AirlinesData <- read.csv(paste("SixAirlinesDataV2.csv",sep = ","))
View(AirlinesData)
library(psych)
describe(AirlinesData)
##                     vars   n    mean      sd  median trimmed     mad   min
## Airline*               1 458    3.01    1.65    2.00    2.89    1.48  1.00
## Aircraft*              2 458    1.67    0.47    2.00    1.71    0.00  1.00
## FlightDuration         3 458    7.58    3.54    7.79    7.57    4.81  1.25
## TravelMonth*           4 458    2.56    1.17    3.00    2.58    1.48  1.00
## IsInternational*       5 458    1.91    0.28    2.00    2.00    0.00  1.00
## SeatsEconomy           6 458  202.31   76.37  185.00  194.64   85.99 78.00
## SeatsPremium           7 458   33.65   13.26   36.00   33.35   11.86  8.00
## PitchEconomy           8 458   31.22    0.66   31.00   31.26    0.00 30.00
## PitchPremium           9 458   37.91    1.31   38.00   38.05    0.00 34.00
## WidthEconomy          10 458   17.84    0.56   18.00   17.81    0.00 17.00
## WidthPremium          11 458   19.47    1.10   19.00   19.53    0.00 17.00
## PriceEconomy          12 458 1327.08  988.27 1242.00 1244.40 1159.39 65.00
## PricePremium          13 458 1845.26 1288.14 1737.00 1799.05 1845.84 86.00
## PriceRelative         14 458    0.49    0.45    0.36    0.42    0.41  0.02
## SeatsTotal            15 458  235.96   85.29  227.00  228.73   90.44 98.00
## PitchDifference       16 458    6.69    1.76    7.00    6.76    0.00  2.00
## WidthDifference       17 458    1.63    1.19    1.00    1.53    0.00  0.00
## PercentPremiumSeats   18 458   14.65    4.84   13.21   14.31    2.68  4.71
##                         max   range  skew kurtosis    se
## Airline*               6.00    5.00  0.61    -0.95  0.08
## Aircraft*              2.00    1.00 -0.72    -1.48  0.02
## FlightDuration        14.66   13.41 -0.07    -1.12  0.17
## TravelMonth*           4.00    3.00 -0.14    -1.46  0.05
## IsInternational*       2.00    1.00 -2.91     6.50  0.01
## SeatsEconomy         389.00  311.00  0.72    -0.36  3.57
## SeatsPremium          66.00   58.00  0.23    -0.46  0.62
## PitchEconomy          33.00    3.00 -0.03    -0.35  0.03
## PitchPremium          40.00    6.00 -1.51     3.52  0.06
## WidthEconomy          19.00    2.00 -0.04    -0.08  0.03
## WidthPremium          21.00    4.00 -0.08    -0.31  0.05
## PriceEconomy        3593.00 3528.00  0.51    -0.88 46.18
## PricePremium        7414.00 7328.00  0.50     0.43 60.19
## PriceRelative          1.89    1.87  1.17     0.72  0.02
## SeatsTotal           441.00  343.00  0.70    -0.53  3.99
## PitchDifference       10.00    8.00 -0.54     1.78  0.08
## WidthDifference        4.00    4.00  0.84    -0.53  0.06
## PercentPremiumSeats   24.69   19.98  0.71     0.28  0.23
attach(AirlinesData)
summary(AirlinesData)
##       Airline      Aircraft   FlightDuration   TravelMonth
##  AirFrance: 74   AirBus:151   Min.   : 1.250   Aug:127    
##  British  :175   Boeing:307   1st Qu.: 4.260   Jul: 75    
##  Delta    : 46                Median : 7.790   Oct:127    
##  Jet      : 61                Mean   : 7.578   Sep:129    
##  Singapore: 40                3rd Qu.:10.620              
##  Virgin   : 62                Max.   :14.660              
##       IsInternational  SeatsEconomy    SeatsPremium    PitchEconomy  
##  Domestic     : 40    Min.   : 78.0   Min.   : 8.00   Min.   :30.00  
##  International:418    1st Qu.:133.0   1st Qu.:21.00   1st Qu.:31.00  
##                       Median :185.0   Median :36.00   Median :31.00  
##                       Mean   :202.3   Mean   :33.65   Mean   :31.22  
##                       3rd Qu.:243.0   3rd Qu.:40.00   3rd Qu.:32.00  
##                       Max.   :389.0   Max.   :66.00   Max.   :33.00  
##   PitchPremium    WidthEconomy    WidthPremium    PriceEconomy 
##  Min.   :34.00   Min.   :17.00   Min.   :17.00   Min.   :  65  
##  1st Qu.:38.00   1st Qu.:18.00   1st Qu.:19.00   1st Qu.: 413  
##  Median :38.00   Median :18.00   Median :19.00   Median :1242  
##  Mean   :37.91   Mean   :17.84   Mean   :19.47   Mean   :1327  
##  3rd Qu.:38.00   3rd Qu.:18.00   3rd Qu.:21.00   3rd Qu.:1909  
##  Max.   :40.00   Max.   :19.00   Max.   :21.00   Max.   :3593  
##   PricePremium    PriceRelative      SeatsTotal  PitchDifference 
##  Min.   :  86.0   Min.   :0.0200   Min.   : 98   Min.   : 2.000  
##  1st Qu.: 528.8   1st Qu.:0.1000   1st Qu.:166   1st Qu.: 6.000  
##  Median :1737.0   Median :0.3650   Median :227   Median : 7.000  
##  Mean   :1845.3   Mean   :0.4872   Mean   :236   Mean   : 6.688  
##  3rd Qu.:2989.0   3rd Qu.:0.7400   3rd Qu.:279   3rd Qu.: 7.000  
##  Max.   :7414.0   Max.   :1.8900   Max.   :441   Max.   :10.000  
##  WidthDifference PercentPremiumSeats
##  Min.   :0.000   Min.   : 4.71      
##  1st Qu.:1.000   1st Qu.:12.28      
##  Median :1.000   Median :13.21      
##  Mean   :1.633   Mean   :14.65      
##  3rd Qu.:3.000   3rd Qu.:15.36      
##  Max.   :4.000   Max.   :24.69
str(AirlinesData)
## 'data.frame':    458 obs. of  18 variables:
##  $ Airline            : Factor w/ 6 levels "AirFrance","British",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ Aircraft           : Factor w/ 2 levels "AirBus","Boeing": 2 2 2 2 2 2 2 2 2 2 ...
##  $ FlightDuration     : num  12.25 12.25 12.25 12.25 8.16 ...
##  $ TravelMonth        : Factor w/ 4 levels "Aug","Jul","Oct",..: 2 1 4 3 1 4 3 1 4 4 ...
##  $ IsInternational    : Factor w/ 2 levels "Domestic","International": 2 2 2 2 2 2 2 2 2 2 ...
##  $ SeatsEconomy       : int  122 122 122 122 122 122 122 122 122 122 ...
##  $ SeatsPremium       : int  40 40 40 40 40 40 40 40 40 40 ...
##  $ PitchEconomy       : int  31 31 31 31 31 31 31 31 31 31 ...
##  $ PitchPremium       : int  38 38 38 38 38 38 38 38 38 38 ...
##  $ WidthEconomy       : int  18 18 18 18 18 18 18 18 18 18 ...
##  $ WidthPremium       : int  19 19 19 19 19 19 19 19 19 19 ...
##  $ PriceEconomy       : int  2707 2707 2707 2707 1793 1793 1793 1476 1476 1705 ...
##  $ PricePremium       : int  3725 3725 3725 3725 2999 2999 2999 2997 2997 2989 ...
##  $ PriceRelative      : num  0.38 0.38 0.38 0.38 0.67 0.67 0.67 1.03 1.03 0.75 ...
##  $ SeatsTotal         : int  162 162 162 162 162 162 162 162 162 162 ...
##  $ PitchDifference    : int  7 7 7 7 7 7 7 7 7 7 ...
##  $ WidthDifference    : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ PercentPremiumSeats: num  24.7 24.7 24.7 24.7 24.7 ...
par(mfrow =c(1,2))
boxplot(AirlinesData$SeatsPremium, main=" Distribution SeatsPremium")
barplot(AirlinesData$SeatsPremium, main="Disrtribution SeatsPremium",xlab = " count",
  ylab = "SeatsPremium")

par(mfrow =c(1,2))
boxplot(AirlinesData$SeatsEconomy, main=" Distribution SeatsEconomy")
barplot(AirlinesData$SeatsEconomy, main="Disrtribution SeatsEconomy",xlab = " count",
  ylab = "SeatsEconomy")

par(mfrow =c(1,2))
boxplot(AirlinesData$PitchEconomy,  main=" Distribution PitchEconomy")
barplot(AirlinesData$PitchEconomy, main="Disrtribution PitchEconomy",xlab = " count",
  ylab = "PitchEconomy")

par(mfrow =c(1,2))
boxplot(AirlinesData$PitchPremium,  main=" Distribution PitchPremium")
barplot(AirlinesData$PitchPremium, main="Disrtribution PitchPremium",xlab = " count",
  ylab = "PitchPremium")

par(mfrow =c(1,2))
boxplot(AirlinesData$WidthPremium,  main=" Distribution WidthPremium")
barplot(AirlinesData$WidthPremium, main="Disrtribution WidthPremium",xlab = " count",
  ylab = "WidthPremium")

par(mfrow =c(1,2))
boxplot(AirlinesData$WidthEconomy,  main=" Distribution WidthEconomy")
barplot(AirlinesData$WidthEconomy, main="Disrtribution WidthEconomy",xlab = " count",
  ylab = "WidthEconomy")

par(mfrow =c(1,2))
boxplot(AirlinesData$PercentPremiumSeats,  main=" Distribution PercentPremiumSeats")
barplot(AirlinesData$PercentPremiumSeats, main="Disrtribution PercentPremiumSeats",xlab = " count",ylab = "PercentPermiumSeats")

par(mfrow =c(1,2))
boxplot(AirlinesData$PriceEconomy,  main=" Distribution PriceEconomy")
barplot(AirlinesData$PriceEconomy, main="Disrtribution PriceEconomy",xlab = " count",ylab = "PriceEconomy")

par(mfrow =c(1,2))
boxplot(AirlinesData$PricePremium,  main=" Distribution PricePremium")
barplot(AirlinesData$PricePremium, main="Disrtribution PricePremium",xlab = " count",ylab = "PricePremium")

par(mfrow =c(1,2))
boxplot(AirlinesData$PriceRelative,  main=" Distribution PriceRelative")
barplot(AirlinesData$PriceRelative, main="Disrtribution PriceRelative",xlab = " count",ylab = "PricePremium")

par(mfrow =c(1,2))
boxplot(AirlinesData$PitchDifference,  main=" Distribution PitchDifference")
barplot(AirlinesData$PitchDifference, main="Disrtribution PitchDifference",xlab = " count",ylab = "PitchDifference")

par(mfrow =c(1,2))
boxplot(AirlinesData$WidthDifference,  main=" Distribution WidthDifference")
barplot(AirlinesData$WidthDifference, main="Disrtribution WidthDifference",xlab = " count",ylab = "WidthDifference")

library(car)
## Warning: package 'car' was built under R version 3.4.3
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
scatterplot(AirlinesData$PriceRelative ~ AirlinesData$PitchDifference,     data=AirlinesData,
            spread=FALSE, smoother.args=list(lty=2),
            main="Scatter plot of price relative vs pitch difference",
            xlab="pitch difference",
            ylab="price relative")

scatterplot(AirlinesData$PriceRelative ~ AirlinesData$WidthDifference, data= AirlinesData,
            spread=FALSE, smoother.args=list(lty=2), pch=19,
            main="Scatter plot of price relative vs Width difference",
            xlab="Width difference",
            ylab="Price relative")

corrgram

library(corrgram)
corrgram(AirlinesData,order = TRUE, lower.panel = panel.shade,upper.panel = panel.pie, text.panel = panel.txt,main = "corrgram Airlines Data ")

#correlation matrix

round(cor(AirlinesData[,6:18]),2)
##                     SeatsEconomy SeatsPremium PitchEconomy PitchPremium
## SeatsEconomy                1.00         0.63         0.14         0.12
## SeatsPremium                0.63         1.00        -0.03         0.00
## PitchEconomy                0.14        -0.03         1.00        -0.55
## PitchPremium                0.12         0.00        -0.55         1.00
## WidthEconomy                0.37         0.46         0.29        -0.02
## WidthPremium                0.10         0.00        -0.54         0.75
## PriceEconomy                0.13         0.11         0.37         0.05
## PricePremium                0.18         0.22         0.23         0.09
## PriceRelative               0.00        -0.10        -0.42         0.42
## SeatsTotal                  0.99         0.72         0.12         0.11
## PitchDifference             0.04         0.02        -0.78         0.95
## WidthDifference            -0.08        -0.22        -0.64         0.70
## PercentPremiumSeats        -0.33         0.49        -0.10        -0.18
##                     WidthEconomy WidthPremium PriceEconomy PricePremium
## SeatsEconomy                0.37         0.10         0.13         0.18
## SeatsPremium                0.46         0.00         0.11         0.22
## PitchEconomy                0.29        -0.54         0.37         0.23
## PitchPremium               -0.02         0.75         0.05         0.09
## WidthEconomy                1.00         0.08         0.07         0.15
## WidthPremium                0.08         1.00        -0.06         0.06
## PriceEconomy                0.07        -0.06         1.00         0.90
## PricePremium                0.15         0.06         0.90         1.00
## PriceRelative              -0.04         0.50        -0.29         0.03
## SeatsTotal                  0.41         0.09         0.13         0.19
## PitchDifference            -0.13         0.76        -0.10        -0.02
## WidthDifference            -0.39         0.88        -0.08        -0.01
## PercentPremiumSeats         0.23        -0.18         0.07         0.12
##                     PriceRelative SeatsTotal PitchDifference
## SeatsEconomy                 0.00       0.99            0.04
## SeatsPremium                -0.10       0.72            0.02
## PitchEconomy                -0.42       0.12           -0.78
## PitchPremium                 0.42       0.11            0.95
## WidthEconomy                -0.04       0.41           -0.13
## WidthPremium                 0.50       0.09            0.76
## PriceEconomy                -0.29       0.13           -0.10
## PricePremium                 0.03       0.19           -0.02
## PriceRelative                1.00      -0.01            0.47
## SeatsTotal                  -0.01       1.00            0.03
## PitchDifference              0.47       0.03            1.00
## WidthDifference              0.49      -0.11            0.76
## PercentPremiumSeats         -0.16      -0.22           -0.09
##                     WidthDifference PercentPremiumSeats
## SeatsEconomy                  -0.08               -0.33
## SeatsPremium                  -0.22                0.49
## PitchEconomy                  -0.64               -0.10
## PitchPremium                   0.70               -0.18
## WidthEconomy                  -0.39                0.23
## WidthPremium                   0.88               -0.18
## PriceEconomy                  -0.08                0.07
## PricePremium                  -0.01                0.12
## PriceRelative                  0.49               -0.16
## SeatsTotal                    -0.11               -0.22
## PitchDifference                0.76               -0.09
## WidthDifference                1.00               -0.28
## PercentPremiumSeats           -0.28                1.00
t.test(AirlinesData$PriceRelative,AirlinesData$PitchDifference)
## 
##  Welch Two Sample t-test
## 
## data:  AirlinesData$PriceRelative and AirlinesData$PitchDifference
## t = -72.974, df = 516.54, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -6.367495 -6.033640
## sample estimates:
## mean of x mean of y 
## 0.4872052 6.6877729

since p is less than 0.05 we reject null hypothesis

t.test(AirlinesData$PriceRelative,AirlinesData$WidthDifference)
## 
##  Welch Two Sample t-test
## 
## data:  AirlinesData$PriceRelative and AirlinesData$WidthDifference
## t = -19.284, df = 585.55, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.262697 -1.029268
## sample estimates:
## mean of x mean of y 
## 0.4872052 1.6331878
fit <- lm(PriceRelative~WidthDifference+PitchDifference+PriceEconomy)
summary(fit)
## 
## Call:
## lm(formula = PriceRelative ~ WidthDifference + PitchDifference + 
##     PriceEconomy)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.91001 -0.23829 -0.07413  0.16282  1.15356 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      7.878e-02  8.515e-02   0.925 0.355357    
## WidthDifference  1.143e-01  2.265e-02   5.047 6.50e-07 ***
## PitchDifference  5.502e-02  1.531e-02   3.594 0.000362 ***
## PriceEconomy    -1.102e-04  1.777e-05  -6.200 1.27e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3736 on 454 degrees of freedom
## Multiple R-squared:  0.3171, Adjusted R-squared:  0.3126 
## F-statistic: 70.28 on 3 and 454 DF,  p-value: < 2.2e-16

Inference 1)Linear regression model has to increase for width and pitch difference 2)p value is than 0.05 hence we can reject null hypothesis 3)spacing has effected to cause the price of seats to be more inpremium class than economy class