Task 2a

Based on thereading of the case, following are the crucial issues that are being faced by the management of store24.

1.How to increase store level employees retention.

2.How to know the financial impact of increasing tenures of crew or manager.

Questions

Based on the above stated issues, following

With the available data how to predict performance of different program like, increasing wages, new training, bonus schemes etc.?

Task2c

store.df= read.csv("Store24.csv")
library(psych)
describe(store.df)[,c(2:5,8,9)]
##             n       mean        sd     median       min        max
## store      75      38.00     21.79      38.00      1.00      75.00
## Sales      75 1205413.12 304531.31 1127332.00 699306.00 2113089.00
## Profit     75  276313.61  89404.08  265014.00 122180.00  518998.00
## MTenure    75      45.30     57.67      24.12      0.00     277.99
## CTenure    75      13.93     17.70       7.21      0.89     114.15
## Pop        75    9825.59   5911.67    8896.00   1046.00   26519.00
## Comp       75       3.79      1.31       3.63      1.65      11.13
## Visibility 75       3.08      0.75       3.00      2.00       5.00
## PedCount   75       2.96      0.99       3.00      1.00       5.00
## Res        75       0.96      0.20       1.00      0.00       1.00
## Hours24    75       0.84      0.37       1.00      0.00       1.00
## CrewSkill  75       3.46      0.41       3.50      2.06       4.64
## MgrSkill   75       3.64      0.41       3.59      2.96       4.62
## ServQual   75      87.15     12.61      89.47     57.90     100.00

Task 2d

Use R to measure the mean and standard deviation of Profit.

store.df= read.csv("Store24.csv")
mean(store.df$Profit)
## [1] 276313.6

Mean of Profit is 276313.6

sd(store.df$Profit)
## [1] 89404.08

Standard Deviation of profit is 89404.08

Use R to measure the mean and standard deviation of MTenure.

mean(store.df$MTenure)
## [1] 45.29644

Mean of MTenure is 45.29644

sd(store.df$MTenure)
## [1] 57.67155

Standard Deviation of MTenure is 57.67155

Use R to measure the mean and standard deviation of CTenure.

mean(store.df$CTenure)
## [1] 13.9315

Mean of CTenure is 13.9315

sd(store.df$CTenure)
## [1] 17.69752

Standard Deviation of CTenure is 17.69752

Task 2e

attach(mtcars)
View(mtcars)
newdata <- mtcars[order(mpg),] # sort by mpg (ascending)
View(newdata)
newdata[1:5,] # see the first 5 rows
##                      mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Cadillac Fleetwood  10.4   8  472 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8  460 215 3.00 5.424 17.82  0  0    3    4
## Camaro Z28          13.3   8  350 245 3.73 3.840 15.41  0  0    3    4
## Duster 360          14.3   8  360 245 3.21 3.570 15.84  0  0    3    4
## Chrysler Imperial   14.7   8  440 230 3.23 5.345 17.42  0  0    3    4
newdata <- mtcars[order(-mpg),] # sort by mpg (descending)
View(newdata)
detach(mtcars)

Task 2f

Top 5 most profitable stores

top_profit=store.df[order(-store.df$Profit),]
top_profit[1:10,1:5]
##    store   Sales Profit   MTenure    CTenure
## 74    74 1782957 518998 171.09720  29.519510
## 7      7 1809256 476355  62.53080   7.326488
## 9      9 2113089 474725 108.99350   6.061602
## 6      6 1703140 469050 149.93590  11.351130
## 44    44 1807740 439781 182.23640 114.151900
## 2      2 1619874 424007  86.22219   6.636550
## 45    45 1602362 410149  47.64565   9.166325
## 18    18 1704826 394039 239.96980  33.774130
## 11    11 1583446 389886  44.81977   2.036961
## 47    47 1665657 387853  12.84790   6.636550
bottom_profit= store.df[order(store.df$Profit), ]
bottom_profit[1:10,1:5]
##    store   Sales Profit     MTenure   CTenure
## 57    57  699306 122180  24.3485700  2.956879
## 66    66  879581 146058 115.2039000  3.876797
## 41    41  744211 147327  14.9180200 11.926080
## 55    55  925744 147672   6.6703910 18.365500
## 32    32  828918 149033  36.0792600  6.636550
## 13    13  857843 152513   0.6571813  1.577002
## 54    54  811190 159792   6.6703910  3.876797
## 52    52 1073008 169201  24.1185600  3.416838
## 61    61  716589 177046  21.8184200 13.305950
## 37    37 1202917 187765  23.1985000  1.347023

Task 2g

Draw a scatter plot of Profit vs. MTenure.

scatter.smooth(store.df$MTenure,store.df$Profit, pch=16, col="black", lpars = list(col="red", lwd=3, lty=3))
abline(h=0, v=0, col="green")

Task 2h

Use R to draw a scatter plot of Profit vs. CTenure.

scatter.smooth(store.df$CTenure,store.df$Profit, pch=16, col="black", lpars = list(col="red", lwd=3, lty=3))
abline(h=0, v=0, col="green")

Task 2i

Use R to construct a Correlation Matrix for all the variables in the dataset.

round(cor(store.df), digits=2)
##            store Sales Profit MTenure CTenure   Pop  Comp Visibility
## store       1.00 -0.23  -0.20   -0.06    0.02 -0.29  0.03      -0.03
## Sales      -0.23  1.00   0.92    0.45    0.25  0.40 -0.24       0.13
## Profit     -0.20  0.92   1.00    0.44    0.26  0.43 -0.33       0.14
## MTenure    -0.06  0.45   0.44    1.00    0.24 -0.06  0.18       0.16
## CTenure     0.02  0.25   0.26    0.24    1.00  0.00 -0.07       0.07
## Pop        -0.29  0.40   0.43   -0.06    0.00  1.00 -0.27      -0.05
## Comp        0.03 -0.24  -0.33    0.18   -0.07 -0.27  1.00       0.03
## Visibility -0.03  0.13   0.14    0.16    0.07 -0.05  0.03       1.00
## PedCount   -0.22  0.42   0.45    0.06   -0.08  0.61 -0.15      -0.14
## Res        -0.03 -0.17  -0.16   -0.06   -0.34 -0.24  0.22       0.02
## Hours24     0.03  0.06  -0.03   -0.17    0.07 -0.22  0.13       0.05
## CrewSkill   0.05  0.16   0.16    0.10    0.26  0.28 -0.04      -0.20
## MgrSkill   -0.07  0.31   0.32    0.23    0.12  0.08  0.22       0.07
## ServQual   -0.32  0.39   0.36    0.18    0.08  0.12  0.02       0.21
##            PedCount   Res Hours24 CrewSkill MgrSkill ServQual
## store         -0.22 -0.03    0.03      0.05    -0.07    -0.32
## Sales          0.42 -0.17    0.06      0.16     0.31     0.39
## Profit         0.45 -0.16   -0.03      0.16     0.32     0.36
## MTenure        0.06 -0.06   -0.17      0.10     0.23     0.18
## CTenure       -0.08 -0.34    0.07      0.26     0.12     0.08
## Pop            0.61 -0.24   -0.22      0.28     0.08     0.12
## Comp          -0.15  0.22    0.13     -0.04     0.22     0.02
## Visibility    -0.14  0.02    0.05     -0.20     0.07     0.21
## PedCount       1.00 -0.28   -0.28      0.21     0.09    -0.01
## Res           -0.28  1.00   -0.09     -0.15    -0.03     0.09
## Hours24       -0.28 -0.09    1.00      0.11    -0.04     0.06
## CrewSkill      0.21 -0.15    0.11      1.00    -0.02    -0.03
## MgrSkill       0.09 -0.03   -0.04     -0.02     1.00     0.36
## ServQual      -0.01  0.09    0.06     -0.03     0.36     1.00

Task 2j

Use R to measure the correlation between Profit and MTenure.

cor(store.df$Profit,store.df$MTenure)
## [1] 0.4388692

Use R to measure the correlation between Profit and CTenure.

cor(store.df$Profit,store.df$CTenure)
## [1] 0.2576789

Task 2k

Corrgram based on all variables in the dataset.

library(corrgram)
corrgram(store.df, order=FALSE, lower.panel=panel.shade,
upper.panel=panel.pie, text.panel=panel.txt,
main="Corrgram of store variables intercorrelations")

Task 2l

Run a Pearson’s Correlation test on the correlation

between Profit and MTenure.

What is the p-value?

cor.test(store.df$Profit,store.df$MTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  store.df$Profit and store.df$MTenure
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2353497 0.6055175
## sample estimates:
##       cor 
## 0.4388692

p-value is 8.193e-05

Run a Pearson’s Correlation test on the correlation between

Profit and CTenure.

What is the p-value?

cor.test(store.df$Profit,store.df$CTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  store.df$Profit and store.df$CTenure
## t = 2.2786, df = 73, p-value = 0.02562
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03262507 0.45786339
## sample estimates:
##       cor 
## 0.2576789

p-value is 0.02562

Task 2m

Run a regression of Profit on

{MTenure, CTenure Comp, Pop, PedCount, Res, Hours24, Visibility}.

store.df.lm = lm(Profit ~ MTenure+CTenure+Comp+Pop+PedCount+Res+Hours24+Visibility, data= store.df)
summary(store.df.lm)
## 
## Call:
## lm(formula = Profit ~ MTenure + CTenure + Comp + Pop + PedCount + 
##     Res + Hours24 + Visibility, data = store.df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -105789  -35946   -7069   33780  112390 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   7610.041  66821.994   0.114 0.909674    
## MTenure        760.993    127.086   5.988 9.72e-08 ***
## CTenure        944.978    421.687   2.241 0.028400 *  
## Comp        -25286.887   5491.937  -4.604 1.94e-05 ***
## Pop              3.667      1.466   2.501 0.014890 *  
## PedCount     34087.359   9073.196   3.757 0.000366 ***
## Res          91584.675  39231.283   2.334 0.022623 *  
## Hours24      63233.307  19641.114   3.219 0.001994 ** 
## Visibility   12625.447   9087.620   1.389 0.169411    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 56970 on 66 degrees of freedom
## Multiple R-squared:  0.6379, Adjusted R-squared:  0.594 
## F-statistic: 14.53 on 8 and 66 DF,  p-value: 5.382e-12

Adjusted R-squared= 0.594

p-value= 5.382e-12

What is expected change in the Profit at a store,

if the Manager’s tenure i.e. number of months of experience with Store24,

increases by one month?

round(summary(store.df.lm)$coefficients["MTenure",1], digits=0)
## [1] 761

761

What is expected change in the Profit at a store,

if the Crew’s tenure i.e. number of months of experience with Store24,

increases by one month?

round(summary(store.df.lm)$coefficients["CTenure",1], digits=0)
## [1] 945

945

task 2n

List the explanatory variable(s) whose beta-coefficients are statistically significant (p < 0.05).

summary(store.df.lm)$coef[summary(store.df.lm)$coef[,4] <= .05, 4]
##      MTenure      CTenure         Comp          Pop     PedCount 
## 9.715897e-08 2.839955e-02 1.938381e-05 1.489046e-02 3.664408e-04 
##          Res      Hours24 
## 2.262320e-02 1.993586e-03

List the explanatory variable(s) whose beta-coefficients are not statistically significant (p > 0.05).

summary(store.df.lm)$coef[summary(store.df.lm)$coef[,4] > 0.05, 4]
## (Intercept)  Visibility 
##   0.9096745   0.1694106

Task 2n

The visibility of the store does not matter that much in increasing profit as compared to other variables.

If the number of competitors increases by 1 unit then the profit wil directly decrease by 25286.887