An introduction to the data :

premium <- read.csv(paste("abcd.csv" , sep = ""))
str(premium)
## 'data.frame':    458 obs. of  18 variables:
##  $ Airline            : Factor w/ 6 levels "AirFrance","British",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ Aircraft           : Factor w/ 2 levels "AirBus","Boeing": 2 2 2 2 2 2 2 2 2 2 ...
##  $ FlightDuration     : num  12.25 12.25 12.25 12.25 8.16 ...
##  $ TravelMonth        : Factor w/ 4 levels "Aug","Jul","Oct",..: 2 1 4 3 1 4 3 1 4 4 ...
##  $ IsInternational    : Factor w/ 2 levels "Domestic","International": 2 2 2 2 2 2 2 2 2 2 ...
##  $ SeatsEconomy       : int  122 122 122 122 122 122 122 122 122 122 ...
##  $ SeatsPremium       : int  40 40 40 40 40 40 40 40 40 40 ...
##  $ PitchEconomy       : int  31 31 31 31 31 31 31 31 31 31 ...
##  $ PitchPremium       : int  38 38 38 38 38 38 38 38 38 38 ...
##  $ WidthEconomy       : int  18 18 18 18 18 18 18 18 18 18 ...
##  $ WidthPremium       : int  19 19 19 19 19 19 19 19 19 19 ...
##  $ PriceEconomy       : int  2707 2707 2707 2707 1793 1793 1793 1476 1476 1705 ...
##  $ PricePremium       : int  3725 3725 3725 3725 2999 2999 2999 2997 2997 2989 ...
##  $ PriceRelative      : num  0.38 0.38 0.38 0.38 0.67 0.67 0.67 1.03 1.03 0.75 ...
##  $ SeatsTotal         : int  162 162 162 162 162 162 162 162 162 162 ...
##  $ PitchDifference    : int  7 7 7 7 7 7 7 7 7 7 ...
##  $ WidthDifference    : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ PercentPremiumSeats: num  24.7 24.7 24.7 24.7 24.7 ...

A summary of various fields:

premium$PriceDifference <- premium$PricePremium - premium$PriceEconomy
summary(premium)
##       Airline      Aircraft   FlightDuration   TravelMonth
##  AirFrance: 74   AirBus:151   Min.   : 1.250   Aug:127    
##  British  :175   Boeing:307   1st Qu.: 4.260   Jul: 75    
##  Delta    : 46                Median : 7.790   Oct:127    
##  Jet      : 61                Mean   : 7.578   Sep:129    
##  Singapore: 40                3rd Qu.:10.620              
##  Virgin   : 62                Max.   :14.660              
##       IsInternational  SeatsEconomy    SeatsPremium    PitchEconomy  
##  Domestic     : 40    Min.   : 78.0   Min.   : 8.00   Min.   :30.00  
##  International:418    1st Qu.:133.0   1st Qu.:21.00   1st Qu.:31.00  
##                       Median :185.0   Median :36.00   Median :31.00  
##                       Mean   :202.3   Mean   :33.65   Mean   :31.22  
##                       3rd Qu.:243.0   3rd Qu.:40.00   3rd Qu.:32.00  
##                       Max.   :389.0   Max.   :66.00   Max.   :33.00  
##   PitchPremium    WidthEconomy    WidthPremium    PriceEconomy 
##  Min.   :34.00   Min.   :17.00   Min.   :17.00   Min.   :  65  
##  1st Qu.:38.00   1st Qu.:18.00   1st Qu.:19.00   1st Qu.: 413  
##  Median :38.00   Median :18.00   Median :19.00   Median :1242  
##  Mean   :37.91   Mean   :17.84   Mean   :19.47   Mean   :1327  
##  3rd Qu.:38.00   3rd Qu.:18.00   3rd Qu.:21.00   3rd Qu.:1909  
##  Max.   :40.00   Max.   :19.00   Max.   :21.00   Max.   :3593  
##   PricePremium    PriceRelative      SeatsTotal  PitchDifference 
##  Min.   :  86.0   Min.   :0.0200   Min.   : 98   Min.   : 2.000  
##  1st Qu.: 528.8   1st Qu.:0.1000   1st Qu.:166   1st Qu.: 6.000  
##  Median :1737.0   Median :0.3650   Median :227   Median : 7.000  
##  Mean   :1845.3   Mean   :0.4872   Mean   :236   Mean   : 6.688  
##  3rd Qu.:2989.0   3rd Qu.:0.7400   3rd Qu.:279   3rd Qu.: 7.000  
##  Max.   :7414.0   Max.   :1.8900   Max.   :441   Max.   :10.000  
##  WidthDifference PercentPremiumSeats PriceDifference 
##  Min.   :0.000   Min.   : 4.71       Min.   :  15.0  
##  1st Qu.:1.000   1st Qu.:12.28       1st Qu.: 110.0  
##  Median :1.000   Median :13.21       Median : 275.5  
##  Mean   :1.633   Mean   :14.65       Mean   : 518.2  
##  3rd Qu.:3.000   3rd Qu.:15.36       3rd Qu.: 760.5  
##  Max.   :4.000   Max.   :24.69       Max.   :4312.0

A more mathematical description of the data fields :

describe(premium[,c(3,6:19)] , fast = TRUE)
##                     vars   n    mean      sd   min     max   range    se
## FlightDuration         1 458    7.58    3.54  1.25   14.66   13.41  0.17
## SeatsEconomy           2 458  202.31   76.37 78.00  389.00  311.00  3.57
## SeatsPremium           3 458   33.65   13.26  8.00   66.00   58.00  0.62
## PitchEconomy           4 458   31.22    0.66 30.00   33.00    3.00  0.03
## PitchPremium           5 458   37.91    1.31 34.00   40.00    6.00  0.06
## WidthEconomy           6 458   17.84    0.56 17.00   19.00    2.00  0.03
## WidthPremium           7 458   19.47    1.10 17.00   21.00    4.00  0.05
## PriceEconomy           8 458 1327.08  988.27 65.00 3593.00 3528.00 46.18
## PricePremium           9 458 1845.26 1288.14 86.00 7414.00 7328.00 60.19
## PriceRelative         10 458    0.49    0.45  0.02    1.89    1.87  0.02
## SeatsTotal            11 458  235.96   85.29 98.00  441.00  343.00  3.99
## PitchDifference       12 458    6.69    1.76  2.00   10.00    8.00  0.08
## WidthDifference       13 458    1.63    1.19  0.00    4.00    4.00  0.06
## PercentPremiumSeats   14 458   14.65    4.84  4.71   24.69   19.98  0.23
## PriceDifference       15 458  518.18  583.94 15.00 4312.00 4297.00 27.29

Airline-wise distribution of no. of seats in Economy Class:

par(cex.axis = 0.8,las = 2,cex.lab = 0.5)
boxplot(SeatsEconomy ~ Airline , horizontal = TRUE , col = rainbow(6) , las = 2 )

Airline-wise distribution of no. of seats in Premium Economy Class:

par(cex.axis = 0.8,las = 2,cex.lab = 0.5)
boxplot(SeatsPremium ~ Airline , horizontal = TRUE , col = rainbow(20) , las = 2 )

Airline-wise variation in the relative Price of Premium Economy as compared to Economy:

par(cex.axis = 0.8,las = 2,cex.lab = 0.5)
boxplot(PriceRelative ~ Airline , horizontal = TRUE , col = rainbow(20) , las = 2 )

Airline-wise variation in the relative Percentage of Seats in Premium Economy as compared to Economy:

par(cex.axis = 0.8,las = 2,cex.lab = 0.5)
boxplot(PercentPremiumSeats ~ Airline , horizontal = TRUE , col = rainbow(20) , las = 2 )

Hypothesis :

No. of Premium Seats depends upon the nature of the flight(Domestic or International)

boxplot(SeatsPremium ~ IsInternational , horizontal = TRUE , col = rainbow(7))

t.test(SeatsPremium ~ IsInternational)
## 
##  Welch Two Sample t-test
## 
## data:  SeatsPremium by IsInternational
## t = -17.656, df = 199.99, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -16.32020 -13.04104
## sample estimates:
##      mean in group Domestic mean in group International 
##                    20.25000                    34.93062

So, we fail to reject the above hypothesis.(There is indeed a significant difference).

Hypothesis :

Difference in Pitch of Premium Seats depends upon the nature of the flight(Domestic or International)

t.test(PitchDifference ~ IsInternational)
## 
##  Welch Two Sample t-test
## 
## data:  PitchDifference by IsInternational
## t = -47.917, df = 92.439, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -4.892803 -4.503369
## sample estimates:
##      mean in group Domestic mean in group International 
##                    2.400000                    7.098086

So, we fail to reject the above hypothesis.(There is indeed a significant difference).

Hypothesis :

Difference in Width of Premium Seats depends upon the nature of the flight(Domestic or International)

t.test(WidthDifference ~ IsInternational)
## 
##  Welch Two Sample t-test
## 
## data:  WidthDifference by IsInternational
## t = -32.468, df = 417, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.897811 -1.681137
## sample estimates:
##      mean in group Domestic mean in group International 
##                    0.000000                    1.789474

So, we fail to reject the above hypothesis.(There is indeed a significant difference).

Airline-wise Price, Width and Pitch differences

attach(premium)
## The following objects are masked from premium (pos = 3):
## 
##     Aircraft, Airline, FlightDuration, IsInternational,
##     PercentPremiumSeats, PitchDifference, PitchEconomy,
##     PitchPremium, PriceDifference, PriceEconomy, PricePremium,
##     PriceRelative, SeatsEconomy, SeatsPremium, SeatsTotal,
##     TravelMonth, WidthDifference, WidthEconomy, WidthPremium
fir <- aggregate(PriceDifference , by = list(company = Airline) , mean)
sec <- aggregate(WidthDifference , by = list(company = Airline) , mean)
thir <- aggregate(PitchDifference , by = list(company = Airline) , mean) 
d3 = merge(x = fir, y = sec , by = "company")
d3 = merge(x = d3 , y = thir , by = "company")
colnames(d3) <- c("Airline" , "Mean Price Difference" , "Mean Width Difference" , "Mean Pitch Difference")
d3
##     Airline Mean Price Difference Mean Width Difference
## 1 AirFrance              295.4324             1.4324324
## 2   British              643.5486             1.0000000
## 3     Delta              123.7391             0.3913043
## 4       Jet              207.1967             3.6557377
## 5 Singapore              379.6750             1.0000000
## 6    Virgin             1118.1613             3.0000000
##   Mean Pitch Difference
## 1              6.000000
## 2              7.000000
## 3              3.000000
## 4              9.540984
## 5              6.000000
## 6              7.000000

Conversion of the unreadable matrix into a Corrgram

library("corrgram", lib.loc="~/R/win-library/3.4")
library("corrplot", lib.loc="~/R/win-library/3.4")
## corrplot 0.84 loaded
M <- cor(premium[,c(3,6,7,8,9,10,11,12,13,14,15,17,18,16,19)] , use = "everything")
corr.test(premium[,c(3,6,7,8,9,10,11,12,13,14,15,17,18,16,19)] , use = "everything")
## Call:corr.test(x = premium[, c(3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
##     15, 17, 18, 16, 19)], use = "everything")
## Correlation matrix 
##                     FlightDuration SeatsEconomy SeatsPremium PitchEconomy
## FlightDuration                1.00         0.20         0.16         0.29
## SeatsEconomy                  0.20         1.00         0.63         0.14
## SeatsPremium                  0.16         0.63         1.00        -0.03
## PitchEconomy                  0.29         0.14        -0.03         1.00
## PitchPremium                  0.10         0.12         0.00        -0.55
## WidthEconomy                  0.46         0.37         0.46         0.29
## WidthPremium                  0.10         0.10         0.00        -0.54
## PriceEconomy                  0.57         0.13         0.11         0.37
## PricePremium                  0.65         0.18         0.22         0.23
## PriceRelative                 0.12         0.00        -0.10        -0.42
## SeatsTotal                    0.20         0.99         0.72         0.12
## WidthDifference              -0.12        -0.08        -0.22        -0.64
## PercentPremiumSeats           0.06        -0.33         0.49        -0.10
## PitchDifference              -0.04         0.04         0.02        -0.78
## PriceDifference               0.47         0.17         0.29        -0.13
##                     PitchPremium WidthEconomy WidthPremium PriceEconomy
## FlightDuration              0.10         0.46         0.10         0.57
## SeatsEconomy                0.12         0.37         0.10         0.13
## SeatsPremium                0.00         0.46         0.00         0.11
## PitchEconomy               -0.55         0.29        -0.54         0.37
## PitchPremium                1.00        -0.02         0.75         0.05
## WidthEconomy               -0.02         1.00         0.08         0.07
## WidthPremium                0.75         0.08         1.00        -0.06
## PriceEconomy                0.05         0.07        -0.06         1.00
## PricePremium                0.09         0.15         0.06         0.90
## PriceRelative               0.42        -0.04         0.50        -0.29
## SeatsTotal                  0.11         0.41         0.09         0.13
## WidthDifference             0.70        -0.39         0.88        -0.08
## PercentPremiumSeats        -0.18         0.23        -0.18         0.07
## PitchDifference             0.95        -0.13         0.76        -0.10
## PriceDifference             0.11         0.22         0.24         0.30
##                     PricePremium PriceRelative SeatsTotal WidthDifference
## FlightDuration              0.65          0.12       0.20           -0.12
## SeatsEconomy                0.18          0.00       0.99           -0.08
## SeatsPremium                0.22         -0.10       0.72           -0.22
## PitchEconomy                0.23         -0.42       0.12           -0.64
## PitchPremium                0.09          0.42       0.11            0.70
## WidthEconomy                0.15         -0.04       0.41           -0.39
## WidthPremium                0.06          0.50       0.09            0.88
## PriceEconomy                0.90         -0.29       0.13           -0.08
## PricePremium                1.00          0.03       0.19           -0.01
## PriceRelative               0.03          1.00      -0.01            0.49
## SeatsTotal                  0.19         -0.01       1.00           -0.11
## WidthDifference            -0.01          0.49      -0.11            1.00
## PercentPremiumSeats         0.12         -0.16      -0.22           -0.28
## PitchDifference            -0.02          0.47       0.03            0.76
## PriceDifference             0.68          0.56       0.20            0.12
##                     PercentPremiumSeats PitchDifference PriceDifference
## FlightDuration                     0.06           -0.04            0.47
## SeatsEconomy                      -0.33            0.04            0.17
## SeatsPremium                       0.49            0.02            0.29
## PitchEconomy                      -0.10           -0.78           -0.13
## PitchPremium                      -0.18            0.95            0.11
## WidthEconomy                       0.23           -0.13            0.22
## WidthPremium                      -0.18            0.76            0.24
## PriceEconomy                       0.07           -0.10            0.30
## PricePremium                       0.12           -0.02            0.68
## PriceRelative                     -0.16            0.47            0.56
## SeatsTotal                        -0.22            0.03            0.20
## WidthDifference                   -0.28            0.76            0.12
## PercentPremiumSeats                1.00           -0.09            0.15
## PitchDifference                   -0.09            1.00            0.13
## PriceDifference                    0.15            0.13            1.00
## Sample Size 
## [1] 458
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                     FlightDuration SeatsEconomy SeatsPremium PitchEconomy
## FlightDuration                0.00         0.00         0.03         0.00
## SeatsEconomy                  0.00         0.00         0.00         0.10
## SeatsPremium                  0.00         0.00         0.00         1.00
## PitchEconomy                  0.00         0.00         0.47         0.00
## PitchPremium                  0.04         0.01         0.92         0.00
## WidthEconomy                  0.00         0.00         0.00         0.00
## WidthPremium                  0.03         0.03         0.95         0.00
## PriceEconomy                  0.00         0.01         0.01         0.00
## PricePremium                  0.00         0.00         0.00         0.00
## PriceRelative                 0.01         0.93         0.04         0.00
## SeatsTotal                    0.00         0.00         0.00         0.01
## WidthDifference               0.01         0.08         0.00         0.00
## PercentPremiumSeats           0.20         0.00         0.00         0.03
## PitchDifference               0.42         0.45         0.73         0.00
## PriceDifference               0.00         0.00         0.00         0.01
##                     PitchPremium WidthEconomy WidthPremium PriceEconomy
## FlightDuration              1.00         0.00         0.86         0.00
## SeatsEconomy                0.43         0.00         0.86         0.27
## SeatsPremium                1.00         0.00         1.00         0.54
## PitchEconomy                0.00         0.00         0.00         0.00
## PitchPremium                0.00         1.00         0.00         1.00
## WidthEconomy                0.61         0.00         1.00         1.00
## WidthPremium                0.00         0.08         0.00         1.00
## PriceEconomy                0.28         0.15         0.22         0.00
## PricePremium                0.06         0.00         0.17         0.00
## PriceRelative               0.00         0.35         0.00         0.00
## SeatsTotal                  0.02         0.00         0.05         0.00
## WidthDifference             0.00         0.00         0.00         0.07
## PercentPremiumSeats         0.00         0.00         0.00         0.16
## PitchDifference             0.00         0.01         0.00         0.03
## PriceDifference             0.02         0.00         0.00         0.00
##                     PricePremium PriceRelative SeatsTotal WidthDifference
## FlightDuration              0.00          0.39       0.00            0.43
## SeatsEconomy                0.01          1.00       0.00            1.00
## SeatsPremium                0.00          1.00       0.00            0.00
## PitchEconomy                0.00          0.00       0.34            0.00
## PitchPremium                1.00          0.00       0.73            0.00
## WidthEconomy                0.06          1.00       0.00            0.00
## WidthPremium                1.00          0.00       1.00            0.00
## PriceEconomy                0.00          0.00       0.21            1.00
## PricePremium                0.00          1.00       0.00            1.00
## PriceRelative               0.50          0.00       1.00            0.00
## SeatsTotal                  0.00          0.80       0.00            0.78
## WidthDifference             0.81          0.00       0.02            0.00
## PercentPremiumSeats         0.01          0.00       0.00            0.00
## PitchDifference             0.70          0.00       0.47            0.00
## PriceDifference             0.00          0.00       0.00            0.01
##                     PercentPremiumSeats PitchDifference PriceDifference
## FlightDuration                     1.00            1.00            0.00
## SeatsEconomy                       0.00            1.00            0.01
## SeatsPremium                       0.00            1.00            0.00
## PitchEconomy                       0.86            0.00            0.32
## PitchPremium                       0.01            0.00            0.65
## WidthEconomy                       0.00            0.28            0.00
## WidthPremium                       0.00            0.00            0.00
## PriceEconomy                       1.00            0.96            0.00
## PricePremium                       0.47            1.00            0.00
## PriceRelative                      0.03            0.00            0.00
## SeatsTotal                         0.00            1.00            0.00
## WidthDifference                    0.00            0.00            0.45
## PercentPremiumSeats                0.00            1.00            0.08
## PitchDifference                    0.05            0.00            0.27
## PriceDifference                    0.00            0.01            0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#M <- cor(premium)
corrplot(M , method = "circle")

#corrgram(premium , upper.panel = panel.pie , cex.labels = 0.5 , order = TRUE , outer.labels = list("top"))
#scatterplotMatrix(formula = ~ SeatsEconomy + SeatsPremium + SeatsTotal + WidthEconomy + WidthPremium + PriceRelative)

Based on the corrgram, we can formulate hypotheses and use linear regression models to check them.

  1. Hypothesis :

Price Difference depends on Width Difference

fit1 <- lm(PriceDifference ~ WidthDifference)
summary(fit1)
## 
## Call:
## lm(formula = PriceDifference ~ WidthDifference)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -595.9 -408.9 -257.6  243.4 3830.4 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       423.87      46.11   9.192   <2e-16 ***
## WidthDifference    57.75      22.83   2.529   0.0118 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 580.5 on 456 degrees of freedom
## Multiple R-squared:  0.01383,    Adjusted R-squared:  0.01167 
## F-statistic: 6.396 on 1 and 456 DF,  p-value: 0.01177

The values are significant, so yes it depends

2. Hypothesis : Price Difference depends on Pitch Difference

fit2 <- lm(PriceDifference ~ PitchDifference)
summary(fit2)
## 
## Call:
## lm(formula = PriceDifference ~ PitchDifference)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -600.4 -379.9 -274.4  241.0 3780.5 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)   
## (Intercept)       233.14     106.45   2.190  0.02902 * 
## PitchDifference    42.62      15.39   2.769  0.00586 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 579.7 on 456 degrees of freedom
## Multiple R-squared:  0.01653,    Adjusted R-squared:  0.01438 
## F-statistic: 7.666 on 1 and 456 DF,  p-value: 0.005855

The values are significant, so yes it depends

3. Hypothesis :

Price Difference depends on both Width and Pitch Difference

fit3 <- lm(PriceDifference ~ PitchDifference + WidthDifference)
summary(fit3)
## 
## Call:
## lm(formula = PriceDifference ~ PitchDifference + WidthDifference)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -615.7 -395.5 -279.4  241.2 3798.8 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)  
## (Intercept)       274.70     123.94   2.216   0.0272 *
## PitchDifference    30.78      23.74   1.297   0.1955  
## WidthDifference    23.06      35.16   0.656   0.5123  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 580.1 on 455 degrees of freedom
## Multiple R-squared:  0.01746,    Adjusted R-squared:  0.01314 
## F-statistic: 4.043 on 2 and 455 DF,  p-value: 0.01817

These three observations show that because Price Difference doesn’t depend on Width and Pitch Difference when taken together but depends on them indivisually, then they both must have a strong correlation.

cor.test(WidthDifference,PitchDifference)
## 
##  Pearson's product-moment correlation
## 
## data:  WidthDifference and PitchDifference
## t = 25.04, df = 456, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.7194209 0.7969557
## sample estimates:
##       cor 
## 0.7608911

Now, see the the dependance of relative price on Pitch and Width Difference :

1. Relative Price vs WidthDifference

fit4 <- lm(PriceRelative ~ WidthDifference)
summary(fit4)
## 
## Call:
## lm(formula = PriceRelative ~ WidthDifference)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8028 -0.2907 -0.0766  0.1852  1.1893 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      0.18660    0.03132   5.958 5.11e-09 ***
## WidthDifference  0.18406    0.01551  11.869  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3943 on 456 degrees of freedom
## Multiple R-squared:  0.236,  Adjusted R-squared:  0.2343 
## F-statistic: 140.9 on 1 and 456 DF,  p-value: < 2.2e-16

2. Relative Price vs PitchDifference

fit5 <- lm(PriceRelative ~ PitchDifference)
summary(fit5)
## 
## Call:
## lm(formula = PriceRelative ~ PitchDifference)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.7643 -0.3247 -0.1146  0.2052  1.2954 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -0.31456    0.07317  -4.299  2.1e-05 ***
## PitchDifference  0.11989    0.01058  11.331  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3985 on 456 degrees of freedom
## Multiple R-squared:  0.2197, Adjusted R-squared:  0.218 
## F-statistic: 128.4 on 1 and 456 DF,  p-value: < 2.2e-16

3. Relative Price vs both of them

fit6 <- lm(PriceRelative ~ PitchDifference + WidthDifference)
summary(fit6)
## 
## Call:
## lm(formula = PriceRelative ~ PitchDifference + WidthDifference)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.84163 -0.28484 -0.07241  0.17698  1.18778 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -0.10514    0.08304  -1.266 0.206077    
## PitchDifference  0.06019    0.01590   3.785 0.000174 ***
## WidthDifference  0.11621    0.02356   4.933 1.14e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3886 on 455 degrees of freedom
## Multiple R-squared:  0.2593, Adjusted R-squared:  0.2561 
## F-statistic: 79.65 on 2 and 455 DF,  p-value: < 2.2e-16

Carefully observe the p-vlaues in the three cases. It also shows the internal correlation in between Pitch and Width difference. Indivisually, the values are almost 0 but taken together they increase a little. Although it depends in both of them, but they are correlated, so we should take only one of them under consideration when doing regression.

Also from the corrgram, we see a correlation in between relative price and total premium seats

fit7 <- lm(PriceRelative ~ SeatsPremium)
summary(fit7)
## 
## Call:
## lm(formula = PriceRelative ~ SeatsPremium)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.5023 -0.3862 -0.1129  0.2038  1.3445 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.598328   0.057266  10.448   <2e-16 ***
## SeatsPremium -0.003302   0.001584  -2.085   0.0376 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4489 on 456 degrees of freedom
## Multiple R-squared:  0.009447,   Adjusted R-squared:  0.007275 
## F-statistic: 4.349 on 1 and 456 DF,  p-value: 0.03759

Relative price v/s Flight duration

fit10 <- lm(PriceRelative ~ FlightDuration)
summary(fit10)
## 
## Call:
## lm(formula = PriceRelative ~ FlightDuration)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.5507 -0.3373 -0.1167  0.2363  1.4694 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    0.370491   0.049454   7.492 3.56e-13 ***
## FlightDuration 0.015402   0.005913   2.605   0.0095 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4478 on 456 degrees of freedom
## Multiple R-squared:  0.01466,    Adjusted R-squared:  0.0125 
## F-statistic: 6.784 on 1 and 456 DF,  p-value: 0.009498

So, we formulate a regression model of relative price as the dependant variable with independant variables as : flight duration, difference in width (which accounts for difference in pitch).

fit17 <- lm(PriceRelative ~ FlightDuration + WidthDifference)
summary(fit17)
## 
## Call:
## lm(formula = PriceRelative ~ FlightDuration + WidthDifference)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.70689 -0.30285 -0.01623  0.13842  1.15018 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -0.001382   0.051926  -0.027    0.979    
## FlightDuration   0.023053   0.005137   4.487 9.14e-06 ***
## WidthDifference  0.192198   0.015300  12.562  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3863 on 455 degrees of freedom
## Multiple R-squared:  0.2684, Adjusted R-squared:  0.2652 
## F-statistic: 83.45 on 2 and 455 DF,  p-value: < 2.2e-16

Hence, the answer to the question is : Airlines take extra money for providing comfort in the form of Pitch and Width difference and longer the comfort provided, more is the money taken.