 55 925744 147672 6.6703910 18.365500
## 41 41 744211 147327 14.9180200 11.926080
## 66 66 879581 146058 115.2039000 3.876797
## 57 57 699306 122180 24.3485700 2.956879
library(car)
## Warning: package 'car' was built under R version 3.4.3
##
## Attaching package: 'car'
## The following object is masked from 'package:psych':
##
## logit
scatterplot(store.df$MTenure ,store.df$Profit, main="ScatterPlot of Profit vs MTenure", xlab="MTenure", ylab="Profit" )
scatterplot(store.df$CTenure ,store.df$Profit, main="ScatterPlot of Profit vs CTenure")
cor(store.df)
## store Sales Profit MTenure CTenure
## store 1.00000000 -0.22693400 -0.19993481 -0.05655216 0.019930097
## Sales -0.22693400 1.00000000 0.92387059 0.45488023 0.254315184
## Profit -0.19993481 0.92387059 1.00000000 0.43886921 0.257678895
## MTenure -0.05655216 0.45488023 0.43886921 1.00000000 0.243383135
## CTenure 0.01993010 0.25431518 0.25767890 0.24338314 1.000000000
## Pop -0.28936691 0.40348147 0.43063326 -0.06089646 -0.001532449
## Comp 0.03194023 -0.23501372 -0.33454148 0.18087179 -0.070281327
## Visibility -0.02648858 0.13065638 0.13569207 0.15651731 0.066506016
## PedCount -0.22117519 0.42391087 0.45023346 0.06198608 -0.084112627
## Res -0.03142976 -0.16672402 -0.15947734 -0.06234721 -0.340340876
## Hours24 0.02687986 0.06324716 -0.02568703 -0.16513872 0.072865022
## CrewSkill 0.04866273 0.16402179 0.16008443 0.10162169 0.257154817
## MgrSkill -0.07218804 0.31163056 0.32284842 0.22962743 0.124045346
## ServQual -0.32246921 0.38638112 0.36245032 0.18168875 0.081156172
## Pop Comp Visibility PedCount Res
## store -0.289366908 0.03194023 -0.02648858 -0.221175193 -0.03142976
## Sales 0.403481471 -0.23501372 0.13065638 0.423910867 -0.16672402
## Profit 0.430633264 -0.33454148 0.13569207 0.450233461 -0.15947734
## MTenure -0.060896460 0.18087179 0.15651731 0.061986084 -0.06234721
## CTenure -0.001532449 -0.07028133 0.06650602 -0.084112627 -0.34034088
## Pop 1.000000000 -0.26828355 -0.04998269 0.607638861 -0.23693726
## Comp -0.268283553 1.00000000 0.02844548 -0.146325204 0.21923878
## Visibility -0.049982694 0.02844548 1.00000000 -0.141068116 0.02194756
## PedCount 0.607638861 -0.14632520 -0.14106812 1.000000000 -0.28437852
## Res -0.236937265 0.21923878 0.02194756 -0.284378520 1.00000000
## Hours24 -0.221767927 0.12957478 0.04692587 -0.275973353 -0.08908708
## CrewSkill 0.282845090 -0.04229731 -0.19745297 0.213672596 -0.15331247
## MgrSkill 0.083554590 0.22407913 0.07348301 0.087475440 -0.03213640
## ServQual 0.123946521 0.01814508 0.20992919 -0.005445552 0.09081624
## Hours24 CrewSkill MgrSkill ServQual
## store 0.02687986 0.04866273 -0.07218804 -0.322469213
## Sales 0.06324716 0.16402179 0.31163056 0.386381121
## Profit -0.02568703 0.16008443 0.32284842 0.362450323
## MTenure -0.16513872 0.10162169 0.22962743 0.181688755
## CTenure 0.07286502 0.25715482 0.12404535 0.081156172
## Pop -0.22176793 0.28284509 0.08355459 0.123946521
## Comp 0.12957478 -0.04229731 0.22407913 0.018145080
## Visibility 0.04692587 -0.19745297 0.07348301 0.209929194
## PedCount -0.27597335 0.21367260 0.08747544 -0.005445552
## Res -0.08908708 -0.15331247 -0.03213640 0.090816237
## Hours24 1.00000000 0.10536295 -0.03883007 0.058325655
## CrewSkill 0.10536295 1.00000000 -0.02100949 -0.033516504
## MgrSkill -0.03883007 -0.02100949 1.00000000 0.356702708
## ServQual 0.05832565 -0.03351650 0.35670271 1.000000000
cor(store.df$Profit,store.df$MTenure)
## [1] 0.4388692
cor(store.df$Profit,store.df$CTenure)
## [1] 0.2576789
library(corrgram)
## Warning: package 'corrgram' was built under R version 3.4.3
corrgram(store.df, upper.panel=panel.pie)
ct=cor.test(store.df$Profit,store.df$MTenure)
#ct
ct[3]
## $p.value
## [1] 8.193133e-05
ct=cor.test(store.df$Profit,store.df$CTenure)
#ct
ct[3]
## $p.value
## [1] 0.0256203
model=lm(formula=store.df$Profit~store.df$MTenure+store.df$CTenure+store.df$Comp+store.df$Pop+store.df$PedCount+store.df$Res+store.df$Hours24+store.df$Visibility)
summary(model)
##
## Call:
## lm(formula = store.df$Profit ~ store.df$MTenure + store.df$CTenure +
## store.df$Comp + store.df$Pop + store.df$PedCount + store.df$Res +
## store.df$Hours24 + store.df$Visibility)
##
## Residuals:
## Min 1Q Median 3Q Max
## -105789 -35946 -7069 33780 112390
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7610.041 66821.994 0.114 0.909674
## store.df$MTenure 760.993 127.086 5.988 9.72e-08 ***
## store.df$CTenure 944.978 421.687 2.241 0.028400 *
## store.df$Comp -25286.887 5491.937 -4.604 1.94e-05 ***
## store.df$Pop 3.667 1.466 2.501 0.014890 *
## store.df$PedCount 34087.359 9073.196 3.757 0.000366 ***
## store.df$Res 91584.675 39231.283 2.334 0.022623 *
## store.df$Hours24 63233.307 19641.114 3.219 0.001994 **
## store.df$Visibility 12625.447 9087.620 1.389 0.169411
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 56970 on 66 degrees of freedom
## Multiple R-squared: 0.6379, Adjusted R-squared: 0.594
## F-statistic: 14.53 on 8 and 66 DF, p-value: 5.382e-12
MTenure CTenure Comp Pop PedCount Res Hours24
Visibililty
Increasing MTenure by 1 month increases Profit by $760.933 Increasing CTenure by 1 month increases Profit by $944.978
Since the tenure of Managers and Crew members is positively correlated with the Profits made by a store, impetus must be given to retention of employees. Based on the increase in amount of profit made by increasing their tenure by 1 month, certain strategies within that range can be taken up to enhance employee retention.
Furhtermore, it is clear from the regression model that stores which are functioning 24 hours make more profits, so most of the stores can be made 24 hours avaliable if feasible.
The manager can also conclude that if they want to setup a new store, they must look for a location where the number of pedestrians is high and it is in a residential area, because these two factors are also significantly positively correlated with profit.