1 - pnorm(100, 100, 91)
## [1] 0.5
1- pnorm(110, 100, 91)
## [1] 0.4562483
1 - pnorm(120, 100, 91)
## [1] 0.4130212
MGF: \(M_X(t) = (q + pe^t)^n\)
1st moment: \(M^{'}_{X}(t) = n(q+pe^t)^{n+1}pe^t\)
2nd moment: \(M^{''}_{X}(t) = n(n-1)(q+pe^t)^{n-2}p^2e^{2t}+n(q+pe^t)^{n-1}pe^t\)
Expected value (1st moment, t = 0): \(E(X) = M^{'}_{X}(0) = np\)
Expected value (2nd moment, t = 0): \(E(X^2) = M^{''}_{X}(0) = n(n-1)p^2 + np\)
Variance: \(V(X) = E(X^2)-E(X)^2 = n(n-1)p^2 + np - n^2p^2 = npq\)
MGF: \(M_X(t) = \frac{\lambda}{\lambda - t}, t < \lambda\)
1st moment: \(M^{'}_{X}(t) = \frac{\lambda}{(\lambda - t)^2}\)
2nd moment: \(M^{''}_{X}(t) = \frac{2\lambda}{(\lambda - t)^3}\)
Expected value (1st moment, t = 0): \(E(X) = M^{'}_{X}(0) = \frac{1}{\lambda}\)
Expected value (2nd moment, t = 0): \(E(X^2) = M^{''}_{X}(0) = \frac{2\lambda}{(\lambda - 0)^3} = \frac{2}{\lambda^2}\)
Variance: \(V(X) = E(X^2)-E(X)^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}\)