The RMd document contains the analysis of “Store24(A):Managing Employee Retention” harvard case study.

Reading Store24(A) data in to R.

store <- read.csv(paste("Store24.csv",sep=""))
summary(store)
##      store          Sales             Profit          MTenure      
##  Min.   : 1.0   Min.   : 699306   Min.   :122180   Min.   :  0.00  
##  1st Qu.:19.5   1st Qu.: 984579   1st Qu.:211004   1st Qu.:  6.67  
##  Median :38.0   Median :1127332   Median :265014   Median : 24.12  
##  Mean   :38.0   Mean   :1205413   Mean   :276314   Mean   : 45.30  
##  3rd Qu.:56.5   3rd Qu.:1362388   3rd Qu.:331314   3rd Qu.: 50.92  
##  Max.   :75.0   Max.   :2113089   Max.   :518998   Max.   :277.99  
##     CTenure              Pop             Comp          Visibility  
##  Min.   :  0.8871   Min.   : 1046   Min.   : 1.651   Min.   :2.00  
##  1st Qu.:  4.3943   1st Qu.: 5616   1st Qu.: 3.151   1st Qu.:3.00  
##  Median :  7.2115   Median : 8896   Median : 3.629   Median :3.00  
##  Mean   : 13.9315   Mean   : 9826   Mean   : 3.788   Mean   :3.08  
##  3rd Qu.: 17.2156   3rd Qu.:14104   3rd Qu.: 4.230   3rd Qu.:4.00  
##  Max.   :114.1519   Max.   :26519   Max.   :11.128   Max.   :5.00  
##     PedCount         Res          Hours24       CrewSkill    
##  Min.   :1.00   Min.   :0.00   Min.   :0.00   Min.   :2.060  
##  1st Qu.:2.00   1st Qu.:1.00   1st Qu.:1.00   1st Qu.:3.225  
##  Median :3.00   Median :1.00   Median :1.00   Median :3.500  
##  Mean   :2.96   Mean   :0.96   Mean   :0.84   Mean   :3.457  
##  3rd Qu.:4.00   3rd Qu.:1.00   3rd Qu.:1.00   3rd Qu.:3.655  
##  Max.   :5.00   Max.   :1.00   Max.   :1.00   Max.   :4.640  
##     MgrSkill        ServQual     
##  Min.   :2.957   Min.   : 57.90  
##  1st Qu.:3.344   1st Qu.: 78.95  
##  Median :3.589   Median : 89.47  
##  Mean   :3.638   Mean   : 87.15  
##  3rd Qu.:3.925   3rd Qu.: 99.90  
##  Max.   :4.622   Max.   :100.00

Three very important variables in this analysis are the store Profit, the management tenure (MTenure) and the crew tenure (CTenure).

Measuring the mean and standard deviation of Profit.

Mean <-mean(store$Profit)
Standard_D <- sd(store$Profit)
table1 <- xtabs(~Mean+Standard_D)
table1
##                   Standard_D
## Mean               89404.0763380618
##   276313.613333333                1

Measuring the mean and standard deviation of MTenure.

Mean <-mean(store$MTenure)
Standard_D <- sd(store$MTenure)
table2 <- xtabs(~Mean+Standard_D)
table2
##               Standard_D
## Mean           57.6715511971043
##   45.296443888                1

Measuring the mean and standard deviation of CTenure.

Mean <-mean(store$CTenure)
Standard_D <- sd(store$CTenure)
table3 <- xtabs(~Mean+Standard_D,data=store)
table3
##                   Standard_D
## Mean               17.6975170602746
##   13.9314986093333                1

Printing the {StoreID, Sales, Profit, MTenure, CTenure} of the top 10 most profitable stores.

most_profit <- store[order(-store$Profit),]
most_profit[1:10,2:5]
##      Sales Profit   MTenure    CTenure
## 74 1782957 518998 171.09720  29.519510
## 7  1809256 476355  62.53080   7.326488
## 9  2113089 474725 108.99350   6.061602
## 6  1703140 469050 149.93590  11.351130
## 44 1807740 439781 182.23640 114.151900
## 2  1619874 424007  86.22219   6.636550
## 45 1602362 410149  47.64565   9.166325
## 18 1704826 394039 239.96980  33.774130
## 11 1583446 389886  44.81977   2.036961
## 47 1665657 387853  12.84790   6.636550

Printing the {StoreID, Sales, Profit, MTenure, CTenure} of the bottom 10 least profitable stores.

least_profit <- store[order(-store$Profit),]
least_profit[66:75,2:5]
##      Sales Profit     MTenure   CTenure
## 37 1202917 187765  23.1985000  1.347023
## 61  716589 177046  21.8184200 13.305950
## 52 1073008 169201  24.1185600  3.416838
## 54  811190 159792   6.6703910  3.876797
## 13  857843 152513   0.6571813  1.577002
## 32  828918 149033  36.0792600  6.636550
## 55  925744 147672   6.6703910 18.365500
## 41  744211 147327  14.9180200 11.926080
## 66  879581 146058 115.2039000  3.876797
## 57  699306 122180  24.3485700  2.956879

Scatter plot of Profit vs. MTenure.

library(car)
scatterplot(Profit~MTenure, main ="Scatter plot of Profit vs. MTenure",pch=19,data=store)

Sscatter plot of Profit vs. CTenure.

library(car)
scatterplot(Profit~CTenure, main ="Scatter plot of Profit vs. CTenure",data=store,pch=19)

Correlation Matrix for all the variables in the dataset. (Display the numbers up to 2 Decimal places)

#Correlation Matrix
cor_M <- cor(store)
round(cor_M,2)
##            store Sales Profit MTenure CTenure   Pop  Comp Visibility
## store       1.00 -0.23  -0.20   -0.06    0.02 -0.29  0.03      -0.03
## Sales      -0.23  1.00   0.92    0.45    0.25  0.40 -0.24       0.13
## Profit     -0.20  0.92   1.00    0.44    0.26  0.43 -0.33       0.14
## MTenure    -0.06  0.45   0.44    1.00    0.24 -0.06  0.18       0.16
## CTenure     0.02  0.25   0.26    0.24    1.00  0.00 -0.07       0.07
## Pop        -0.29  0.40   0.43   -0.06    0.00  1.00 -0.27      -0.05
## Comp        0.03 -0.24  -0.33    0.18   -0.07 -0.27  1.00       0.03
## Visibility -0.03  0.13   0.14    0.16    0.07 -0.05  0.03       1.00
## PedCount   -0.22  0.42   0.45    0.06   -0.08  0.61 -0.15      -0.14
## Res        -0.03 -0.17  -0.16   -0.06   -0.34 -0.24  0.22       0.02
## Hours24     0.03  0.06  -0.03   -0.17    0.07 -0.22  0.13       0.05
## CrewSkill   0.05  0.16   0.16    0.10    0.26  0.28 -0.04      -0.20
## MgrSkill   -0.07  0.31   0.32    0.23    0.12  0.08  0.22       0.07
## ServQual   -0.32  0.39   0.36    0.18    0.08  0.12  0.02       0.21
##            PedCount   Res Hours24 CrewSkill MgrSkill ServQual
## store         -0.22 -0.03    0.03      0.05    -0.07    -0.32
## Sales          0.42 -0.17    0.06      0.16     0.31     0.39
## Profit         0.45 -0.16   -0.03      0.16     0.32     0.36
## MTenure        0.06 -0.06   -0.17      0.10     0.23     0.18
## CTenure       -0.08 -0.34    0.07      0.26     0.12     0.08
## Pop            0.61 -0.24   -0.22      0.28     0.08     0.12
## Comp          -0.15  0.22    0.13     -0.04     0.22     0.02
## Visibility    -0.14  0.02    0.05     -0.20     0.07     0.21
## PedCount       1.00 -0.28   -0.28      0.21     0.09    -0.01
## Res           -0.28  1.00   -0.09     -0.15    -0.03     0.09
## Hours24       -0.28 -0.09    1.00      0.11    -0.04     0.06
## CrewSkill      0.21 -0.15    0.11      1.00    -0.02    -0.03
## MgrSkill       0.09 -0.03   -0.04     -0.02     1.00     0.36
## ServQual      -0.01  0.09    0.06     -0.03     0.36     1.00
#Visualizing Correlation Matrix
library(corrplot)
## corrplot 0.84 loaded
corrplot(corr = cor(store),method="ellipse")

Measuring the correlation between Profit and MTenure. (Display the numbers up to 2 Decimal places)

cor1 <- cor(store$Profit,store$MTenure)
round(cor1,2)
## [1] 0.44

Measuring the correlation between Profit and CTenure. (Display the numbers up to 2 Decimal places)

cor2 <-cor(store$Profit,store$CTenure)
round(cor2,2)
## [1] 0.26

Corrgram of all variables in the Store24(A) dataset.

library(corrgram)
corrgram(store, main="Corrgram of store variables", lower.panel=panel.shade,upper.panel=panel.pie,text.panel=panel.txt)

Pearson’s Correlation test on the correlation between Profit and MTenure.

cor.test(store$Profit,store$MTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  store$Profit and store$MTenure
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2353497 0.6055175
## sample estimates:
##       cor 
## 0.4388692

Pearson’s Correlation test on the correlation between Profit and CTenure.

cor.test(store$Profit,store$CTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  store$Profit and store$CTenure
## t = 2.2786, df = 73, p-value = 0.02562
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03262507 0.45786339
## sample estimates:
##       cor 
## 0.2576789

Linear regression(OLS) of Profit on {MTenure, CTenure Comp, Pop, PedCount, Res, Hours24, Visibility}.

model <- Profit ~ MTenure + CTenure + Comp + Pop + PedCount + Res + Hours24 + Visibility
fit <- lm(model,data=store)
summary(fit)
## 
## Call:
## lm(formula = model, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -105789  -35946   -7069   33780  112390 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   7610.041  66821.994   0.114 0.909674    
## MTenure        760.993    127.086   5.988 9.72e-08 ***
## CTenure        944.978    421.687   2.241 0.028400 *  
## Comp        -25286.887   5491.937  -4.604 1.94e-05 ***
## Pop              3.667      1.466   2.501 0.014890 *  
## PedCount     34087.359   9073.196   3.757 0.000366 ***
## Res          91584.675  39231.283   2.334 0.022623 *  
## Hours24      63233.307  19641.114   3.219 0.001994 ** 
## Visibility   12625.447   9087.620   1.389 0.169411    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 56970 on 66 degrees of freedom
## Multiple R-squared:  0.6379, Adjusted R-squared:  0.594 
## F-statistic: 14.53 on 8 and 66 DF,  p-value: 5.382e-12

Explanatory variable(s) whose beta-coefficients are statistically significant (p < 0.05).

MTenure (p=9.72e-08) CTenure (p=0.02)
Comp (p=1.94e-05) Pop (p=0.014)
PedCount (p=0.0003) Res (p= 0.023)
Hours24 (p=0.002)

Explanatory variable(s) whose beta-coefficients are not statistically significant (p > 0.05).

Visibility (p=0.17)

Expected change in the Profit at a store, if the Manager’s tenure i.e. number of months of experience with Store24, increases by one month?

There will be an increase of 761(approx.) in profit value.

Expected change in the Profit at a store, if the Crew’s tenure i.e. number of months of experience with Store24, increases by one month?

There will be an increase of 945 (approx.) in profit value

Summary

Looking at the correlation stats, we can deduce that profit has more correlation with the management tenure (0.44), Population (0.43), Pedestrian Count (0.45). So, definitely we can say that the financial Performance of the Store24 (A) is affected by the managerial tenure. The Performance also depends on the ‘site location factors’ like Population and Pedestrian count.

With the probability (p<0.05) from Pearson’s correlation test, the crew tenure surely indulges in profit margin.

One can also look at the linear regression with profit (response variable), with others as predictor variables(MTenure, CTenure Comp, Pop, PedCount, Res, Hours24, Visibility).

So increasing in the management tenure and crew tenure can surely boost the financial performance.

Also the company has to consider the population criteria, as it sees more profit margin. So, they have to consider this site location factors, in case of a relocation. Management skill (0.32) and Service Quality (0.36) also puts a load on profits to certain extent. So, the company should surely take measures of implement new career development programs, thereby improving the managerial skills.