The objectives of this problem set is to orient you to a number of activities in R. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion name your final output .html file as: YourName_ANLY512-Section-Year-Semester.html and upload it to the “Problem Set 2” assignmenet on Moodle.
anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.data <- datasets::anscombe
data
## x1 x2 x3 x4 y1 y2 y3 y4
## 1 10 10 10 8 8.04 9.14 7.46 6.58
## 2 8 8 8 8 6.95 8.14 6.77 5.76
## 3 13 13 13 8 7.58 8.74 12.74 7.71
## 4 9 9 9 8 8.81 8.77 7.11 8.84
## 5 11 11 11 8 8.33 9.26 7.81 8.47
## 6 14 14 14 8 9.96 8.10 8.84 7.04
## 7 6 6 6 8 7.24 6.13 6.08 5.25
## 8 4 4 4 19 4.26 3.10 5.39 12.50
## 9 12 12 12 8 10.84 9.13 8.15 5.56
## 10 7 7 7 8 4.82 7.26 6.42 7.91
## 11 5 5 5 8 5.68 4.74 5.73 6.89
fBasics() package!)colMeans(data)
## x1 x2 x3 x4 y1 y2 y3 y4
## 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909 7.500000 7.500909
cor(data$x1, data$y1)
## [1] 0.8164205
cor(data$x2, data$y2)
## [1] 0.8162365
cor(data$x3, data$y3)
## [1] 0.8162867
cor(data$x4, data$y4)
## [1] 0.8165214
plot(data$x1, data$y1)
plot(data$x2, data$y2)
plot(data$x3, data$y3)
plot(data$x4, data$y4)
par(mfrow = c(2,2), pch = 16)
plot(data$x1, data$y1)
plot(data$x2, data$y2)
plot(data$x3, data$y3)
plot(data$x4, data$y4)
lm() function.lm1 <- lm(data$y1 ~ data$x1)
lm2 <- lm(data$y2 ~ data$x2)
lm3 <- lm(data$y3 ~ data$x3)
lm4 <- lm(data$y4 ~ data$x4)
par(mfrow = c(2,2), pch = 16)
plot(data$x1, data$y1)
abline(lm(data$y1 ~ data$x1))
plot(data$x2, data$y2)
abline(lm(data$y2 ~ data$x2))
plot(data$x3, data$y3)
abline(lm(data$y3 ~ data$x3))
plot(data$x4, data$y4)
abline(lm(data$y4 ~ data$x4))
anova(lm1)
## Analysis of Variance Table
##
## Response: data$y1
## Df Sum Sq Mean Sq F value Pr(>F)
## data$x1 1 27.510 27.5100 17.99 0.00217 **
## Residuals 9 13.763 1.5292
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(lm2)
## Analysis of Variance Table
##
## Response: data$y2
## Df Sum Sq Mean Sq F value Pr(>F)
## data$x2 1 27.500 27.5000 17.966 0.002179 **
## Residuals 9 13.776 1.5307
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(lm3)
## Analysis of Variance Table
##
## Response: data$y3
## Df Sum Sq Mean Sq F value Pr(>F)
## data$x3 1 27.470 27.4700 17.972 0.002176 **
## Residuals 9 13.756 1.5285
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(lm4)
## Analysis of Variance Table
##
## Response: data$y4
## Df Sum Sq Mean Sq F value Pr(>F)
## data$x4 1 27.490 27.4900 18.003 0.002165 **
## Residuals 9 13.742 1.5269
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The summary of the lessons learned from Anscombe’s Quartet exercise is that data visulization is important at various stages of an analysis. It helps us understand the relationship between different variables like in the scatter plots. It also helps us derive the usabilty of the dataset by understanding the outliers which can drastic change the inferences we draw from the analysis.