airline = read.csv(paste("SixAirlinesDataV2.csv", sep=""))
attach(airline)
head(airline)
## Airline Aircraft FlightDuration TravelMonth IsInternational SeatsEconomy
## 1 British Boeing 12.25 Jul International 122
## 2 British Boeing 12.25 Aug International 122
## 3 British Boeing 12.25 Sep International 122
## 4 British Boeing 12.25 Oct International 122
## 5 British Boeing 8.16 Aug International 122
## 6 British Boeing 8.16 Sep International 122
## SeatsPremium PitchEconomy PitchPremium WidthEconomy WidthPremium
## 1 40 31 38 18 19
## 2 40 31 38 18 19
## 3 40 31 38 18 19
## 4 40 31 38 18 19
## 5 40 31 38 18 19
## 6 40 31 38 18 19
## PriceEconomy PricePremium PriceRelative SeatsTotal PitchDifference
## 1 2707 3725 0.38 162 7
## 2 2707 3725 0.38 162 7
## 3 2707 3725 0.38 162 7
## 4 2707 3725 0.38 162 7
## 5 1793 2999 0.67 162 7
## 6 1793 2999 0.67 162 7
## WidthDifference PercentPremiumSeats
## 1 1 24.69
## 2 1 24.69
## 3 1 24.69
## 4 1 24.69
## 5 1 24.69
## 6 1 24.69
str(airline)
## 'data.frame': 458 obs. of 18 variables:
## $ Airline : Factor w/ 6 levels "AirFrance","British",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ Aircraft : Factor w/ 2 levels "AirBus","Boeing": 2 2 2 2 2 2 2 2 2 2 ...
## $ FlightDuration : num 12.25 12.25 12.25 12.25 8.16 ...
## $ TravelMonth : Factor w/ 4 levels "Aug","Jul","Oct",..: 2 1 4 3 1 4 3 1 4 4 ...
## $ IsInternational : Factor w/ 2 levels "Domestic","International": 2 2 2 2 2 2 2 2 2 2 ...
## $ SeatsEconomy : int 122 122 122 122 122 122 122 122 122 122 ...
## $ SeatsPremium : int 40 40 40 40 40 40 40 40 40 40 ...
## $ PitchEconomy : int 31 31 31 31 31 31 31 31 31 31 ...
## $ PitchPremium : int 38 38 38 38 38 38 38 38 38 38 ...
## $ WidthEconomy : int 18 18 18 18 18 18 18 18 18 18 ...
## $ WidthPremium : int 19 19 19 19 19 19 19 19 19 19 ...
## $ PriceEconomy : int 2707 2707 2707 2707 1793 1793 1793 1476 1476 1705 ...
## $ PricePremium : int 3725 3725 3725 3725 2999 2999 2999 2997 2997 2989 ...
## $ PriceRelative : num 0.38 0.38 0.38 0.38 0.67 0.67 0.67 1.03 1.03 0.75 ...
## $ SeatsTotal : int 162 162 162 162 162 162 162 162 162 162 ...
## $ PitchDifference : int 7 7 7 7 7 7 7 7 7 7 ...
## $ WidthDifference : int 1 1 1 1 1 1 1 1 1 1 ...
## $ PercentPremiumSeats: num 24.7 24.7 24.7 24.7 24.7 ...
summary(airline)
## Airline Aircraft FlightDuration TravelMonth
## AirFrance: 74 AirBus:151 Min. : 1.250 Aug:127
## British :175 Boeing:307 1st Qu.: 4.260 Jul: 75
## Delta : 46 Median : 7.790 Oct:127
## Jet : 61 Mean : 7.578 Sep:129
## Singapore: 40 3rd Qu.:10.620
## Virgin : 62 Max. :14.660
## IsInternational SeatsEconomy SeatsPremium PitchEconomy
## Domestic : 40 Min. : 78.0 Min. : 8.00 Min. :30.00
## International:418 1st Qu.:133.0 1st Qu.:21.00 1st Qu.:31.00
## Median :185.0 Median :36.00 Median :31.00
## Mean :202.3 Mean :33.65 Mean :31.22
## 3rd Qu.:243.0 3rd Qu.:40.00 3rd Qu.:32.00
## Max. :389.0 Max. :66.00 Max. :33.00
## PitchPremium WidthEconomy WidthPremium PriceEconomy
## Min. :34.00 Min. :17.00 Min. :17.00 Min. : 65
## 1st Qu.:38.00 1st Qu.:18.00 1st Qu.:19.00 1st Qu.: 413
## Median :38.00 Median :18.00 Median :19.00 Median :1242
## Mean :37.91 Mean :17.84 Mean :19.47 Mean :1327
## 3rd Qu.:38.00 3rd Qu.:18.00 3rd Qu.:21.00 3rd Qu.:1909
## Max. :40.00 Max. :19.00 Max. :21.00 Max. :3593
## PricePremium PriceRelative SeatsTotal PitchDifference
## Min. : 86.0 Min. :0.0200 Min. : 98 Min. : 2.000
## 1st Qu.: 528.8 1st Qu.:0.1000 1st Qu.:166 1st Qu.: 6.000
## Median :1737.0 Median :0.3650 Median :227 Median : 7.000
## Mean :1845.3 Mean :0.4872 Mean :236 Mean : 6.688
## 3rd Qu.:2989.0 3rd Qu.:0.7400 3rd Qu.:279 3rd Qu.: 7.000
## Max. :7414.0 Max. :1.8900 Max. :441 Max. :10.000
## WidthDifference PercentPremiumSeats
## Min. :0.000 Min. : 4.71
## 1st Qu.:1.000 1st Qu.:12.28
## Median :1.000 Median :13.21
## Mean :1.633 Mean :14.65
## 3rd Qu.:3.000 3rd Qu.:15.36
## Max. :4.000 Max. :24.69
library(psych)
describe(Filter(is.numeric,airline))
## vars n mean sd median trimmed mad min
## FlightDuration 1 458 7.58 3.54 7.79 7.57 4.81 1.25
## SeatsEconomy 2 458 202.31 76.37 185.00 194.64 85.99 78.00
## SeatsPremium 3 458 33.65 13.26 36.00 33.35 11.86 8.00
## PitchEconomy 4 458 31.22 0.66 31.00 31.26 0.00 30.00
## PitchPremium 5 458 37.91 1.31 38.00 38.05 0.00 34.00
## WidthEconomy 6 458 17.84 0.56 18.00 17.81 0.00 17.00
## WidthPremium 7 458 19.47 1.10 19.00 19.53 0.00 17.00
## PriceEconomy 8 458 1327.08 988.27 1242.00 1244.40 1159.39 65.00
## PricePremium 9 458 1845.26 1288.14 1737.00 1799.05 1845.84 86.00
## PriceRelative 10 458 0.49 0.45 0.36 0.42 0.41 0.02
## SeatsTotal 11 458 235.96 85.29 227.00 228.73 90.44 98.00
## PitchDifference 12 458 6.69 1.76 7.00 6.76 0.00 2.00
## WidthDifference 13 458 1.63 1.19 1.00 1.53 0.00 0.00
## PercentPremiumSeats 14 458 14.65 4.84 13.21 14.31 2.68 4.71
## max range skew kurtosis se
## FlightDuration 14.66 13.41 -0.07 -1.12 0.17
## SeatsEconomy 389.00 311.00 0.72 -0.36 3.57
## SeatsPremium 66.00 58.00 0.23 -0.46 0.62
## PitchEconomy 33.00 3.00 -0.03 -0.35 0.03
## PitchPremium 40.00 6.00 -1.51 3.52 0.06
## WidthEconomy 19.00 2.00 -0.04 -0.08 0.03
## WidthPremium 21.00 4.00 -0.08 -0.31 0.05
## PriceEconomy 3593.00 3528.00 0.51 -0.88 46.18
## PricePremium 7414.00 7328.00 0.50 0.43 60.19
## PriceRelative 1.89 1.87 1.17 0.72 0.02
## SeatsTotal 441.00 343.00 0.70 -0.53 3.99
## PitchDifference 10.00 8.00 -0.54 1.78 0.08
## WidthDifference 4.00 4.00 0.84 -0.53 0.06
## PercentPremiumSeats 24.69 19.98 0.71 0.28 0.23
par(mfrow= c(1,2))
hist(PriceEconomy, breaks = 10)
hist(PricePremium, breaks = 10)
par(mfrow= c(1,2))
hist(SeatsEconomy, breaks = 10)
hist(SeatsPremium, breaks = 10)
par(mfrow= c(1,2))
hist(WidthEconomy, breaks = 10)
hist(WidthPremium, breaks = 10)
par(mfrow= c(1,2))
hist(PitchEconomy, breaks = 10)
hist(PitchPremium, breaks = 10)
library(lattice)
bwplot(PriceRelative~Airline, main = "Relative price difference of different Airline" , xlab = "Airline")
bwplot(PriceRelative~Aircraft, main = "Relative price difference of different Aircraft" , xlab = "Aircraft")
bwplot(PriceRelative~TravelMonth, main = "Relative price difference of different Travel month" , xlab = "Travel Month")
bwplot(PriceRelative~IsInternational, main = "Relative price difference of different types of Airline" , xlab = "Airline")
library(car)
scatterplot(PriceRelative~FlightDuration, cex = 0.9, pch=19, main = " Relative price difference vs Flight Duration")
scatterplot(PriceRelative~PercentPremiumSeats, cex = 0.9, pch=19, main = " Relative price difference vs Percent Premium Seats")
library(RColorBrewer)
mycolors <- brewer.pal(6,"Set1")
names(mycolors) <- levels(Airline)
scatterplotMatrix(~PriceRelative+SeatsTotal+PitchDifference+WidthDifference|Airline, data=airline , reg.line="" , smoother="", col=mycolors, smoother.args=list(col="grey") , cex=0.9 , pch=c(15,16,17,18,19,1) , main="Scatter Plot of difference between price, seats, width and pitch",legend.plot= FALSE)
legend(x="topright", legend = levels(Airline), col=mycolors, pch=c(15,16,17,18,19,1), cex = 0.67)
round(cor(Filter(is.numeric, airline)),2)
## FlightDuration SeatsEconomy SeatsPremium PitchEconomy
## FlightDuration 1.00 0.20 0.16 0.29
## SeatsEconomy 0.20 1.00 0.63 0.14
## SeatsPremium 0.16 0.63 1.00 -0.03
## PitchEconomy 0.29 0.14 -0.03 1.00
## PitchPremium 0.10 0.12 0.00 -0.55
## WidthEconomy 0.46 0.37 0.46 0.29
## WidthPremium 0.10 0.10 0.00 -0.54
## PriceEconomy 0.57 0.13 0.11 0.37
## PricePremium 0.65 0.18 0.22 0.23
## PriceRelative 0.12 0.00 -0.10 -0.42
## SeatsTotal 0.20 0.99 0.72 0.12
## PitchDifference -0.04 0.04 0.02 -0.78
## WidthDifference -0.12 -0.08 -0.22 -0.64
## PercentPremiumSeats 0.06 -0.33 0.49 -0.10
## PitchPremium WidthEconomy WidthPremium PriceEconomy
## FlightDuration 0.10 0.46 0.10 0.57
## SeatsEconomy 0.12 0.37 0.10 0.13
## SeatsPremium 0.00 0.46 0.00 0.11
## PitchEconomy -0.55 0.29 -0.54 0.37
## PitchPremium 1.00 -0.02 0.75 0.05
## WidthEconomy -0.02 1.00 0.08 0.07
## WidthPremium 0.75 0.08 1.00 -0.06
## PriceEconomy 0.05 0.07 -0.06 1.00
## PricePremium 0.09 0.15 0.06 0.90
## PriceRelative 0.42 -0.04 0.50 -0.29
## SeatsTotal 0.11 0.41 0.09 0.13
## PitchDifference 0.95 -0.13 0.76 -0.10
## WidthDifference 0.70 -0.39 0.88 -0.08
## PercentPremiumSeats -0.18 0.23 -0.18 0.07
## PricePremium PriceRelative SeatsTotal PitchDifference
## FlightDuration 0.65 0.12 0.20 -0.04
## SeatsEconomy 0.18 0.00 0.99 0.04
## SeatsPremium 0.22 -0.10 0.72 0.02
## PitchEconomy 0.23 -0.42 0.12 -0.78
## PitchPremium 0.09 0.42 0.11 0.95
## WidthEconomy 0.15 -0.04 0.41 -0.13
## WidthPremium 0.06 0.50 0.09 0.76
## PriceEconomy 0.90 -0.29 0.13 -0.10
## PricePremium 1.00 0.03 0.19 -0.02
## PriceRelative 0.03 1.00 -0.01 0.47
## SeatsTotal 0.19 -0.01 1.00 0.03
## PitchDifference -0.02 0.47 0.03 1.00
## WidthDifference -0.01 0.49 -0.11 0.76
## PercentPremiumSeats 0.12 -0.16 -0.22 -0.09
## WidthDifference PercentPremiumSeats
## FlightDuration -0.12 0.06
## SeatsEconomy -0.08 -0.33
## SeatsPremium -0.22 0.49
## PitchEconomy -0.64 -0.10
## PitchPremium 0.70 -0.18
## WidthEconomy -0.39 0.23
## WidthPremium 0.88 -0.18
## PriceEconomy -0.08 0.07
## PricePremium -0.01 0.12
## PriceRelative 0.49 -0.16
## SeatsTotal -0.11 -0.22
## PitchDifference 0.76 -0.09
## WidthDifference 1.00 -0.28
## PercentPremiumSeats -0.28 1.00
library(corrgram)
corrgram(airline, order = TRUE, lower.panel = panel.shade, upper.panel = panel.pie)
t.test(PriceRelative, PercentPremiumSeats)
##
## Welch Two Sample t-test
##
## data: PriceRelative and PercentPremiumSeats
## t = -62.302, df = 464.91, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -14.60477 -13.71164
## sample estimates:
## mean of x mean of y
## 0.4872052 14.6454148
fit = lm(PriceRelative ~ FlightDuration+SeatsEconomy+SeatsPremium+WidthEconomy+WidthPremium+PitchEconomy+PitchPremium, data = airline)
summary(fit)
##
## Call:
## lm(formula = PriceRelative ~ FlightDuration + SeatsEconomy +
## SeatsPremium + WidthEconomy + WidthPremium + PitchEconomy +
## PitchPremium, data = airline)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.86549 -0.25418 -0.07713 0.14522 1.34717
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.8912366 1.7209126 4.004 7.27e-05 ***
## FlightDuration 0.0278757 0.0058374 4.775 2.43e-06 ***
## SeatsEconomy 0.0007934 0.0003168 2.505 0.0126 *
## SeatsPremium -0.0076652 0.0019421 -3.947 9.19e-05 ***
## WidthEconomy -0.0050452 0.0415730 -0.121 0.9035
## WidthPremium 0.1256658 0.0259356 4.845 1.74e-06 ***
## PitchEconomy -0.2606111 0.0411633 -6.331 5.90e-10 ***
## PitchPremium -0.0194938 0.0212963 -0.915 0.3605
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3689 on 450 degrees of freedom
## Multiple R-squared: 0.3401, Adjusted R-squared: 0.3299
## F-statistic: 33.14 on 7 and 450 DF, p-value: < 2.2e-16
coefficients(fit)
## (Intercept) FlightDuration SeatsEconomy SeatsPremium WidthEconomy
## 6.891236561 0.027875683 0.000793419 -0.007665192 -0.005045239
## WidthPremium PitchEconomy PitchPremium
## 0.125665753 -0.260611105 -0.019493820
Analysis of six different airlines gives us the following inference about the price difference between premium and economy class-
It does not depend upon Economy width and Premium pitch (p-value > 0.05)
END OF FILE