INTRODUCTION TO STATISCAL LEARNING

CHAPTER 3: LINEAR REGRESSION

Applied Exercises

8. This question involves the use of simple linear regression on the Auto data set.

  1. Use the lm() function to perform a simple linear regression with mpg as the response and horsepower as the predictor. Use the summary() function to print the results. Comment on the output.
chooseCRANmirror(graphics=FALSE, ind=1)
library(ISLR)
Auto = Auto

lm_fit = lm(mpg~horsepower, data=Auto)
summary(lm_fit)
## 
## Call:
## lm(formula = mpg ~ horsepower, data = Auto)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -13.5710  -3.2592  -0.3435   2.7630  16.9240 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 39.935861   0.717499   55.66   <2e-16 ***
## horsepower  -0.157845   0.006446  -24.49   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.906 on 390 degrees of freedom
## Multiple R-squared:  0.6059, Adjusted R-squared:  0.6049 
## F-statistic: 599.7 on 1 and 390 DF,  p-value: < 2.2e-16
mean(fitted.values(lm_fit))
## [1] 23.44592
  1. Is there a relationship between the predictor and the response?

Given the P-value aproxamately equal to 0, we can say that there is a relationship between the predictior and the response

  1. How strong is the relationship between the predictor and the response?

The RSE estimates the standard deviation of the response from the population regression line. The RSE is 4.9 units while the mean value for the resposne is 23.4, indicating a percentage error of roughly 21%.

The R2 statistic records the percentage of variability in the response that is explained by the predictors. The predictor hoursepower explains 60.5% of the variability in mpg.

  1. Is the relationship between the predictor and the response positive or negative?

As the coefficient of hoursepower is negative, the relationship is negative meaning that an increase in hourse power will decrease the miles per gallon efficiency.

  1. What is the predicted mpg associated with a horsepower of 98? What are the associated 95 % confidence and prediction intervals?
?predict
predict(lm_fit, data.frame(horsepower = 98), interval = "confidence")
##        fit      lwr      upr
## 1 24.46708 23.97308 24.96108
predict(lm_fit, data.frame(horsepower = 98), interval = "prediction")
##        fit     lwr      upr
## 1 24.46708 14.8094 34.12476

The predicted mpg associated with a horsepower of 98 is 24.46. The 95 % confidence interval associated with a horsepower value of 10 is (23.97, 24.96) and the 95 % prediction interval is (14.80, 34.12)

  1. Plot the response and the predictor. Use the abline() function to display the least squares regression line.
attach(Auto)
plot(horsepower, mpg, main = "Scatterplot of mpg vs. horsepower")
abline(lm_fit, col = "blue")

  1. Use the plot() function to produce diagnostic plots of the least squares regression fit. Comment on any problems you see with the fit.
par(mfrow = c(2, 2))
plot(lm_fit)

The plot of residuals versus fitted values indicates the presence of non linearity in the data. The plot of standardized residuals versus leverage indicates the presence of a few outliers (higher than 2 or lower than -2) and a few high leverage points.

9. This question involves the use of multiple linear regression on the Auto data set.

  1. Produce a scatterplot matrix which includes all of the variables in the data set.
pairs(Auto)

(b) Compute the matrix of correlations between the variables using the function cor(). You will need to exclude the name variable, which is qualitative.

cor(Auto[1:8])
##                     mpg  cylinders displacement horsepower     weight
## mpg           1.0000000 -0.7776175   -0.8051269 -0.7784268 -0.8322442
## cylinders    -0.7776175  1.0000000    0.9508233  0.8429834  0.8975273
## displacement -0.8051269  0.9508233    1.0000000  0.8972570  0.9329944
## horsepower   -0.7784268  0.8429834    0.8972570  1.0000000  0.8645377
## weight       -0.8322442  0.8975273    0.9329944  0.8645377  1.0000000
## acceleration  0.4233285 -0.5046834   -0.5438005 -0.6891955 -0.4168392
## year          0.5805410 -0.3456474   -0.3698552 -0.4163615 -0.3091199
## origin        0.5652088 -0.5689316   -0.6145351 -0.4551715 -0.5850054
##              acceleration       year     origin
## mpg             0.4233285  0.5805410  0.5652088
## cylinders      -0.5046834 -0.3456474 -0.5689316
## displacement   -0.5438005 -0.3698552 -0.6145351
## horsepower     -0.6891955 -0.4163615 -0.4551715
## weight         -0.4168392 -0.3091199 -0.5850054
## acceleration    1.0000000  0.2903161  0.2127458
## year            0.2903161  1.0000000  0.1815277
## origin          0.2127458  0.1815277  1.0000000
  1. Use the lm() function to perform a multiple linear regression with mpg as the response and all other variables except name as the predictors. Use the summary() function to print the results. Comment on the output. For instance:
lm_fit2 = lm(mpg~.-name,data=Auto)
summary(lm_fit2)
## 
## Call:
## lm(formula = mpg ~ . - name, data = Auto)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.5903 -2.1565 -0.1169  1.8690 13.0604 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -17.218435   4.644294  -3.707  0.00024 ***
## cylinders     -0.493376   0.323282  -1.526  0.12780    
## displacement   0.019896   0.007515   2.647  0.00844 ** 
## horsepower    -0.016951   0.013787  -1.230  0.21963    
## weight        -0.006474   0.000652  -9.929  < 2e-16 ***
## acceleration   0.080576   0.098845   0.815  0.41548    
## year           0.750773   0.050973  14.729  < 2e-16 ***
## origin         1.426141   0.278136   5.127 4.67e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.328 on 384 degrees of freedom
## Multiple R-squared:  0.8215, Adjusted R-squared:  0.8182 
## F-statistic: 252.4 on 7 and 384 DF,  p-value: < 2.2e-16
  1. Is there a relationship between the predictors and the response?

Yes, given a F-Statiscic p-value close to 0, we can confirm that there is a clear relationship between the predictors and the response.

  1. Which predictors appear to have a statistically significant relationship to the response?

We can answer this question by checking the p-values associated with each predictor’s t-statistic. We can conclude that displacement, acceleration, year and origin are the predictors witg significant relationship to the response.

  1. What does the coefficient for the year variable suggest?

The coefficient of the “year” variable suggests that the average effect of an increase of 1 year is an increase of 0.7507727 in “mpg” (all other predictors remaining constant). That is to say that cars become more fuel efficient every year by almost 1 mpg / year.

  1. Use the plot() function to produce diagnostic plots of the linear regression fit. Comment on any problems you see with the fit. Do the residual plots suggest any unusually large outliers ? Does the leverage plots identify any observations with unusually high leverages ?
par(mfrow = c(2, 2))
plot(lm_fit2)

The plot of standardized residuals versus leverage indicates the presence of a few outliers (higher than 2 or lower than -2) and one high leverage point (point 14).

  1. Use the * and : symbols to fit linear regression models with interaction effects. Do any interactions appear to be statistically significant?
lm_fit3 <- lm(mpg ~ cylinders * displacement+displacement * weight, data = Auto[, 1:8])
summary(lm_fit3)
## 
## Call:
## lm(formula = mpg ~ cylinders * displacement + displacement * 
##     weight, data = Auto[, 1:8])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -13.2934  -2.5184  -0.3476   1.8399  17.7723 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             5.262e+01  2.237e+00  23.519  < 2e-16 ***
## cylinders               7.606e-01  7.669e-01   0.992    0.322    
## displacement           -7.351e-02  1.669e-02  -4.403 1.38e-05 ***
## weight                 -9.888e-03  1.329e-03  -7.438 6.69e-13 ***
## cylinders:displacement -2.986e-03  3.426e-03  -0.872    0.384    
## displacement:weight     2.128e-05  5.002e-06   4.254 2.64e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.103 on 386 degrees of freedom
## Multiple R-squared:  0.7272, Adjusted R-squared:  0.7237 
## F-statistic: 205.8 on 5 and 386 DF,  p-value: < 2.2e-16

From the p-values, we can see that the interaction between displacement and weight is statistically signifcant, while the interactiion between cylinders and displacement is not.

lm_fit4 <- lm(mpg ~ year+weight+origin+I(year^2), data = Auto[, 1:8])
summary(lm_fit4)
## 
## Call:
## lm(formula = mpg ~ year + weight + origin + I(year^2), data = Auto[, 
##     1:8])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.5586 -1.9421 -0.0697  1.8026 13.1404 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.770e+02  7.681e+01   4.908 1.36e-06 ***
## year        -9.679e+00  2.027e+00  -4.774 2.56e-06 ***
## weight      -5.868e-03  2.474e-04 -23.722  < 2e-16 ***
## origin       1.186e+00  2.511e-01   4.721 3.28e-06 ***
## I(year^2)    6.870e-02  1.334e-02   5.149 4.17e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.243 on 387 degrees of freedom
## Multiple R-squared:  0.8292, Adjusted R-squared:  0.8274 
## F-statistic: 469.6 on 4 and 387 DF,  p-value: < 2.2e-16

(f)Try a few different transformations of the variables, such as logX, √X, X^2. Comment on your findings.

attach(Auto)
## The following objects are masked from Auto (pos = 3):
## 
##     acceleration, cylinders, displacement, horsepower, mpg, name,
##     origin, weight, year
par(mfrow = c(2, 2))
plot(log(horsepower), mpg)
plot(sqrt(horsepower), mpg)
plot((horsepower)^2, mpg)

It looks like that the log transformation gives the most linear looking plot.

10. This question should be answered using the Carseats data set.

  1. Fit a multiple regression model to predict Sales using Price,Urban, and US.
Carseats = Carseats
?Carseats

lmfit_5 = lm(Sales~Price+Urban+US, data=Carseats)
summary(lmfit_5)
## 
## Call:
## lm(formula = Sales ~ Price + Urban + US, data = Carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9206 -1.6220 -0.0564  1.5786  7.0581 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.043469   0.651012  20.036  < 2e-16 ***
## Price       -0.054459   0.005242 -10.389  < 2e-16 ***
## UrbanYes    -0.021916   0.271650  -0.081    0.936    
## USYes        1.200573   0.259042   4.635 4.86e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2335 
## F-statistic: 41.52 on 3 and 396 DF,  p-value: < 2.2e-16
  1. Provide an interpretation of each coefficient in the model. Be careful—some of the variables in the model are qualitative!

The coefficient of the “Price” variable says that the average effect of a price increase of 1 dollar is a decrease of 54.4588492 units in sales all other predictors remaining fixed. The coefficient of the “Urban” variable interprets that on average the unit sales in urban location are 21.9161508 units less than in rural location all other predictors remaining fixed. The coefficient of the “US” variable may be interpreted by saying that on average the unit sales in a US store are 1200.5726978 units more than in a non US store all other predictors remaining fixed.

  1. Write out the model in equation form, being careful to handle the qualitative variables properly.

The model may be written as Sales = 13.0434689 + (−0.0544588)×Price + (−0.0219162)×Urban + (1.2005727)×US + ε with Urban=1, if the store is in an urban location and 0, if not, and US=1, if the store is in the US and 0 otherwise.

  1. For which of the predictors can you reject the null hypothesis H0 :βj = 0 ?

We can reject the null hypothesis for the “Price” and “US”. However, the “Urban” variable doesn’t prove to be statiscally related to the response.

  1. On the basis of your response to the previous question, fit a smaller model that only uses the predictors for which there is evidence of association with the outcome.
lm_fit6 = lm(Sales ~ Price + US, data = Carseats)
summary(lm_fit6)
## 
## Call:
## lm(formula = Sales ~ Price + US, data = Carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9269 -1.6286 -0.0574  1.5766  7.0515 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.03079    0.63098  20.652  < 2e-16 ***
## Price       -0.05448    0.00523 -10.416  < 2e-16 ***
## USYes        1.19964    0.25846   4.641 4.71e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.469 on 397 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2354 
## F-statistic: 62.43 on 2 and 397 DF,  p-value: < 2.2e-16
  1. How well do the models in (a) and (e) fit the data? The R2 for both model is around 0.2392. That means that only 23.92% of the variability is explained by the model so the models don’t fit the data very well.

  2. Using the model from (e), obtain 95% confidence intervals for the coefficient(s).

confint(lm_fit6)
##                   2.5 %      97.5 %
## (Intercept) 11.79032020 14.27126531
## Price       -0.06475984 -0.04419543
## USYes        0.69151957  1.70776632
  1. Is there evidence of outliers or high leverage observations in the model from (e)?
par(mfrow = c(2, 2))
plot(lm_fit6)

The plot of standardized residuals versus leverage indicates the presence of a few outliers (higher than 2 or lower than -2) and some leverage points

11. In this problem we will investigate the t-statistic for the null hypoth- esis H0 : β = 0 in simple linear regression without an intercept. To begin, we generate a predictor x and a response y as follows.

set.seed (1)
x=rnorm(100)
y=2*x+rnorm(100)
  1. Perform a simple linear regression of y onto x, without an intercept. Report the coefficient estimate βˆ, the standard error of this coefficient estimate, and the t-statistic and p-value associated with the null hypothesis H0 : β = 0. Comment on these results. (You can perform regression without an intercept using the command lm(y∼x+0).)
lm_fit7 = lm(y~x+0)
summary(lm_fit7)
## 
## Call:
## lm(formula = y ~ x + 0)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.9154 -0.6472 -0.1771  0.5056  2.3109 
## 
## Coefficients:
##   Estimate Std. Error t value Pr(>|t|)    
## x   1.9939     0.1065   18.73   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9586 on 99 degrees of freedom
## Multiple R-squared:  0.7798, Adjusted R-squared:  0.7776 
## F-statistic: 350.7 on 1 and 99 DF,  p-value: < 2.2e-16

We have a value of 1.9938761 for β, ̂a value of 0.1064767 for the standard error, a value of 18.7259319 for the t-statistic and a value of 2.642196910^{-34} for the p-value. The small p-value allows us to reject Ho.

  1. Now perform a simple linear regression of x onto y without an intercept, and report the coefficient estimate, its standard error, and the corresponding t-statistic and p-values associated with the null hypothesis H0 : β = 0. Comment on these results.
lm_fit8 = lm(x ~ y + 0)
summary(lm_fit8)
## 
## Call:
## lm(formula = x ~ y + 0)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8699 -0.2368  0.1030  0.2858  0.8938 
## 
## Coefficients:
##   Estimate Std. Error t value Pr(>|t|)    
## y  0.39111    0.02089   18.73   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4246 on 99 degrees of freedom
## Multiple R-squared:  0.7798, Adjusted R-squared:  0.7776 
## F-statistic: 350.7 on 1 and 99 DF,  p-value: < 2.2e-16

We have a value of 0.3911145 for β̂, a value of 0.0208863 for the standard error, a value of 18.7259319 for the t-statistic and a value of 2.642196910^{-34} for the p-value. The small p-value allows us to reject H0.

  1. What is the relationship between the results obtained in (a) and (b)?

We obtain the same value for the t-statistic and consequently the same value for the corresponding p-value. The regression model y=2x+ε could also be written x=0.5y−ε.

13. In this exercise you will create some simulated data and will fit simple linear regression models to it. Make sure to use set.seed(1) prior to starting part (a) to ensure consistent results.

  1. Using the rnorm() function, create a vector, x, containing 100 observations drawn from a N(0,1) distribution. This represents a feature, X.
set.seed(1)
x <- rnorm(100)
  1. Using the rnorm() function, create a vector, eps, containing 100 observations drawn from a N(0,0.25) distribution i.e. a normal distribution with mean zero and variance 0.25.
eps <- rnorm(100, sd = sqrt(0.25))
  1. Using x and eps, generate a vector y according to the model Y =−1+0.5X+ε.

What is the length of the vector y? What are the values of β0 and β1 in this linear model?

y = -1 + 0.5 * x + eps
length(y)
## [1] 100

The values of β0 and β1 are −1 and 0.5 respectively.

  1. Create a scatterplot displaying the relationship between x and y. Comment on what you observe.
plot(x, y)

  1. Fit a least squares linear model to predict y using x. Comment on the model obtained. How do βˆ0 and βˆ1 compare to β0 and β1?
lm_fit9 <- lm(y ~ x)
summary(lm_fit9)
## 
## Call:
## lm(formula = y ~ x)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.93842 -0.30688 -0.06975  0.26970  1.17309 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.01885    0.04849 -21.010  < 2e-16 ***
## x            0.49947    0.05386   9.273 4.58e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4814 on 98 degrees of freedom
## Multiple R-squared:  0.4674, Adjusted R-squared:  0.4619 
## F-statistic: 85.99 on 1 and 98 DF,  p-value: 4.583e-15

The values of β̂o and β̂1 are very close to β0 and β. The model has a large F-statistic with a near-zero p-value so the null hypothesis can be rejected.

  1. Display the least squares line on the scatterplot obtained in (d). Draw the population regression line on the plot, in a different color. Use the legend() command to create an appropriate legend.
plot(x, y)
abline(lm_fit9, col = "red")
abline(-1, 0.5, col = "blue")
legend("topleft", c("Least square", "Regression"), col = c("red", "blue"), lty = c(1, 1))

(g) Now fit a polynomial regression model that predicts y using x and x2. Is there evidence that the quadratic term improves the model fit? Explain your answer.

lm_fit10 <- lm(y ~ x + I(x^2))
summary(lm_fit10)
## 
## Call:
## lm(formula = y ~ x + I(x^2))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.98252 -0.31270 -0.06441  0.29014  1.13500 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.97164    0.05883 -16.517  < 2e-16 ***
## x            0.50858    0.05399   9.420  2.4e-15 ***
## I(x^2)      -0.05946    0.04238  -1.403    0.164    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.479 on 97 degrees of freedom
## Multiple R-squared:  0.4779, Adjusted R-squared:  0.4672 
## F-statistic:  44.4 on 2 and 97 DF,  p-value: 2.038e-14

The qudratic coefficient is not significant as its p-value is higher than 0.05. There is not sufficient evidence that the quadratic term improves the model fit even though the R2is a bit higher and RSE slightly lower than the linear model.

  1. Repeat (a)–(f) after modifying the data generation process in such a way that there is less noise in the data. The model (3.39) should remain the same. You can do this by decreasing the variance of the normal distribution used to generate the error term ε in (b). Describe your results.
set.seed(1)
eps = rnorm(100, sd = 0.125)
x = rnorm(100)
y = -1 + 0.5 * x + eps
lm_fit11 = lm(y ~ x)
plot(x, y)
abline(lm_fit11, col = "red")
abline(-1, 0.5, col = "blue")
legend("topleft", c("Least square", "Regression"), col = c("red", "blue"), lty = c(1, 1))

summary(lm_fit11)
## 
## Call:
## lm(formula = y ~ x)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.29052 -0.07545  0.00067  0.07288  0.28664 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.98639    0.01129  -87.34   <2e-16 ***
## x            0.49988    0.01184   42.22   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1128 on 98 degrees of freedom
## Multiple R-squared:  0.9479, Adjusted R-squared:  0.9474 
## F-statistic:  1782 on 1 and 98 DF,  p-value: < 2.2e-16

We decreassed the variance of the normal distribution used to generate the error term ε.The coefficients are very close to the previous ones, but as the relationship is nearly linear, we have a much higher R2 and much lower RSE. Additionally, the two lines overlap each other as we have very little noise.

  1. Repeat (a)–(f) after modifying the data generation process in such a way that there is more noise in the data. The model (3.39) should remain the same. You can do this by increasing the variance of the normal distribution used to generate the error term ε in (b). Describe your results.
set.seed(1)
eps <- rnorm(100, sd = 0.5)
x <- rnorm(100)
y <- -1 + 0.5 * x + eps
lm_fit12 <- lm(y ~ x)
plot(x, y)
abline(lm_fit12, col = "red")
abline(-1, 0.5, col = "blue")
legend("topleft", c("Least square", "Regression"), col = c("red", "blue"), lty = c(1, 1))

summary(lm_fit12)
## 
## Call:
## lm(formula = y ~ x)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.16208 -0.30181  0.00268  0.29152  1.14658 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.94557    0.04517  -20.93   <2e-16 ***
## x            0.49953    0.04736   10.55   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4514 on 98 degrees of freedom
## Multiple R-squared:  0.5317, Adjusted R-squared:  0.5269 
## F-statistic: 111.2 on 1 and 98 DF,  p-value: < 2.2e-16

We increased the variance of the normal distribution used to generate the error term ε. The coefficients are again very close to the previous ones, but now, as the relationship is not quite linear, we have a much lower R2 and much higher RSE. Additionally, the two lines are wider apart but are still really close to each other as we have a fairly large data set.

  1. What are the confidence intervals for β0 and β1 based on the original data set, the noisier data set, and the less noisy data set? Comment on your results.
print("Original Data")
## [1] "Original Data"
confint(lm_fit9)
##                  2.5 %     97.5 %
## (Intercept) -1.1150804 -0.9226122
## x            0.3925794  0.6063602
print("Less Noisy")
## [1] "Less Noisy"
confint(lm_fit11)
##                 2.5 %     97.5 %
## (Intercept) -1.008805 -0.9639819
## x            0.476387  0.5233799
print("More Noisy")
## [1] "More Noisy"
confint(lm_fit12)
##                  2.5 %     97.5 %
## (Intercept) -1.0352203 -0.8559276
## x            0.4055479  0.5935197

All intervals seem to be approximately 0.5. As the noise increases, the confidence intervals widen. With less noise, there is more predictability in the data set.

14. This problem focuses on the collinearity problem.

  1. Perform the following commands in R. The last line corresponds to creating a linear model in which y is a function of x1 and x2. Write out the form of the linear model. What are the regression coefficients?
set.seed(1)
x1=runif(100)
x2=0.5*x1+rnorm(100)/10
y=2+2*x1+0.3*x2+rnorm(100)

The form of the linear model is \[Y=2+2X1+0.3X2+ε\] with ε a N(0,1) random variable. The regression coefficients are respectively 2, 2 and 0.3.

  1. What is the correlation between x1 and x2? Create a scatterplot displaying the relationship between the variables
cor(x1, x2)
## [1] 0.8351212
plot(x1, x2)

The varaibles are quite correlated.

  1. Using this data, fit a least squares regression to predict y using x1 and x2. Describe the results obtained. What are βˆ0, βˆ1, and βˆ2? How do these relate to the true β0, β1, and β2? Can you reject the null hypothesis H0 : β1 = 0? How about the null hypothesis H0 : β2 = 0?
lm_fit13 = lm(y ~ x1+x2)
summary(lm_fit13)
## 
## Call:
## lm(formula = y ~ x1 + x2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8311 -0.7273 -0.0537  0.6338  2.3359 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.1305     0.2319   9.188 7.61e-15 ***
## x1            1.4396     0.7212   1.996   0.0487 *  
## x2            1.0097     1.1337   0.891   0.3754    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.056 on 97 degrees of freedom
## Multiple R-squared:  0.2088, Adjusted R-squared:  0.1925 
## F-statistic:  12.8 on 2 and 97 DF,  p-value: 1.164e-05

The coefficients β̂o, β̂1 and β̂2are respectively 2.1304996, 1.4395554 and 1.0096742. Only β̂ 0is close to βo. As the p-value is less than 0.05 we may reject Ho for β1, however we may not reject Ho for β2as the p-value is higher than 0.05.

  1. Now fit a least squares regression to predict y using only x1. Comment on your results. Can you reject the null hypothesis H0 :β1 =0?
lm_fit14 <- lm(y ~ x1)
summary(lm_fit14)
## 
## Call:
## lm(formula = y ~ x1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.89495 -0.66874 -0.07785  0.59221  2.45560 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.1124     0.2307   9.155 8.27e-15 ***
## x1            1.9759     0.3963   4.986 2.66e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.055 on 98 degrees of freedom
## Multiple R-squared:  0.2024, Adjusted R-squared:  0.1942 
## F-statistic: 24.86 on 1 and 98 DF,  p-value: 2.661e-06

In this case “x1” is highly significant as its p-value is very low, so we may reject Ho.

  1. Now fit a least squares regression to predict y using only x2. Comment on your results. Can you reject the null hypothesis H0 :β1 =0?
lm_fit15 <- lm(y ~ x2)
summary(lm_fit15)
## 
## Call:
## lm(formula = y ~ x2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.62687 -0.75156 -0.03598  0.72383  2.44890 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.3899     0.1949   12.26  < 2e-16 ***
## x2            2.8996     0.6330    4.58 1.37e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.072 on 98 degrees of freedom
## Multiple R-squared:  0.1763, Adjusted R-squared:  0.1679 
## F-statistic: 20.98 on 1 and 98 DF,  p-value: 1.366e-05

In this case “x2” is highly significant as its p-value is very low, so we may again reject Ho.

  1. Do the results obtained in (c)–(e) contradict each other? Explain your answer.

No, they don’t. As the predictors “x1” and “x2” are correlated, it can be difficult to determine how each predictor separately is associated with the response. Since collinearity reduces the accuracy of the estimates of the regression coefficients, it causes the standard error for β̂1 to grow (we have a standard error of 0.7211795 and 1.1337225 for “x1” and “x2” respectively in the model with two predictors and only of 0.3962774 and 0.6330467 for “x1” and “x2” respectively in the models with only one predictor). Consequently, we may fail to reject Ho in the presence of collinearity. The importance of the “x2” variable has been masked due to the presence of collinearity.

  1. Now suppose we obtain one additional observation, which was unfortunately mismeasured.

Re-fit the linear models from (c) to (e) using this new data. What effect does this new observation have on the each of the models? In each model, is this observation an outlier? A high-leverage point? Both? Explain your answers.

x1 <- c(x1, 0.1)
x2 <- c(x2, 0.8)
y <- c(y, 6)

lm_fit16 = lm(y ~ x1 + x2)
lm_fit17 = lm(y ~ x1)
lm_fit18 = lm(y ~ x2)
summary(lm_fit16)
## 
## Call:
## lm(formula = y ~ x1 + x2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.73348 -0.69318 -0.05263  0.66385  2.30619 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.2267     0.2314   9.624 7.91e-16 ***
## x1            0.5394     0.5922   0.911  0.36458    
## x2            2.5146     0.8977   2.801  0.00614 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.075 on 98 degrees of freedom
## Multiple R-squared:  0.2188, Adjusted R-squared:  0.2029 
## F-statistic: 13.72 on 2 and 98 DF,  p-value: 5.564e-06
summary(lm_fit17)
## 
## Call:
## lm(formula = y ~ x1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8897 -0.6556 -0.0909  0.5682  3.5665 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.2569     0.2390   9.445 1.78e-15 ***
## x1            1.7657     0.4124   4.282 4.29e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.111 on 99 degrees of freedom
## Multiple R-squared:  0.1562, Adjusted R-squared:  0.1477 
## F-statistic: 18.33 on 1 and 99 DF,  p-value: 4.295e-05
summary(lm_fit18)
## 
## Call:
## lm(formula = y ~ x2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.64729 -0.71021 -0.06899  0.72699  2.38074 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.3451     0.1912  12.264  < 2e-16 ***
## x2            3.1190     0.6040   5.164 1.25e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.074 on 99 degrees of freedom
## Multiple R-squared:  0.2122, Adjusted R-squared:  0.2042 
## F-statistic: 26.66 on 1 and 99 DF,  p-value: 1.253e-06
par(mfrow = c(2, 2))
plot(lm_fit16)

par(mfrow = c(2, 2))
plot(lm_fit17)

par(mfrow = c(2, 2))
plot(lm_fit18)

15. This problem involves the Boston data set, which we saw in the lab for this chapter. We will now try to predict per capita crime rate using the other variables in this data set. In other words, per capita crime rate is the response, and the other variables are the predictors.

  1. For each predictor, fit a simple linear regression model to predict the response. Describe your results. In which of the models is there a statistically significant association between the predictor and the response? Create some plots to back up your assertions.
library(MASS)
Boston = Boston
attach(Boston)
fit.zn <- lm(crim ~ zn)
summary(fit.zn)
## 
## Call:
## lm(formula = crim ~ zn)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.429 -4.222 -2.620  1.250 84.523 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.45369    0.41722  10.675  < 2e-16 ***
## zn          -0.07393    0.01609  -4.594 5.51e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.435 on 504 degrees of freedom
## Multiple R-squared:  0.04019,    Adjusted R-squared:  0.03828 
## F-statistic:  21.1 on 1 and 504 DF,  p-value: 5.506e-06
fit.indus <- lm(crim ~ indus)
summary(fit.indus)
## 
## Call:
## lm(formula = crim ~ indus)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -11.972  -2.698  -0.736   0.712  81.813 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -2.06374    0.66723  -3.093  0.00209 ** 
## indus        0.50978    0.05102   9.991  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.866 on 504 degrees of freedom
## Multiple R-squared:  0.1653, Adjusted R-squared:  0.1637 
## F-statistic: 99.82 on 1 and 504 DF,  p-value: < 2.2e-16
chas <- as.factor(chas)
fit.chas <- lm(crim ~ chas)
summary(fit.chas)
## 
## Call:
## lm(formula = crim ~ chas)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.738 -3.661 -3.435  0.018 85.232 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.7444     0.3961   9.453   <2e-16 ***
## chas1        -1.8928     1.5061  -1.257    0.209    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.597 on 504 degrees of freedom
## Multiple R-squared:  0.003124,   Adjusted R-squared:  0.001146 
## F-statistic: 1.579 on 1 and 504 DF,  p-value: 0.2094
fit.nox <- lm(crim ~ nox)
summary(fit.nox)
## 
## Call:
## lm(formula = crim ~ nox)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.371  -2.738  -0.974   0.559  81.728 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -13.720      1.699  -8.073 5.08e-15 ***
## nox           31.249      2.999  10.419  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.81 on 504 degrees of freedom
## Multiple R-squared:  0.1772, Adjusted R-squared:  0.1756 
## F-statistic: 108.6 on 1 and 504 DF,  p-value: < 2.2e-16
fit.rm <- lm(crim ~ rm)
summary(fit.rm)
## 
## Call:
## lm(formula = crim ~ rm)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.604 -3.952 -2.654  0.989 87.197 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   20.482      3.365   6.088 2.27e-09 ***
## rm            -2.684      0.532  -5.045 6.35e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.401 on 504 degrees of freedom
## Multiple R-squared:  0.04807,    Adjusted R-squared:  0.04618 
## F-statistic: 25.45 on 1 and 504 DF,  p-value: 6.347e-07
fit.age <- lm(crim ~ age)
summary(fit.age)
## 
## Call:
## lm(formula = crim ~ age)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.789 -4.257 -1.230  1.527 82.849 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -3.77791    0.94398  -4.002 7.22e-05 ***
## age          0.10779    0.01274   8.463 2.85e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.057 on 504 degrees of freedom
## Multiple R-squared:  0.1244, Adjusted R-squared:  0.1227 
## F-statistic: 71.62 on 1 and 504 DF,  p-value: 2.855e-16
fit.dis <- lm(crim ~ dis)
summary(fit.dis)
## 
## Call:
## lm(formula = crim ~ dis)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.708 -4.134 -1.527  1.516 81.674 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   9.4993     0.7304  13.006   <2e-16 ***
## dis          -1.5509     0.1683  -9.213   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.965 on 504 degrees of freedom
## Multiple R-squared:  0.1441, Adjusted R-squared:  0.1425 
## F-statistic: 84.89 on 1 and 504 DF,  p-value: < 2.2e-16
fit.rad <- lm(crim ~ rad)
summary(fit.rad)
## 
## Call:
## lm(formula = crim ~ rad)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.164  -1.381  -0.141   0.660  76.433 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -2.28716    0.44348  -5.157 3.61e-07 ***
## rad          0.61791    0.03433  17.998  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.718 on 504 degrees of freedom
## Multiple R-squared:  0.3913, Adjusted R-squared:   0.39 
## F-statistic: 323.9 on 1 and 504 DF,  p-value: < 2.2e-16
fit.tax <- lm(crim ~ tax)
summary(fit.tax)
## 
## Call:
## lm(formula = crim ~ tax)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.513  -2.738  -0.194   1.065  77.696 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -8.528369   0.815809  -10.45   <2e-16 ***
## tax          0.029742   0.001847   16.10   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.997 on 504 degrees of freedom
## Multiple R-squared:  0.3396, Adjusted R-squared:  0.3383 
## F-statistic: 259.2 on 1 and 504 DF,  p-value: < 2.2e-16
fit.ptratio <- lm(crim ~ ptratio)
summary(fit.ptratio)
## 
## Call:
## lm(formula = crim ~ ptratio)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -7.654 -3.985 -1.912  1.825 83.353 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -17.6469     3.1473  -5.607 3.40e-08 ***
## ptratio       1.1520     0.1694   6.801 2.94e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.24 on 504 degrees of freedom
## Multiple R-squared:  0.08407,    Adjusted R-squared:  0.08225 
## F-statistic: 46.26 on 1 and 504 DF,  p-value: 2.943e-11
fit.black <- lm(crim ~ black)
summary(fit.black)
## 
## Call:
## lm(formula = crim ~ black)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -13.756  -2.299  -2.095  -1.296  86.822 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 16.553529   1.425903  11.609   <2e-16 ***
## black       -0.036280   0.003873  -9.367   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.946 on 504 degrees of freedom
## Multiple R-squared:  0.1483, Adjusted R-squared:  0.1466 
## F-statistic: 87.74 on 1 and 504 DF,  p-value: < 2.2e-16
fit.lstat <- lm(crim ~ lstat)
summary(fit.lstat)
## 
## Call:
## lm(formula = crim ~ lstat)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -13.925  -2.822  -0.664   1.079  82.862 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -3.33054    0.69376  -4.801 2.09e-06 ***
## lstat        0.54880    0.04776  11.491  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.664 on 504 degrees of freedom
## Multiple R-squared:  0.2076, Adjusted R-squared:  0.206 
## F-statistic:   132 on 1 and 504 DF,  p-value: < 2.2e-16
fit.medv <- lm(crim ~ medv)
summary(fit.medv)
## 
## Call:
## lm(formula = crim ~ medv)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -9.071 -4.022 -2.343  1.298 80.957 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 11.79654    0.93419   12.63   <2e-16 ***
## medv        -0.36316    0.03839   -9.46   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.934 on 504 degrees of freedom
## Multiple R-squared:  0.1508, Adjusted R-squared:  0.1491 
## F-statistic: 89.49 on 1 and 504 DF,  p-value: < 2.2e-16

All predictors have a p-value less than 0.05 except “chas”, so we may conclude that there is a statistically significant association between each predictor and the response except for the “chas” predictor.

  1. Fit a multiple regression model to predict the response using all of the predictors. Describe your results. For which predictors can we reject the null hypothesis H0 : βj = 0?
fit.all = lm(crim ~. , data=Boston)
summary(fit.all)
## 
## Call:
## lm(formula = crim ~ ., data = Boston)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -9.924 -2.120 -0.353  1.019 75.051 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  17.033228   7.234903   2.354 0.018949 *  
## zn            0.044855   0.018734   2.394 0.017025 *  
## indus        -0.063855   0.083407  -0.766 0.444294    
## chas         -0.749134   1.180147  -0.635 0.525867    
## nox         -10.313535   5.275536  -1.955 0.051152 .  
## rm            0.430131   0.612830   0.702 0.483089    
## age           0.001452   0.017925   0.081 0.935488    
## dis          -0.987176   0.281817  -3.503 0.000502 ***
## rad           0.588209   0.088049   6.680 6.46e-11 ***
## tax          -0.003780   0.005156  -0.733 0.463793    
## ptratio      -0.271081   0.186450  -1.454 0.146611    
## black        -0.007538   0.003673  -2.052 0.040702 *  
## lstat         0.126211   0.075725   1.667 0.096208 .  
## medv         -0.198887   0.060516  -3.287 0.001087 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.439 on 492 degrees of freedom
## Multiple R-squared:  0.454,  Adjusted R-squared:  0.4396 
## F-statistic: 31.47 on 13 and 492 DF,  p-value: < 2.2e-16

We may reject the null hypothesis for “zn”, “dis”, “rad”, “black” and “medv”.

  1. How do your results from (a) compare to your results from (b)? Create a plot displaying the univariate regression coefficients from (a) on the x-axis, and the multiple regression coefficients from (b) on the y-axis. That is, each predictor is displayed as a single point in the plot. Its coefficient in a simple linear regres- sion model is shown on the x-axis, and its coefficient estimate in the multiple linear regression model is shown on the y-axis.
simple.reg <- vector("numeric",0)
simple.reg <- c(simple.reg, fit.zn$coefficient[2])
simple.reg <- c(simple.reg, fit.indus$coefficient[2])
simple.reg <- c(simple.reg, fit.chas$coefficient[2])
simple.reg <- c(simple.reg, fit.nox$coefficient[2])
simple.reg <- c(simple.reg, fit.rm$coefficient[2])
simple.reg <- c(simple.reg, fit.age$coefficient[2])
simple.reg <- c(simple.reg, fit.dis$coefficient[2])
simple.reg <- c(simple.reg, fit.rad$coefficient[2])
simple.reg <- c(simple.reg, fit.tax$coefficient[2])
simple.reg <- c(simple.reg, fit.ptratio$coefficient[2])
simple.reg <- c(simple.reg, fit.black$coefficient[2])
simple.reg <- c(simple.reg, fit.lstat$coefficient[2])
simple.reg <- c(simple.reg, fit.medv$coefficient[2])
mult.reg <- vector("numeric", 0)
mult.reg <- c(mult.reg, fit.all$coefficients)
mult.reg <- mult.reg[-1]
plot(simple.reg, mult.reg, col = "red")

There is a difference between the simple and multiple regression coefficients. This difference is due to the fact that in the simple regression case, the slope term represents the average effect of an increase in the predictor, ignoring other predictors. In contrast, in the multiple regression case, the slope term represents the average effect of an increase in the predictor, while holding other predictors fixed. It does make sense for the multiple regression to suggest no relationship between the response and some of the predictors while the simple linear regression implies the opposite because the correlation between the predictors show some strong relationships between some of the predictors.

cor(Boston[-c(1, 4)])
##                 zn      indus        nox         rm        age        dis
## zn       1.0000000 -0.5338282 -0.5166037  0.3119906 -0.5695373  0.6644082
## indus   -0.5338282  1.0000000  0.7636514 -0.3916759  0.6447785 -0.7080270
## nox     -0.5166037  0.7636514  1.0000000 -0.3021882  0.7314701 -0.7692301
## rm       0.3119906 -0.3916759 -0.3021882  1.0000000 -0.2402649  0.2052462
## age     -0.5695373  0.6447785  0.7314701 -0.2402649  1.0000000 -0.7478805
## dis      0.6644082 -0.7080270 -0.7692301  0.2052462 -0.7478805  1.0000000
## rad     -0.3119478  0.5951293  0.6114406 -0.2098467  0.4560225 -0.4945879
## tax     -0.3145633  0.7207602  0.6680232 -0.2920478  0.5064556 -0.5344316
## ptratio -0.3916785  0.3832476  0.1889327 -0.3555015  0.2615150 -0.2324705
## black    0.1755203 -0.3569765 -0.3800506  0.1280686 -0.2735340  0.2915117
## lstat   -0.4129946  0.6037997  0.5908789 -0.6138083  0.6023385 -0.4969958
## medv     0.3604453 -0.4837252 -0.4273208  0.6953599 -0.3769546  0.2499287
##                rad        tax    ptratio      black      lstat       medv
## zn      -0.3119478 -0.3145633 -0.3916785  0.1755203 -0.4129946  0.3604453
## indus    0.5951293  0.7207602  0.3832476 -0.3569765  0.6037997 -0.4837252
## nox      0.6114406  0.6680232  0.1889327 -0.3800506  0.5908789 -0.4273208
## rm      -0.2098467 -0.2920478 -0.3555015  0.1280686 -0.6138083  0.6953599
## age      0.4560225  0.5064556  0.2615150 -0.2735340  0.6023385 -0.3769546
## dis     -0.4945879 -0.5344316 -0.2324705  0.2915117 -0.4969958  0.2499287
## rad      1.0000000  0.9102282  0.4647412 -0.4444128  0.4886763 -0.3816262
## tax      0.9102282  1.0000000  0.4608530 -0.4418080  0.5439934 -0.4685359
## ptratio  0.4647412  0.4608530  1.0000000 -0.1773833  0.3740443 -0.5077867
## black   -0.4444128 -0.4418080 -0.1773833  1.0000000 -0.3660869  0.3334608
## lstat    0.4886763  0.5439934  0.3740443 -0.3660869  1.0000000 -0.7376627
## medv    -0.3816262 -0.4685359 -0.5077867  0.3334608 -0.7376627  1.0000000

For example, when “age” is high there is a tendency in “dis” to be low, hence in simple linear regression which only examines “crim” versus “age”, we observe that higher values of “age” are associated with higher values of “crim”, even though “age” does not actually affect “crim”. So “age” is a surrogate for “dis”; “age” gets credit for the effect of “dis” on “crim”.

  1. Is there evidence of non-linear association between any of the predictors and the response? To answer this question, for each predictor X, fit a model of the form

\[Y = β_0 +β_1X +β_2X_2 +β_3X_3 +ε.\]

fit.zn2 <- lm(crim ~ poly(zn, 3))
summary(fit.zn2)
## 
## Call:
## lm(formula = crim ~ poly(zn, 3))
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.821 -4.614 -1.294  0.473 84.130 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    3.6135     0.3722   9.709  < 2e-16 ***
## poly(zn, 3)1 -38.7498     8.3722  -4.628  4.7e-06 ***
## poly(zn, 3)2  23.9398     8.3722   2.859  0.00442 ** 
## poly(zn, 3)3 -10.0719     8.3722  -1.203  0.22954    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.372 on 502 degrees of freedom
## Multiple R-squared:  0.05824,    Adjusted R-squared:  0.05261 
## F-statistic: 10.35 on 3 and 502 DF,  p-value: 1.281e-06
fit.indus2 <- lm(crim ~ poly(indus, 3))
summary(fit.indus2)
## 
## Call:
## lm(formula = crim ~ poly(indus, 3))
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -8.278 -2.514  0.054  0.764 79.713 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        3.614      0.330  10.950  < 2e-16 ***
## poly(indus, 3)1   78.591      7.423  10.587  < 2e-16 ***
## poly(indus, 3)2  -24.395      7.423  -3.286  0.00109 ** 
## poly(indus, 3)3  -54.130      7.423  -7.292  1.2e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.423 on 502 degrees of freedom
## Multiple R-squared:  0.2597, Adjusted R-squared:  0.2552 
## F-statistic: 58.69 on 3 and 502 DF,  p-value: < 2.2e-16
fit.nox2 <- lm(crim ~ poly(nox, 3))
summary(fit.nox2)
## 
## Call:
## lm(formula = crim ~ poly(nox, 3))
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -9.110 -2.068 -0.255  0.739 78.302 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     3.6135     0.3216  11.237  < 2e-16 ***
## poly(nox, 3)1  81.3720     7.2336  11.249  < 2e-16 ***
## poly(nox, 3)2 -28.8286     7.2336  -3.985 7.74e-05 ***
## poly(nox, 3)3 -60.3619     7.2336  -8.345 6.96e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.234 on 502 degrees of freedom
## Multiple R-squared:  0.297,  Adjusted R-squared:  0.2928 
## F-statistic: 70.69 on 3 and 502 DF,  p-value: < 2.2e-16
fit.rm2 <- lm(crim ~ poly(rm, 3))
summary(fit.rm2)
## 
## Call:
## lm(formula = crim ~ poly(rm, 3))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -18.485  -3.468  -2.221  -0.015  87.219 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    3.6135     0.3703   9.758  < 2e-16 ***
## poly(rm, 3)1 -42.3794     8.3297  -5.088 5.13e-07 ***
## poly(rm, 3)2  26.5768     8.3297   3.191  0.00151 ** 
## poly(rm, 3)3  -5.5103     8.3297  -0.662  0.50858    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.33 on 502 degrees of freedom
## Multiple R-squared:  0.06779,    Adjusted R-squared:  0.06222 
## F-statistic: 12.17 on 3 and 502 DF,  p-value: 1.067e-07
fit.age2 <- lm(crim ~ poly(age, 3))
summary(fit.age2)
## 
## Call:
## lm(formula = crim ~ poly(age, 3))
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -9.762 -2.673 -0.516  0.019 82.842 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     3.6135     0.3485  10.368  < 2e-16 ***
## poly(age, 3)1  68.1820     7.8397   8.697  < 2e-16 ***
## poly(age, 3)2  37.4845     7.8397   4.781 2.29e-06 ***
## poly(age, 3)3  21.3532     7.8397   2.724  0.00668 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.84 on 502 degrees of freedom
## Multiple R-squared:  0.1742, Adjusted R-squared:  0.1693 
## F-statistic: 35.31 on 3 and 502 DF,  p-value: < 2.2e-16
fit.dis2 <- lm(crim ~ poly(dis, 3))
summary(fit.dis2)
## 
## Call:
## lm(formula = crim ~ poly(dis, 3))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.757  -2.588   0.031   1.267  76.378 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     3.6135     0.3259  11.087  < 2e-16 ***
## poly(dis, 3)1 -73.3886     7.3315 -10.010  < 2e-16 ***
## poly(dis, 3)2  56.3730     7.3315   7.689 7.87e-14 ***
## poly(dis, 3)3 -42.6219     7.3315  -5.814 1.09e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.331 on 502 degrees of freedom
## Multiple R-squared:  0.2778, Adjusted R-squared:  0.2735 
## F-statistic: 64.37 on 3 and 502 DF,  p-value: < 2.2e-16
fit.rad2 <- lm(crim ~ poly(rad, 3))
summary(fit.rad2)
## 
## Call:
## lm(formula = crim ~ poly(rad, 3))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.381  -0.412  -0.269   0.179  76.217 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     3.6135     0.2971  12.164  < 2e-16 ***
## poly(rad, 3)1 120.9074     6.6824  18.093  < 2e-16 ***
## poly(rad, 3)2  17.4923     6.6824   2.618  0.00912 ** 
## poly(rad, 3)3   4.6985     6.6824   0.703  0.48231    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.682 on 502 degrees of freedom
## Multiple R-squared:    0.4,  Adjusted R-squared:  0.3965 
## F-statistic: 111.6 on 3 and 502 DF,  p-value: < 2.2e-16
fit.tax2 <- lm(crim ~ poly(tax, 3))
summary(fit.tax2)
## 
## Call:
## lm(formula = crim ~ poly(tax, 3))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -13.273  -1.389   0.046   0.536  76.950 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     3.6135     0.3047  11.860  < 2e-16 ***
## poly(tax, 3)1 112.6458     6.8537  16.436  < 2e-16 ***
## poly(tax, 3)2  32.0873     6.8537   4.682 3.67e-06 ***
## poly(tax, 3)3  -7.9968     6.8537  -1.167    0.244    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.854 on 502 degrees of freedom
## Multiple R-squared:  0.3689, Adjusted R-squared:  0.3651 
## F-statistic:  97.8 on 3 and 502 DF,  p-value: < 2.2e-16
fit.ptratio2 <- lm(crim ~ poly(ptratio, 3))
summary(fit.ptratio2)
## 
## Call:
## lm(formula = crim ~ poly(ptratio, 3))
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.833 -4.146 -1.655  1.408 82.697 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          3.614      0.361  10.008  < 2e-16 ***
## poly(ptratio, 3)1   56.045      8.122   6.901 1.57e-11 ***
## poly(ptratio, 3)2   24.775      8.122   3.050  0.00241 ** 
## poly(ptratio, 3)3  -22.280      8.122  -2.743  0.00630 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.122 on 502 degrees of freedom
## Multiple R-squared:  0.1138, Adjusted R-squared:  0.1085 
## F-statistic: 21.48 on 3 and 502 DF,  p-value: 4.171e-13
fit.black2 <- lm(crim ~ poly(black, 3))
summary(fit.black2)
## 
## Call:
## lm(formula = crim ~ poly(black, 3))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -13.096  -2.343  -2.128  -1.439  86.790 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       3.6135     0.3536  10.218   <2e-16 ***
## poly(black, 3)1 -74.4312     7.9546  -9.357   <2e-16 ***
## poly(black, 3)2   5.9264     7.9546   0.745    0.457    
## poly(black, 3)3  -4.8346     7.9546  -0.608    0.544    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.955 on 502 degrees of freedom
## Multiple R-squared:  0.1498, Adjusted R-squared:  0.1448 
## F-statistic: 29.49 on 3 and 502 DF,  p-value: < 2.2e-16
fit.lstat2 <- lm(crim ~ poly(lstat, 3))
summary(fit.lstat2)
## 
## Call:
## lm(formula = crim ~ poly(lstat, 3))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -15.234  -2.151  -0.486   0.066  83.353 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       3.6135     0.3392  10.654   <2e-16 ***
## poly(lstat, 3)1  88.0697     7.6294  11.543   <2e-16 ***
## poly(lstat, 3)2  15.8882     7.6294   2.082   0.0378 *  
## poly(lstat, 3)3 -11.5740     7.6294  -1.517   0.1299    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.629 on 502 degrees of freedom
## Multiple R-squared:  0.2179, Adjusted R-squared:  0.2133 
## F-statistic: 46.63 on 3 and 502 DF,  p-value: < 2.2e-16
fit.medv2 <- lm(crim ~ poly(medv, 3))
summary(fit.medv2)
## 
## Call:
## lm(formula = crim ~ poly(medv, 3))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -24.427  -1.976  -0.437   0.439  73.655 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       3.614      0.292  12.374  < 2e-16 ***
## poly(medv, 3)1  -75.058      6.569 -11.426  < 2e-16 ***
## poly(medv, 3)2   88.086      6.569  13.409  < 2e-16 ***
## poly(medv, 3)3  -48.033      6.569  -7.312 1.05e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.569 on 502 degrees of freedom
## Multiple R-squared:  0.4202, Adjusted R-squared:  0.4167 
## F-statistic: 121.3 on 3 and 502 DF,  p-value: < 2.2e-16

For “zn”, “rm”, “rad”, “tax” and “lstat” as predictor, the p-values suggest that the cubic coefficient is not statistically significant; for “indus”, “nox”, “age”, “dis”, “ptratio” and “medv” as predictor, the p-values suggest the adequacy of the cubic fit; for “black” as predictor, the p-values suggest that the quandratic and cubic coefficients are not statistically significant, so in this latter case no non-linear effect is visible.