Exploratory Analysis
Calculating how many agents are there ?
library(knitr)
No_of_accounts_manager<-length(unique(Via_$`Account manager`))
Names_of_accounts_manager<-as.data.frame(unique(Via_$`Account manager`))
colnames(Names_of_accounts_manager)<-"Names"
kable(Names_of_accounts_manager)
| Milan Crona |
| Aidan Pouros |
| Chauncey Dach |
| Rigoberto White |
Calculating how many different clients are there ?
No_of_unique_clients<-length(unique((Via_$`Client Name`)))
No_of_unique_clients
## [1] 35
We can see that there are 4 different accounts manager and 25 different clients
Now we will see how many account manager have handled different clients
library("ggplot2")
g1<-ggplot(data=Via_)+
geom_bar(aes(x=Via_$`Account manager`,fill=Via_$`Client Name`))
plot(g1)

library("dplyr")
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
#??? scope of improvement of code ???
Milan_Crona<-Via_[Via_$`Account manager`==Names_of_accounts_manager[1,],]
FMilanCrona<-as.data.frame(sort(table(Milan_Crona$`Client Name`),decreasing=TRUE))
colnames(FMilanCrona)<-"MCClient Name"
Aidan_Pouros<-Via_[Via_$`Account manager`==Names_of_accounts_manager[2,],]
FAidan_Pouros<-as.data.frame(sort(table(Aidan_Pouros$`Client Name`),decreasing=TRUE))
colnames(FAidan_Pouros)<-"APClient Name"
Chauncey_Dach<-Via_[Via_$`Account manager`==Names_of_accounts_manager[3,],]
FChauncey_Dach<-as.data.frame(sort(table(Chauncey_Dach$`Client Name`),decreasing=TRUE))
colnames(FChauncey_Dach)<-"CDClient Name"
Rigoberto_White<-Via_[Via_$`Account manager`==Names_of_accounts_manager[4,],]
FRigoberto_White<-as.data.frame(sort(table(Rigoberto_White$`Client Name`),decreasing=TRUE))
colnames(FRigoberto_White)<-"RWClient Name"
kable(FMilanCrona)
| Lemke-Pfannerstill |
15 |
| Hermiston, Armstrong and Balistreri |
13 |
| Ondricka-Wolff |
13 |
| Denesik, Stehr and Carter |
12 |
| Eichmann and Sons |
12 |
| Halvorson LLC |
12 |
| Kris, Shanahan and Quigley |
12 |
| Stamm-Crooks |
12 |
| Brown, Wyman and Grimes |
11 |
| Mitchell and Sons |
11 |
| Medhurst, Ankunding and Wolff |
10 |
| Veum, McClure and Schuster |
10 |
| Abbott Group |
9 |
| Franecki-Feil |
9 |
| Hoppe-Batz |
9 |
| Johnston-Schaden |
9 |
| Thompson, Howell and Hegmann |
9 |
| Donnelly-Champlin |
8 |
| Kuhic, Stark and Kreiger |
8 |
| Sanford and Sons |
8 |
| Walter Inc |
8 |
| Anderson, Kutch and Hyatt |
7 |
| Armstrong Group |
7 |
| Hagenes Inc |
6 |
| Lindgren, Graham and Spinka |
6 |
| Oga, Gottlieb and Cruickshank |
6 |
| Fahey, Wunsch and Bashirian |
5 |
| Wyman, Farrell and Haag |
5 |
| Bosco-Ortiz |
4 |
| Hauck Group |
4 |
| Lueilwitz, Moore and Hahn |
4 |
| Orn, Russel and O’Reilly |
4 |
| Koss Inc |
3 |
| Trantow Inc |
3 |
| Cormier LLC |
2 |
kable(FAidan_Pouros)
| Cormier LLC |
11 |
| Walter Inc |
11 |
| Fahey, Wunsch and Bashirian |
10 |
| Franecki-Feil |
10 |
| Abbott Group |
9 |
| Bosco-Ortiz |
9 |
| Brown, Wyman and Grimes |
9 |
| Koss Inc |
9 |
| Donnelly-Champlin |
8 |
| Eichmann and Sons |
8 |
| Hoppe-Batz |
8 |
| Johnston-Schaden |
8 |
| Medhurst, Ankunding and Wolff |
8 |
| Mitchell and Sons |
8 |
| Stamm-Crooks |
8 |
| Wyman, Farrell and Haag |
8 |
| Anderson, Kutch and Hyatt |
7 |
| Denesik, Stehr and Carter |
7 |
| Lueilwitz, Moore and Hahn |
7 |
| Thompson, Howell and Hegmann |
7 |
| Armstrong Group |
6 |
| Hagenes Inc |
6 |
| Kris, Shanahan and Quigley |
6 |
| Lindgren, Graham and Spinka |
6 |
| Hauck Group |
5 |
| Hermiston, Armstrong and Balistreri |
5 |
| Lemke-Pfannerstill |
5 |
| Oga, Gottlieb and Cruickshank |
5 |
| Ondricka-Wolff |
5 |
| Kuhic, Stark and Kreiger |
4 |
| Trantow Inc |
4 |
| Halvorson LLC |
3 |
| Orn, Russel and O’Reilly |
3 |
| Sanford and Sons |
3 |
| Veum, McClure and Schuster |
3 |
kable(FChauncey_Dach)
| Medhurst, Ankunding and Wolff |
14 |
| Fahey, Wunsch and Bashirian |
12 |
| Stamm-Crooks |
11 |
| Denesik, Stehr and Carter |
10 |
| Donnelly-Champlin |
10 |
| Wyman, Farrell and Haag |
10 |
| Abbott Group |
9 |
| Armstrong Group |
9 |
| Johnston-Schaden |
9 |
| Mitchell and Sons |
9 |
| Hagenes Inc |
8 |
| Kuhic, Stark and Kreiger |
8 |
| Orn, Russel and O’Reilly |
8 |
| Brown, Wyman and Grimes |
7 |
| Halvorson LLC |
7 |
| Koss Inc |
7 |
| Oga, Gottlieb and Cruickshank |
7 |
| Ondricka-Wolff |
7 |
| Sanford and Sons |
7 |
| Veum, McClure and Schuster |
7 |
| Anderson, Kutch and Hyatt |
6 |
| Franecki-Feil |
6 |
| Hauck Group |
6 |
| Hermiston, Armstrong and Balistreri |
6 |
| Kris, Shanahan and Quigley |
6 |
| Lindgren, Graham and Spinka |
6 |
| Trantow Inc |
6 |
| Walter Inc |
6 |
| Cormier LLC |
5 |
| Eichmann and Sons |
5 |
| Thompson, Howell and Hegmann |
5 |
| Bosco-Ortiz |
4 |
| Hoppe-Batz |
4 |
| Lueilwitz, Moore and Hahn |
4 |
| Lemke-Pfannerstill |
2 |
kable(FRigoberto_White)
| Eichmann and Sons |
13 |
| Lindgren, Graham and Spinka |
10 |
| Orn, Russel and O’Reilly |
10 |
| Wyman, Farrell and Haag |
10 |
| Donnelly-Champlin |
9 |
| Halvorson LLC |
9 |
| Veum, McClure and Schuster |
9 |
| Brown, Wyman and Grimes |
8 |
| Hoppe-Batz |
8 |
| Fahey, Wunsch and Bashirian |
7 |
| Johnston-Schaden |
7 |
| Mitchell and Sons |
7 |
| Oga, Gottlieb and Cruickshank |
7 |
| Thompson, Howell and Hegmann |
7 |
| Walter Inc |
7 |
| Bosco-Ortiz |
6 |
| Cormier LLC |
6 |
| Hermiston, Armstrong and Balistreri |
6 |
| Lemke-Pfannerstill |
6 |
| Sanford and Sons |
6 |
| Hauck Group |
5 |
| Koss Inc |
5 |
| Kris, Shanahan and Quigley |
5 |
| Lueilwitz, Moore and Hahn |
5 |
| Ondricka-Wolff |
5 |
| Trantow Inc |
5 |
| Abbott Group |
4 |
| Anderson, Kutch and Hyatt |
4 |
| Denesik, Stehr and Carter |
4 |
| Franecki-Feil |
4 |
| Kuhic, Stark and Kreiger |
4 |
| Medhurst, Ankunding and Wolff |
4 |
| Stamm-Crooks |
4 |
| Armstrong Group |
3 |
| Hagenes Inc |
3 |
From the above tables we can get information such as which client met with which
library(lubridate)
Y2013<-(subset(Via_, format(Via_$`Date of Contact`,"%Y")==2013))
Y2014<-(subset(Via_, format(Via_$`Date of Contact`,"%Y")==2014))
Y2015<-(subset(Via_, format(Via_$`Date of Contact`,"%Y")==2015))
Y2016<-(subset(Via_, format(Via_$`Date of Contact`,"%Y")==2016))
Y2017<-(subset(Via_, format(Via_$`Date of Contact`,"%Y")==2016))
M2013<-as.data.frame(sort(table(lubridate::month(Y2013$`Date of Contact`)),decreasing = T))
colnames(M2013)<-c("Month","Frequency")
M2014<-as.data.frame(sort(table(lubridate::month(Y2014$`Date of Contact`)),decreasing = T))
colnames(M2014)<-c("Month","Frequency")
M2015<-as.data.frame(sort(table(lubridate::month(Y2015$`Date of Contact`)),decreasing = T))
colnames(M2015)<-c("Month","Frequency")
M2016<-as.data.frame(sort(table(lubridate::month(Y2016$`Date of Contact`)),decreasing = T))
colnames(M2016)<-c("Month","Frequency")
M2017<-as.data.frame(sort(table(lubridate::month(Y2017$`Date of Contact`)),decreasing = T))
colnames(M2017)<-c("Month","Frequency")
kable(M2013)
kable(M2014)
| 10 |
58 |
| 9 |
33 |
| 8 |
25 |
| 6 |
23 |
| 7 |
21 |
| 12 |
19 |
| 5 |
18 |
| 11 |
18 |
| 1 |
13 |
| 2 |
12 |
| 3 |
12 |
| 4 |
12 |
kable(M2015)
| 10 |
53 |
| 9 |
29 |
| 2 |
20 |
| 7 |
20 |
| 8 |
20 |
| 5 |
18 |
| 6 |
16 |
| 11 |
16 |
| 12 |
16 |
| 4 |
15 |
| 1 |
14 |
| 3 |
14 |
kable(M2016)
| 10 |
42 |
| 9 |
28 |
| 6 |
22 |
| 12 |
22 |
| 1 |
21 |
| 3 |
19 |
| 2 |
18 |
| 5 |
17 |
| 8 |
15 |
| 4 |
13 |
| 11 |
12 |
| 7 |
11 |
kable(M2017)
| 10 |
42 |
| 9 |
28 |
| 6 |
22 |
| 12 |
22 |
| 1 |
21 |
| 3 |
19 |
| 2 |
18 |
| 5 |
17 |
| 8 |
15 |
| 4 |
13 |
| 11 |
12 |
| 7 |
11 |