Analysis of the Case Store24: Managing Employee Retention

Store24

2c

store.df <- read.csv(paste("Store24.csv", sep=""))
View(store.df)
summary(store.df)
##      store          Sales             Profit          MTenure      
##  Min.   : 1.0   Min.   : 699306   Min.   :122180   Min.   :  0.00  
##  1st Qu.:19.5   1st Qu.: 984579   1st Qu.:211004   1st Qu.:  6.67  
##  Median :38.0   Median :1127332   Median :265014   Median : 24.12  
##  Mean   :38.0   Mean   :1205413   Mean   :276314   Mean   : 45.30  
##  3rd Qu.:56.5   3rd Qu.:1362388   3rd Qu.:331314   3rd Qu.: 50.92  
##  Max.   :75.0   Max.   :2113089   Max.   :518998   Max.   :277.99  
##     CTenure              Pop             Comp          Visibility  
##  Min.   :  0.8871   Min.   : 1046   Min.   : 1.651   Min.   :2.00  
##  1st Qu.:  4.3943   1st Qu.: 5616   1st Qu.: 3.151   1st Qu.:3.00  
##  Median :  7.2115   Median : 8896   Median : 3.629   Median :3.00  
##  Mean   : 13.9315   Mean   : 9826   Mean   : 3.788   Mean   :3.08  
##  3rd Qu.: 17.2156   3rd Qu.:14104   3rd Qu.: 4.230   3rd Qu.:4.00  
##  Max.   :114.1519   Max.   :26519   Max.   :11.128   Max.   :5.00  
##     PedCount         Res          Hours24       CrewSkill    
##  Min.   :1.00   Min.   :0.00   Min.   :0.00   Min.   :2.060  
##  1st Qu.:2.00   1st Qu.:1.00   1st Qu.:1.00   1st Qu.:3.225  
##  Median :3.00   Median :1.00   Median :1.00   Median :3.500  
##  Mean   :2.96   Mean   :0.96   Mean   :0.84   Mean   :3.457  
##  3rd Qu.:4.00   3rd Qu.:1.00   3rd Qu.:1.00   3rd Qu.:3.655  
##  Max.   :5.00   Max.   :1.00   Max.   :1.00   Max.   :4.640  
##     MgrSkill        ServQual     
##  Min.   :2.957   Min.   : 57.90  
##  1st Qu.:3.344   1st Qu.: 78.95  
##  Median :3.589   Median : 89.47  
##  Mean   :3.638   Mean   : 87.15  
##  3rd Qu.:3.925   3rd Qu.: 99.90  
##  Max.   :4.622   Max.   :100.00

2d

apply(store.df[,3:5],2,mean)
##       Profit      MTenure      CTenure 
## 276313.61333     45.29644     13.93150
apply(store.df[,3:5],2,sd)
##      Profit     MTenure     CTenure 
## 89404.07634    57.67155    17.69752

2e & 2f

store_dec.df <- store.df[order(-store.df$Profit),]
store_dec.df[1:10,1:5]
##    store   Sales Profit   MTenure    CTenure
## 74    74 1782957 518998 171.09720  29.519510
## 7      7 1809256 476355  62.53080   7.326488
## 9      9 2113089 474725 108.99350   6.061602
## 6      6 1703140 469050 149.93590  11.351130
## 44    44 1807740 439781 182.23640 114.151900
## 2      2 1619874 424007  86.22219   6.636550
## 45    45 1602362 410149  47.64565   9.166325
## 18    18 1704826 394039 239.96980  33.774130
## 11    11 1583446 389886  44.81977   2.036961
## 47    47 1665657 387853  12.84790   6.636550
tail(store_dec.df,10)
##    store   Sales Profit     MTenure   CTenure   Pop     Comp Visibility
## 37    37 1202917 187765  23.1985000  1.347023  8870 4.491863          3
## 61    61  716589 177046  21.8184200 13.305950  3014 3.263994          3
## 52    52 1073008 169201  24.1185600  3.416838 14859 6.585143          3
## 54    54  811190 159792   6.6703910  3.876797  3747 3.756011          3
## 13    13  857843 152513   0.6571813  1.577002 14186 4.435671          3
## 32    32  828918 149033  36.0792600  6.636550  9697 4.641468          3
## 55    55  925744 147672   6.6703910 18.365500 10532 6.389294          4
## 41    41  744211 147327  14.9180200 11.926080  9701 4.364600          2
## 66    66  879581 146058 115.2039000  3.876797  1046 6.569790          2
## 57    57  699306 122180  24.3485700  2.956879  3642 2.973376          3
##    PedCount Res Hours24 CrewSkill MgrSkill ServQual
## 37        3   1       1      3.38 4.016667 73.68654
## 61        1   1       1      3.07 3.126667 73.68654
## 52        3   1       1      3.83 3.833333 94.73510
## 54        2   1       1      3.08 3.933333 65.78734
## 13        2   1       1      4.10 3.000000 76.30609
## 32        3   1       0      3.28 3.550000 73.68654
## 55        3   1       1      3.49 3.477778 76.31346
## 41        3   1       1      3.03 3.672222 81.13993
## 66        3   1       1      4.03 3.673333 80.26675
## 57        2   1       1      3.35 2.956667 84.21266

task 2g

library(car)
## Warning: package 'car' was built under R version 3.3.3
scatterplot(store.df$MTenure ,store.df$Profit,
            xlab = "MTenure", ylab = "Profit", 
            main = "Scatterplot of Profit vs. MTenure")

##2h

scatterplot(store.df$CTenure ,store.df$Profit,
            xlab = "CTenure", ylab = "Profit", 
            main = "Scatterplot of Profit vs. CTenure")

## 2i

round(digits=2,cor(store.df))
##            store Sales Profit MTenure CTenure   Pop  Comp Visibility
## store       1.00 -0.23  -0.20   -0.06    0.02 -0.29  0.03      -0.03
## Sales      -0.23  1.00   0.92    0.45    0.25  0.40 -0.24       0.13
## Profit     -0.20  0.92   1.00    0.44    0.26  0.43 -0.33       0.14
## MTenure    -0.06  0.45   0.44    1.00    0.24 -0.06  0.18       0.16
## CTenure     0.02  0.25   0.26    0.24    1.00  0.00 -0.07       0.07
## Pop        -0.29  0.40   0.43   -0.06    0.00  1.00 -0.27      -0.05
## Comp        0.03 -0.24  -0.33    0.18   -0.07 -0.27  1.00       0.03
## Visibility -0.03  0.13   0.14    0.16    0.07 -0.05  0.03       1.00
## PedCount   -0.22  0.42   0.45    0.06   -0.08  0.61 -0.15      -0.14
## Res        -0.03 -0.17  -0.16   -0.06   -0.34 -0.24  0.22       0.02
## Hours24     0.03  0.06  -0.03   -0.17    0.07 -0.22  0.13       0.05
## CrewSkill   0.05  0.16   0.16    0.10    0.26  0.28 -0.04      -0.20
## MgrSkill   -0.07  0.31   0.32    0.23    0.12  0.08  0.22       0.07
## ServQual   -0.32  0.39   0.36    0.18    0.08  0.12  0.02       0.21
##            PedCount   Res Hours24 CrewSkill MgrSkill ServQual
## store         -0.22 -0.03    0.03      0.05    -0.07    -0.32
## Sales          0.42 -0.17    0.06      0.16     0.31     0.39
## Profit         0.45 -0.16   -0.03      0.16     0.32     0.36
## MTenure        0.06 -0.06   -0.17      0.10     0.23     0.18
## CTenure       -0.08 -0.34    0.07      0.26     0.12     0.08
## Pop            0.61 -0.24   -0.22      0.28     0.08     0.12
## Comp          -0.15  0.22    0.13     -0.04     0.22     0.02
## Visibility    -0.14  0.02    0.05     -0.20     0.07     0.21
## PedCount       1.00 -0.28   -0.28      0.21     0.09    -0.01
## Res           -0.28  1.00   -0.09     -0.15    -0.03     0.09
## Hours24       -0.28 -0.09    1.00      0.11    -0.04     0.06
## CrewSkill      0.21 -0.15    0.11      1.00    -0.02    -0.03
## MgrSkill       0.09 -0.03   -0.04     -0.02     1.00     0.36
## ServQual      -0.01  0.09    0.06     -0.03     0.36     1.00

2j

round(digits=2,cor(store.df$Profit,store.df$MTenure))
## [1] 0.44
round(digits=2,cor(store.df$Profit,store.df$CTenure))
## [1] 0.26

2k

library(corrgram)
## Warning: package 'corrgram' was built under R version 3.3.3
corrgram(store.df, lower.panel=panel.shade,
         upper.panel=panel.pie, text.panel=panel.txt,
         main="Corrgram of Store Variables")

Managerially Relavant Correlations In the decreasing order of correlation value with the profit:

Sales>PedCount>MTenure>Pop>ServQual

2l

cor.test(store.df$Profit,store.df$MTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  store.df$Profit and store.df$MTenure
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2353497 0.6055175
## sample estimates:
##       cor 
## 0.4388692

p-vlaue= 8.193e-05 .This implies that p-value is much smaller(<0.05).So we can easily reject the null hypothesis,This means Profit and MTenure have a relation.

cor.test(store.df$Profit,store.df$CTenure,method = "pearson")
## 
##  Pearson's product-moment correlation
## 
## data:  store.df$Profit and store.df$CTenure
## t = 2.2786, df = 73, p-value = 0.02562
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03262507 0.45786339
## sample estimates:
##       cor 
## 0.2576789

p-vlaue= 0.02562 .This implies that p-value is smaller(<0.05).So we can reject the null hypothesis,This means Profit and CTenure have a relation.

2m

fit <- lm(Profit ~ MTenure+CTenure+Comp+Pop+PedCount+Res+Hours24+Visibility, data = store.df)
summary(fit)
## 
## Call:
## lm(formula = Profit ~ MTenure + CTenure + Comp + Pop + PedCount + 
##     Res + Hours24 + Visibility, data = store.df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -105789  -35946   -7069   33780  112390 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   7610.041  66821.994   0.114 0.909674    
## MTenure        760.993    127.086   5.988 9.72e-08 ***
## CTenure        944.978    421.687   2.241 0.028400 *  
## Comp        -25286.887   5491.937  -4.604 1.94e-05 ***
## Pop              3.667      1.466   2.501 0.014890 *  
## PedCount     34087.359   9073.196   3.757 0.000366 ***
## Res          91584.675  39231.283   2.334 0.022623 *  
## Hours24      63233.307  19641.114   3.219 0.001994 ** 
## Visibility   12625.447   9087.620   1.389 0.169411    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 56970 on 66 degrees of freedom
## Multiple R-squared:  0.6379, Adjusted R-squared:  0.594 
## F-statistic: 14.53 on 8 and 66 DF,  p-value: 5.382e-12

2n

Explanatory variable(s) whose beta-coefficients are statistically significant (p < 0.05) are

-MTenure,CTenure,Comp,Pop,PedCount,Res,Hours24

Explanatory variable(s) whose beta-coefficients are not statistically significant (p > 0.05)

-Visibility

17.What is expected change in the Profit at a store, if the Manager’s tenure i.e. number of months of experience with Store24, increases by one month?

answer- 760.993

18.What is expected change in the Profit at a store, if the Crew’s tenure i.e. number of months of experience with Store24, increases by one month?

Answer- 944.978

19. Executive Summary

Statistically speaking,

1.correlation between profit and manager’s tenure is 0.44

2.correlation between profit and crew’s tenure is 0.26.

This indicates that increase in tenure of Manager and Crew will lead to increase in Profit, but the Manager’s tenure has greater than Crew. So, Manager’s work experience is more important than of Crew at the store.

But at the same time, the beta value of Manager’s tenure is less than that of Crew’s Tenure. This suggests that both Manager and Crew are assets to the store, but greater priority goes to the manager becuase of the greater correlation value.