(5.6, 8.8), (6.3, 12.4), (7, 14.8), (7.7, 18.2), (8.4, 20.8)
x <- c(5.6, 6.3, 7, 7.7, 8.4)
y <- c(8.8, 12.4, 14.8, 18.2, 20.8)
xy <- lm(x ~ y)
plot(x ~ y)
abline(xy)
summary(xy)
##
## Call:
## lm(formula = x ~ y)
##
## Residuals:
## 1 2 3 4 5
## 0.05121 -0.09143 0.04681 -0.04901 0.04241
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.489004 0.125618 27.77 0.000102 ***
## y 0.234066 0.008061 29.04 8.97e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0761 on 3 degrees of freedom
## Multiple R-squared: 0.9965, Adjusted R-squared: 0.9953
## F-statistic: 843.1 on 1 and 3 DF, p-value: 8.971e-05
The equation for the regression line for the given points is:
\[\hat{y} = 3.489 = 0.234x\]
\[f(x,y) = 24x - 6xy^2 - 8y^3\] \[\frac{\partial f}{\partial x} = 24 - 6y^2\] \[\frac{\partial f}{\partial y} = -12xy - 24y^2\] \[6y^2 = 24\] \[y^2 = 4\] \[y = +- 2\]
\[-12xy = 24y^2\] \[x = -2y\] \[x = +- 4\] Critical points: (4,-2), (-4,2)
The saddle points of this function are at (x,y) = (-4,2),(4,-2).
Step 1. Find the revenue function \(R (x, y)\). \[R(x,y) = x(81-21x + 17y) + y(40 + 11x - 23y)\] \[= 81x - 21x^2 + 17xy + 40y + 11xy - 23y^2\] \[= 81x + 40y + 28xy - 21x^2 - 23y^2\]
Step 2. What is the revenue if she sells the “house” brand for \(2.30\) and the “name” brand for \(4.10\)? \[R(2.3, 4.1) = 81 * 2.3 + 40 * 4.1 + 28 * 2.3 * 4.1 - 21 * (2.3)^2 - 23 * (4.1)^2\] \[= 116.62\] If she sells the “house” brand for \(2.30\) and the “name” brand for \(4.10\), she will make \(116.62\) in revenue.
Consider \(x + y = 96\), then \(x = 96 - y\) \[C(x,y) = C(96-y,y)\] \[= \frac{1}{6}x^2 + \frac{1}{6}y^2 + 7x + 25y + 700\] \[= \frac{1}{6}(96-y)^2 + \frac{1}{6}y^2 + 7(96-y) + 25y + 700\] \[= \frac{1}{6}(y^2 - 192y + 9216) + \frac{1}{6}y^2 + 672 - 7y + 25y + 700\] \[= \frac{1}{6}y^2 - 32y + 1536 + \frac{1}{6}y^2 _ 18y + 1372\] \[\frac{1}{3}y^2 - 14y + 2908\] \[C_1(y)\] \[C_1(y) = \frac{2}{3}y-14\] \[\frac{2}{3}y - 14 = 0\] \[y = 21\] \[x = 96 - y\] \[x = 75\]
In order to minimize the total weekly cost, the Los Angeles plant should produce 75 units and the Denver plant should produce 21 units.
\(\int\int (e^{8x+3y})\) dA ; R: \(2\leq x \leq 4\) and \(2\leq y \leq 4\)
Write your answer in exact form without decimals.
\[\int_2^4 \int_2^4 e^{8x + 3y} dx dy\] \[\int_2^4 \bigg[\frac{e^{8x+3y}}{8} \bigg]_2^4 \] \[\frac{1}{8} \int_2^4 \big(e^{32 + 3y} - e^{16 + 3y}\big) dy\] \[\frac{1}{8} * \frac{1}{3} \bigg[ \big[e^{32 + 3y}\big]_2^4 - \big[e^{16 + 3y}\big]_2^4 \bigg] dy\] \[\frac{1}{24} \bigg[e^{44} - e^{38}\bigg] - \bigg[e^{28} - e^{22}\bigg]\]