this is HBR Case Study Store24 (A): Managing Employee Retention

setwd("G:/IIEST 2K15-2K20/Intern/Internship/Resources/Week 3/week 3 day 1")
store <- read.csv(paste("Store24.csv", sep=""))
View(store)
summary(store)
##      store          Sales             Profit          MTenure      
##  Min.   : 1.0   Min.   : 699306   Min.   :122180   Min.   :  0.00  
##  1st Qu.:19.5   1st Qu.: 984579   1st Qu.:211004   1st Qu.:  6.67  
##  Median :38.0   Median :1127332   Median :265014   Median : 24.12  
##  Mean   :38.0   Mean   :1205413   Mean   :276314   Mean   : 45.30  
##  3rd Qu.:56.5   3rd Qu.:1362388   3rd Qu.:331314   3rd Qu.: 50.92  
##  Max.   :75.0   Max.   :2113089   Max.   :518998   Max.   :277.99  
##     CTenure              Pop             Comp          Visibility  
##  Min.   :  0.8871   Min.   : 1046   Min.   : 1.651   Min.   :2.00  
##  1st Qu.:  4.3943   1st Qu.: 5616   1st Qu.: 3.151   1st Qu.:3.00  
##  Median :  7.2115   Median : 8896   Median : 3.629   Median :3.00  
##  Mean   : 13.9315   Mean   : 9826   Mean   : 3.788   Mean   :3.08  
##  3rd Qu.: 17.2156   3rd Qu.:14104   3rd Qu.: 4.230   3rd Qu.:4.00  
##  Max.   :114.1519   Max.   :26519   Max.   :11.128   Max.   :5.00  
##     PedCount         Res          Hours24       CrewSkill    
##  Min.   :1.00   Min.   :0.00   Min.   :0.00   Min.   :2.060  
##  1st Qu.:2.00   1st Qu.:1.00   1st Qu.:1.00   1st Qu.:3.225  
##  Median :3.00   Median :1.00   Median :1.00   Median :3.500  
##  Mean   :2.96   Mean   :0.96   Mean   :0.84   Mean   :3.457  
##  3rd Qu.:4.00   3rd Qu.:1.00   3rd Qu.:1.00   3rd Qu.:3.655  
##  Max.   :5.00   Max.   :1.00   Max.   :1.00   Max.   :4.640  
##     MgrSkill        ServQual     
##  Min.   :2.957   Min.   : 57.90  
##  1st Qu.:3.344   1st Qu.: 78.95  
##  Median :3.589   Median : 89.47  
##  Mean   :3.638   Mean   : 87.15  
##  3rd Qu.:3.925   3rd Qu.: 99.90  
##  Max.   :4.622   Max.   :100.00
library(psych)
describe(store)
##            vars  n       mean        sd     median    trimmed       mad
## store         1 75      38.00     21.79      38.00      38.00     28.17
## Sales         2 75 1205413.12 304531.31 1127332.00 1182031.25 288422.04
## Profit        3 75  276313.61  89404.08  265014.00  270260.34  90532.00
## MTenure       4 75      45.30     57.67      24.12      33.58     29.67
## CTenure       5 75      13.93     17.70       7.21      10.60      6.14
## Pop           6 75    9825.59   5911.67    8896.00    9366.07   7266.22
## Comp          7 75       3.79      1.31       3.63       3.66      0.82
## Visibility    8 75       3.08      0.75       3.00       3.07      0.00
## PedCount      9 75       2.96      0.99       3.00       2.97      1.48
## Res          10 75       0.96      0.20       1.00       1.00      0.00
## Hours24      11 75       0.84      0.37       1.00       0.92      0.00
## CrewSkill    12 75       3.46      0.41       3.50       3.47      0.34
## MgrSkill     13 75       3.64      0.41       3.59       3.62      0.45
## ServQual     14 75      87.15     12.61      89.47      88.62     15.61
##                  min        max      range  skew kurtosis       se
## store           1.00      75.00      74.00  0.00    -1.25     2.52
## Sales      699306.00 2113089.00 1413783.00  0.71    -0.09 35164.25
## Profit     122180.00  518998.00  396818.00  0.62    -0.21 10323.49
## MTenure         0.00     277.99     277.99  2.01     3.90     6.66
## CTenure         0.89     114.15     113.26  3.52    15.00     2.04
## Pop          1046.00   26519.00   25473.00  0.62    -0.23   682.62
## Comp            1.65      11.13       9.48  2.48    11.31     0.15
## Visibility      2.00       5.00       3.00  0.25    -0.38     0.09
## PedCount        1.00       5.00       4.00  0.00    -0.52     0.11
## Res             0.00       1.00       1.00 -4.60    19.43     0.02
## Hours24         0.00       1.00       1.00 -1.82     1.32     0.04
## CrewSkill       2.06       4.64       2.58 -0.43     1.64     0.05
## MgrSkill        2.96       4.62       1.67  0.27    -0.53     0.05
## ServQual       57.90     100.00      42.10 -0.66    -0.72     1.46

mean,Sd of Profit,Ctenure,Mtenure

mean(store$Profit)
## [1] 276313.6
mean(store$MTenure)
## [1] 45.29644
mean(store$CTenure)
## [1] 13.9315
apply(store[,3:5],2,sd)
##      Profit     MTenure     CTenure 
## 89404.07634    57.67155    17.69752

top 10 and bottom profitable stores

ascorder<- store[order(store$Profit),]
View(ascorder)
ascorder[1:10,1:5]
##    store   Sales Profit     MTenure   CTenure
## 57    57  699306 122180  24.3485700  2.956879
## 66    66  879581 146058 115.2039000  3.876797
## 41    41  744211 147327  14.9180200 11.926080
## 55    55  925744 147672   6.6703910 18.365500
## 32    32  828918 149033  36.0792600  6.636550
## 13    13  857843 152513   0.6571813  1.577002
## 54    54  811190 159792   6.6703910  3.876797
## 52    52 1073008 169201  24.1185600  3.416838
## 61    61  716589 177046  21.8184200 13.305950
## 37    37 1202917 187765  23.1985000  1.347023
descorder<- store[order(-store$Profit),]
View(descorder)
descorder[1:10,1:5]
##    store   Sales Profit   MTenure    CTenure
## 74    74 1782957 518998 171.09720  29.519510
## 7      7 1809256 476355  62.53080   7.326488
## 9      9 2113089 474725 108.99350   6.061602
## 6      6 1703140 469050 149.93590  11.351130
## 44    44 1807740 439781 182.23640 114.151900
## 2      2 1619874 424007  86.22219   6.636550
## 45    45 1602362 410149  47.64565   9.166325
## 18    18 1704826 394039 239.96980  33.774130
## 11    11 1583446 389886  44.81977   2.036961
## 47    47 1665657 387853  12.84790   6.636550
library("car", lib.loc="~/R/win-library/3.4")
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
 scatterplot(store$MTenure,store$Profit,main="Scatterplot of Profit vs MTenure",xlab = "Mtenure",ylab = "Profit")

scatterplot(store$CTenure,store$Profit,main="Scatterplot of Profit vs CTenure",xlab = "Ctenure",ylab = "Profit")

cor(store)
##                  store       Sales      Profit     MTenure      CTenure
## store       1.00000000 -0.22693400 -0.19993481 -0.05655216  0.019930097
## Sales      -0.22693400  1.00000000  0.92387059  0.45488023  0.254315184
## Profit     -0.19993481  0.92387059  1.00000000  0.43886921  0.257678895
## MTenure    -0.05655216  0.45488023  0.43886921  1.00000000  0.243383135
## CTenure     0.01993010  0.25431518  0.25767890  0.24338314  1.000000000
## Pop        -0.28936691  0.40348147  0.43063326 -0.06089646 -0.001532449
## Comp        0.03194023 -0.23501372 -0.33454148  0.18087179 -0.070281327
## Visibility -0.02648858  0.13065638  0.13569207  0.15651731  0.066506016
## PedCount   -0.22117519  0.42391087  0.45023346  0.06198608 -0.084112627
## Res        -0.03142976 -0.16672402 -0.15947734 -0.06234721 -0.340340876
## Hours24     0.02687986  0.06324716 -0.02568703 -0.16513872  0.072865022
## CrewSkill   0.04866273  0.16402179  0.16008443  0.10162169  0.257154817
## MgrSkill   -0.07218804  0.31163056  0.32284842  0.22962743  0.124045346
## ServQual   -0.32246921  0.38638112  0.36245032  0.18168875  0.081156172
##                     Pop        Comp  Visibility     PedCount         Res
## store      -0.289366908  0.03194023 -0.02648858 -0.221175193 -0.03142976
## Sales       0.403481471 -0.23501372  0.13065638  0.423910867 -0.16672402
## Profit      0.430633264 -0.33454148  0.13569207  0.450233461 -0.15947734
## MTenure    -0.060896460  0.18087179  0.15651731  0.061986084 -0.06234721
## CTenure    -0.001532449 -0.07028133  0.06650602 -0.084112627 -0.34034088
## Pop         1.000000000 -0.26828355 -0.04998269  0.607638861 -0.23693726
## Comp       -0.268283553  1.00000000  0.02844548 -0.146325204  0.21923878
## Visibility -0.049982694  0.02844548  1.00000000 -0.141068116  0.02194756
## PedCount    0.607638861 -0.14632520 -0.14106812  1.000000000 -0.28437852
## Res        -0.236937265  0.21923878  0.02194756 -0.284378520  1.00000000
## Hours24    -0.221767927  0.12957478  0.04692587 -0.275973353 -0.08908708
## CrewSkill   0.282845090 -0.04229731 -0.19745297  0.213672596 -0.15331247
## MgrSkill    0.083554590  0.22407913  0.07348301  0.087475440 -0.03213640
## ServQual    0.123946521  0.01814508  0.20992919 -0.005445552  0.09081624
##                Hours24   CrewSkill    MgrSkill     ServQual
## store       0.02687986  0.04866273 -0.07218804 -0.322469213
## Sales       0.06324716  0.16402179  0.31163056  0.386381121
## Profit     -0.02568703  0.16008443  0.32284842  0.362450323
## MTenure    -0.16513872  0.10162169  0.22962743  0.181688755
## CTenure     0.07286502  0.25715482  0.12404535  0.081156172
## Pop        -0.22176793  0.28284509  0.08355459  0.123946521
## Comp        0.12957478 -0.04229731  0.22407913  0.018145080
## Visibility  0.04692587 -0.19745297  0.07348301  0.209929194
## PedCount   -0.27597335  0.21367260  0.08747544 -0.005445552
## Res        -0.08908708 -0.15331247 -0.03213640  0.090816237
## Hours24     1.00000000  0.10536295 -0.03883007  0.058325655
## CrewSkill   0.10536295  1.00000000 -0.02100949 -0.033516504
## MgrSkill   -0.03883007 -0.02100949  1.00000000  0.356702708
## ServQual    0.05832565 -0.03351650  0.35670271  1.000000000
cor(store$Profit,store$MTenure)
## [1] 0.4388692
cor(store$Profit,store$CTenure)
## [1] 0.2576789
library(corrgram)
corrgram(store[,1:14],order=FALSE,main ="Corrgram of store variables",lower.panel=panel.shade,upper.panel=panel.pie,text.panel=panel.txt)

cor.test(store$Profit,store$MTenure,method = "pearson")
## 
##  Pearson's product-moment correlation
## 
## data:  store$Profit and store$MTenure
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2353497 0.6055175
## sample estimates:
##       cor 
## 0.4388692
cor.test(store$Profit,store$CTenure,method = "pearson")
## 
##  Pearson's product-moment correlation
## 
## data:  store$Profit and store$CTenure
## t = 2.2786, df = 73, p-value = 0.02562
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03262507 0.45786339
## sample estimates:
##       cor 
## 0.2576789

the p-value in both the cases are 8.193e-05 and 0.02562 respectively.

fit<-lm(Profit~MTenure,data = store)
summary(fit)
## 
## Call:
## lm(formula = Profit ~ MTenure, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -177817  -52029   -8635   50871  188316 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 245496.3    11906.4  20.619  < 2e-16 ***
## MTenure        680.3      163.0   4.173 8.19e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 80880 on 73 degrees of freedom
## Multiple R-squared:  0.1926, Adjusted R-squared:  0.1815 
## F-statistic: 17.41 on 1 and 73 DF,  p-value: 8.193e-05
fit$coefficients
## (Intercept)     MTenure 
## 245496.2904    680.3475
confint(fit)
##                   2.5 %     97.5 %
## (Intercept) 221766.8830 269225.698
## MTenure        355.4221   1005.273
store$Profit
##  [1] 265014 424007 222735 210122 300480 469050 476355 361115 474725 278625
## [11] 389886 329020 152513 261571 203951 196277 265584 394039 261495 269235
## [21] 282584 367036 277414 267354 282124 211912 230194 273036 263956 333607
## [31] 211885 149033 292745 382199 322624 219292 187765 203184 221130 222913
## [41] 147327 264072 337233 439781 410149 315780 387853 284169 195276 251013
## [51] 237344 169201 365018 159792 147672 189235 122180 227601 303069 356071
## [61] 177046 202641 239036 221157 301641 146058 362067 236339 375393 254203
## [71] 198529 196772 279193 518998 296826
fitted(fit)
##        1        2        3        4        5        6        7        8 
## 245496.3 304157.3 261748.8 245496.3 248134.2 347504.8 288039.0 245496.3 
##        9       10       11       12       13       14       15       16 
## 319649.7 266912.9 275989.3 434624.5 245943.4 304939.8 245496.3 261592.3 
##       17       18       19       20       21       22       23       24 
## 267069.4 408759.1 247821.3 289760.3 261905.3 257993.1 253924.3 275989.3 
##       25       26       27       28       29       30       31       32 
## 245496.3 245943.4 279588.6 261748.8 258775.5 295394.0 245496.3 270042.7 
##       33       34       35       36       37       38       39       40 
## 280684.0 265348.0 270668.7 273798.5 261279.3 256115.2 269103.8 329039.1 
##       41       42       43       44       45       46       47       48 
## 255645.7 247195.3 366305.9 369480.4 277911.9 249699.1 254237.3 266912.9 
##       49       50       51       52       53       54       55       56 
## 283187.8 254237.3 247821.3 261905.3 284439.7 250034.5 250034.5 248760.2 
##       57       58       59       60       61       62       63       64 
## 262061.8 248603.7 254550.3 268299.0 260340.4 253767.9 251107.5 245496.3 
##       65       66       67       68       69       70       71       72 
## 347706.1 323875.0 249073.2 257367.1 275519.8 255645.7 275363.4 331542.9 
##       73       74       75 
## 273485.5 361901.8 247038.8
residuals(fit)
##           1           2           3           4           5           6 
##   19517.710  119849.657  -39013.799  -35374.290   52345.751  121545.193 
##           7           8           9          10          11          12 
##  188316.035  115618.710  155075.253   11712.057  113896.691 -105604.531 
##          13          14          15          16          17          18 
##  -93430.402  -43368.790  -41545.290  -65315.312   -1485.430  -14720.147 
##          19          20          21          22          23          24 
##   13673.729  -20525.346   20678.707  109042.937   23489.653   -8635.309 
##          25          26          27          28          29          30 
##   36627.710  -34031.402  -49394.559   11287.201    5180.490   38213.043 
##          31          32          33          34          35          36 
##  -33611.290 -121009.725   12061.021  116850.952   51955.321  -54506.461 
##          37          38          39          40          41          42 
##  -73514.332  -52931.195  -47973.791 -106126.087 -108318.728   16876.685 
##          43          44          45          46          47          48 
##  -29072.870   70300.628  132237.110   66080.859  133615.673   17256.057 
##          49          50          51          52          53          54 
##  -87911.808   -3224.327  -10477.271  -92704.293   80578.285  -90242.474 
##          55          56          57          58          59          60 
## -102362.474  -59525.206 -139881.779  -21002.716   48518.699   87772.012 
##          61          62          63          64          65          66 
##  -83294.398  -51126.860  -12071.542  -24339.290  -46065.054 -177816.977 
##          67          68          69          70          71          72 
##  112993.816  -21028.103   99873.158   -1442.728  -76834.356 -134770.902 
##          73          74          75 
##    5707.519  157096.155   49787.174
summary(fit)
## 
## Call:
## lm(formula = Profit ~ MTenure, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -177817  -52029   -8635   50871  188316 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 245496.3    11906.4  20.619  < 2e-16 ***
## MTenure        680.3      163.0   4.173 8.19e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 80880 on 73 degrees of freedom
## Multiple R-squared:  0.1926, Adjusted R-squared:  0.1815 
## F-statistic: 17.41 on 1 and 73 DF,  p-value: 8.193e-05
fit<-lm(Profit~CTenure,data = store)
summary(fit)
## 
## Call:
## lm(formula = Profit ~ CTenure, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -139848  -64869   -9022   45057  222393 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 258178.4    12814.4  20.148   <2e-16 ***
## CTenure       1301.7      571.3   2.279   0.0256 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 86970 on 73 degrees of freedom
## Multiple R-squared:  0.0664, Adjusted R-squared:  0.05361 
## F-statistic: 5.192 on 1 and 73 DF,  p-value: 0.02562
fit$coefficients
## (Intercept)     CTenure 
##  258178.442    1301.739
confint(fit)
##                   2.5 %     97.5 %
## (Intercept) 232639.4547 283717.429
## CTenure        163.1392   2440.338
store$Profit
##  [1] 265014 424007 222735 210122 300480 469050 476355 361115 474725 278625
## [11] 389886 329020 152513 261571 203951 196277 265584 394039 261495 269235
## [21] 282584 367036 277414 267354 282124 211912 230194 273036 263956 333607
## [31] 211885 149033 292745 382199 322624 219292 187765 203184 221130 222913
## [41] 147327 264072 337233 439781 410149 315780 387853 284169 195276 251013
## [51] 237344 169201 365018 159792 147672 189235 122180 227601 303069 356071
## [61] 177046 202641 239036 221157 301641 146058 362067 236339 375393 254203
## [71] 198529 196772 279193 518998 296826
fitted(fit)
##        1        2        3        4        5        6        7        8 
## 290468.0 266817.5 264721.9 265170.9 267116.9 272954.6 267715.6 332080.9 
##        9       10       11       12       13       14       15       16 
## 266069.1 288372.4 260830.0 266817.5 260231.3 262027.5 269212.5 264272.8 
##       17       18       19       20       21       22       23       24 
## 262925.6 302143.5 280289.3 265919.4 267565.9 291964.8 262626.3 262626.3 
##       25       26       27       28       29       30       31       32 
## 271607.5 284779.9 280888.0 280289.3 288821.4 288671.7 272206.2 266817.5 
##       33       34       35       36       37       38       39       40 
## 263225.0 283881.8 277445.2 285378.6 259931.9 260231.3 265320.6 279989.9 
##       41       42       43       44       45       46       47       48 
## 273703.1 370250.9 265320.6 406774.4 270110.6 265021.3 266817.5 268913.1 
##       49       50       51       52       53       54       55       56 
## 277295.6 279091.8 267416.2 262626.3 268913.1 263225.0 282085.5 261728.2 
##       57       58       59       60       61       62       63       64 
## 262027.5 263524.4 276098.1 266518.1 275499.3 267116.9 267116.9 259333.2 
##       65       66       67       68       69       70       71       72 
## 288671.7 263225.0 262626.3 261129.4 293012.6 263225.0 308131.0 293910.8 
##       73       74       75 
## 266518.1 296605.1 269511.9
residuals(fit)
##            1            2            3            4            5 
##  -25453.9802  157189.5039  -41986.8842  -55048.9437   33363.1300 
##            6            7            8            9           10 
##  196095.3525  208639.3849   29034.1421  208655.9360   -9747.3631 
##           11           12           13           14           15 
##  129055.9671   62202.5039 -107718.2864    -456.5258  -65261.4819 
##           16           17           18           19           20 
##  -67995.8247    2658.3552   91895.4646  -18794.2945    3315.6229 
##           21           22           23           24           25 
##   15018.0705   75071.1504   14787.7278    4727.7278   10516.5349 
##           26           27           28           29           30 
##  -72867.8896  -50694.0422   -7253.2945  -24865.4239   44935.2630 
##           31           32           33           34           35 
##  -60321.2129 -117784.4961   29519.9813   98317.2320   45178.7573 
##           36           37           38           39           40 
##  -66086.6374  -72166.9139  -57047.2864  -44190.6306  -57076.9206 
##           41           42           43           44           45 
## -126376.0822 -106178.9360   71912.3694   33006.6073  140038.3978 
##           46           47           48           49           50 
##   50758.7433  121035.5039   15255.8907  -82019.5557  -28078.7990 
##           51           52           53           54           55 
##  -30072.2425  -93425.2722   96104.8907 -103433.0187 -134413.5247 
##           56           57           58           59           60 
##  -72493.1519 -139847.5258  -35923.3913   26970.9398   89552.8765 
##           61           62           63           64           65 
##  -98453.3125  -64475.8700  -28080.8700  -38176.1670   12969.2630 
##           66           67           68           69           70 
## -117167.0187   99440.7278  -24790.4055   82380.3548   -9022.0187 
##           71           72           73           74           75 
## -109601.9999  -97138.7668   12674.8765  222392.8683   27314.1442
summary(fit)
## 
## Call:
## lm(formula = Profit ~ CTenure, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -139848  -64869   -9022   45057  222393 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 258178.4    12814.4  20.148   <2e-16 ***
## CTenure       1301.7      571.3   2.279   0.0256 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 86970 on 73 degrees of freedom
## Multiple R-squared:  0.0664, Adjusted R-squared:  0.05361 
## F-statistic: 5.192 on 1 and 73 DF,  p-value: 0.02562
fit<-lm(Profit~Comp,data = store)
summary(fit)
## 
## Call:
## lm(formula = Profit ~ Comp, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -172707  -65521  -24559   56628  209205 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   362702      30119  12.042  < 2e-16 ***
## Comp          -22807       7520  -3.033  0.00335 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 84830 on 73 degrees of freedom
## Multiple R-squared:  0.1119, Adjusted R-squared:  0.09975 
## F-statistic:   9.2 on 1 and 73 DF,  p-value: 0.003351
fit$coefficients
## (Intercept)        Comp 
##   362702.27   -22807.37
confint(fit)
##                 2.5 %     97.5 %
## (Intercept) 302674.57 422729.970
## Comp        -37793.77  -7820.982
store$Profit
##  [1] 265014 424007 222735 210122 300480 469050 476355 361115 474725 278625
## [11] 389886 329020 152513 261571 203951 196277 265584 394039 261495 269235
## [21] 282584 367036 277414 267354 282124 211912 230194 273036 263956 333607
## [31] 211885 149033 292745 382199 322624 219292 187765 203184 221130 222913
## [41] 147327 264072 337233 439781 410149 315780 387853 284169 195276 251013
## [51] 237344 169201 365018 159792 147672 189235 122180 227601 303069 356071
## [61] 177046 202641 239036 221157 301641 146058 362067 236339 375393 254203
## [71] 198529 196772 279193 518998 296826
fitted(fit)
##        1        2        3        4        5        6        7        8 
## 298889.8 266100.4 260190.7 265680.9 325039.0 290069.6 285661.2 296672.3 
##        9       10       11       12       13       14       15       16 
## 302544.9 310911.9 288067.5 250857.3 261536.3 266157.4 275025.7 286418.4 
##       17       18       19       20       21       22       23       24 
## 304276.5 271593.4 299899.5 268086.0 271012.0 260881.9 280720.3 287880.6 
##       25       26       27       28       29       30       31       32 
## 282488.3 267408.6 277863.3 289868.7 239723.2 281090.1 291983.7 256842.6 
##       33       34       35       36       37       38       39       40 
## 241617.6 308849.6 280298.8 273091.6 260254.7 266318.5 247608.6 108904.6 
##       41       42       43       44       45       46       47       48 
## 263157.2 289010.5 279372.3 279944.3 283501.2 290985.4 307446.7 252115.0 
##       49       50       51       52       53       54       55       56 
## 277998.6 322752.0 306881.8 212512.5 290702.4 277037.5 216979.3 257850.6 
##       57       58       59       60       61       62       63       64 
## 294887.4 271612.5 287407.1 300676.5 288259.1 266878.2 268357.7 308452.4 
##       65       66       67       68       69       70       71       72 
## 289286.2 212862.6 280980.2 282766.8 272624.9 291486.6 274749.6 278757.8 
##       73       74       75 
## 267364.4 309792.6 319685.0
residuals(fit)
##            1            2            3            4            5 
##  -33875.7934  157906.6149  -37455.7437  -55558.9347  -24558.9945 
##            6            7            8            9           10 
##  178980.3881  190693.7569   64442.6763  172180.1425  -32286.9477 
##           11           12           13           14           15 
##  101818.5334   78162.6949 -109023.2647   -4586.3579  -71074.7086 
##           16           17           18           19           20 
##  -90141.3794  -38692.5301  122445.6414  -38404.5214    1149.0050 
##           21           22           23           24           25 
##   11571.9558  106154.0560   -3306.2765  -20526.6286    -364.2812 
##           26           27           28           29           30 
##  -55496.6160  -47669.2652  -16832.7017   24232.8442   52516.8792 
##           31           32           33           34           35 
##  -80098.6979 -107809.5757   51127.4409   73349.3862   42325.2494 
##           36           37           38           39           40 
##  -53799.6205  -72489.6728  -63134.4692  -26478.5544  114008.4458 
##           41           42           43           44           45 
## -115830.2076  -24938.5287   57860.6849  159836.6760  126647.8205 
##           46           47           48           49           50 
##   24794.5581   80406.3134   32053.9595  -82722.6270  -71739.0080 
##           51           52           53           54           55 
##  -69537.8164  -43311.4539   74315.6204 -117245.5242  -69307.2552 
##           56           57           58           59           60 
##  -68615.6388 -172707.3730  -44011.4939   15661.9209   55394.4770 
##           61           62           63           64           65 
## -111213.1397  -64237.2306  -29321.7449  -87295.3549   12354.7530 
##           66           67           68           69           70 
##  -66804.6155   81086.8107  -46427.7593  102768.0867  -37283.6112 
##           71           72           73           74           75 
##  -76220.6482  -81985.7704   11828.5618  209205.4154  -22859.0320
summary(fit)
## 
## Call:
## lm(formula = Profit ~ Comp, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -172707  -65521  -24559   56628  209205 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   362702      30119  12.042  < 2e-16 ***
## Comp          -22807       7520  -3.033  0.00335 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 84830 on 73 degrees of freedom
## Multiple R-squared:  0.1119, Adjusted R-squared:  0.09975 
## F-statistic:   9.2 on 1 and 73 DF,  p-value: 0.003351
fit<-lm(Profit~Pop,data = store)
summary(fit)
## 
## Call:
## lm(formula = Profit ~ Pop, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -152198  -52285  -17228   43501  235602 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 2.123e+05  1.829e+04  11.611  < 2e-16 ***
## Pop         6.513e+00  1.598e+00   4.077 0.000115 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 81240 on 73 degrees of freedom
## Multiple R-squared:  0.1854, Adjusted R-squared:  0.1743 
## F-statistic: 16.62 on 1 and 73 DF,  p-value: 0.000115
fit$coefficients
## (Intercept)         Pop 
## 212323.4932      6.5126
confint(fit)
##                    2.5 %       97.5 %
## (Intercept) 1.758793e+05 2.487676e+05
## Pop         3.328753e+00 9.696448e+00
store$Profit
##  [1] 265014 424007 222735 210122 300480 469050 476355 361115 474725 278625
## [11] 389886 329020 152513 261571 203951 196277 265584 394039 261495 269235
## [21] 282584 367036 277414 267354 282124 211912 230194 273036 263956 333607
## [31] 211885 149033 292745 382199 322624 219292 187765 203184 221130 222913
## [41] 147327 264072 337233 439781 410149 315780 387853 284169 195276 251013
## [51] 237344 169201 365018 159792 147672 189235 122180 227601 303069 356071
## [61] 177046 202641 239036 221157 301641 146058 362067 236339 375393 254203
## [71] 198529 196772 279193 518998 296826
fitted(fit)
##        1        2        3        4        5        6        7        8 
## 261395.9 268527.2 275463.2 230539.2 344757.2 322555.8 327948.2 347941.9 
##        9       10       11       12       13       14       15       16 
## 385031.1 319006.4 352670.0 285004.1 304711.2 257247.4 268878.9 257078.1 
##       17       18       19       20       21       22       23       24 
## 306606.4 237117.0 242730.8 312467.8 303643.2 266247.8 302177.8 271386.3 
##       25       26       27       28       29       30       31       32 
## 252590.9 277443.0 265420.7 307882.9 286241.5 219591.6 229113.0 275476.2 
##       33       34       35       36       37       38       39       40 
## 265577.0 283460.6 305850.9 233281.0 270090.3 255026.6 270259.6 228741.8 
##       41       42       43       44       45       46       47       48 
## 275502.2 226039.0 235085.0 346639.4 328299.9 272793.0 366170.7 267622.0 
##       49       50       51       52       53       54       55       56 
## 224456.5 307752.6 232681.9 309094.2 257319.0 236726.2 280914.2 301806.6 
##       57       58       59       60       61       62       63       64 
## 236042.4 267530.8 252903.5 269927.4 231952.5 276277.2 261695.5 323754.1 
##       65       66       67       68       69       70       71       72 
## 219324.5 219135.7 287557.1 271054.1 245212.1 341331.6 233587.1 232844.7 
##       73       74       75 
## 253196.6 283395.5 270715.5
residuals(fit)
##           1           2           3           4           5           6 
##    3618.062  155479.765  -52728.155  -20417.237  -44277.223  146494.232 
##           7           8           9          10          11          12 
##  148406.798   13173.115   89693.856  -40381.401   37215.967   44015.886 
##          13          14          15          16          17          18 
## -152198.243    4323.589  -64927.915  -60801.083  -41022.410  156922.037 
##          19          20          21          22          23          24 
##   18764.175  -43232.750  -21059.177  100788.175  -24763.842   -4032.267 
##          25          26          27          28          29          30 
##   29533.098  -65530.985  -35226.725  -34846.880  -22285.508  114015.445 
##          31          32          33          34          35          36 
##  -17227.977 -126443.180   27167.973   98738.372   16773.052  -13989.041 
##          37          38          39          40          41          42 
##  -82325.259  -51842.614  -49129.587   -5828.759 -128175.230   38032.970 
##          43          44          45          46          47          48 
##  102147.968   93141.635   81849.118   42987.012   21682.346   16547.016 
##          49          50          51          52          53          54 
##  -29180.468  -56739.628    4662.118 -139893.223  107698.950  -76934.207 
##          55          56          57          58          59          60 
## -133242.201 -112571.623 -113862.384  -39929.807   50165.493   86143.556 
##          61          62          63          64          65          66 
##  -54906.471  -73636.230  -22659.517 -102597.087   82316.461  -73077.673 
##          67          68          69          70          71          72 
##   74509.946  -34715.124  130180.875  -87128.595  -35058.134  -36072.697 
##          73          74          75 
##   25996.426  235602.498   26110.531
summary(fit)
## 
## Call:
## lm(formula = Profit ~ Pop, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -152198  -52285  -17228   43501  235602 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 2.123e+05  1.829e+04  11.611  < 2e-16 ***
## Pop         6.513e+00  1.598e+00   4.077 0.000115 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 81240 on 73 degrees of freedom
## Multiple R-squared:  0.1854, Adjusted R-squared:  0.1743 
## F-statistic: 16.62 on 1 and 73 DF,  p-value: 0.000115
fit<-lm(Profit~PedCount,data = store)
summary(fit)
## 
## Call:
## lm(formula = Profit ~ PedCount, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -131878  -57678   -1538   45741  200501 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   156254      29373   5.320 1.09e-06 ***
## PedCount       40561       9415   4.308 5.06e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 80370 on 73 degrees of freedom
## Multiple R-squared:  0.2027, Adjusted R-squared:  0.1918 
## F-statistic: 18.56 on 1 and 73 DF,  p-value: 5.057e-05
fit$coefficients
## (Intercept)    PedCount 
##   156253.57    40560.82
confint(fit)
##                2.5 %    97.5 %
## (Intercept) 97713.52 214793.63
## PedCount    21796.96  59324.69
store$Profit
##  [1] 265014 424007 222735 210122 300480 469050 476355 361115 474725 278625
## [11] 389886 329020 152513 261571 203951 196277 265584 394039 261495 269235
## [21] 282584 367036 277414 267354 282124 211912 230194 273036 263956 333607
## [31] 211885 149033 292745 382199 322624 219292 187765 203184 221130 222913
## [41] 147327 264072 337233 439781 410149 315780 387853 284169 195276 251013
## [51] 237344 169201 365018 159792 147672 189235 122180 227601 303069 356071
## [61] 177046 202641 239036 221157 301641 146058 362067 236339 375393 254203
## [71] 198529 196772 279193 518998 296826
fitted(fit)
##        1        2        3        4        5        6        7        8 
## 277936.0 277936.0 277936.0 237375.2 359057.7 318496.9 359057.7 277936.0 
##        9       10       11       12       13       14       15       16 
## 318496.9 277936.0 359057.7 318496.9 237375.2 237375.2 318496.9 277936.0 
##       17       18       19       20       21       22       23       24 
## 318496.9 277936.0 277936.0 237375.2 277936.0 277936.0 318496.9 277936.0 
##       25       26       27       28       29       30       31       32 
## 277936.0 237375.2 237375.2 318496.9 237375.2 237375.2 237375.2 277936.0 
##       33       34       35       36       37       38       39       40 
## 237375.2 318496.9 277936.0 237375.2 277936.0 237375.2 318496.9 318496.9 
##       41       42       43       44       45       46       47       48 
## 277936.0 237375.2 277936.0 318496.9 277936.0 277936.0 359057.7 237375.2 
##       49       50       51       52       53       54       55       56 
## 196814.4 318496.9 318496.9 277936.0 237375.2 237375.2 277936.0 277936.0 
##       57       58       59       60       61       62       63       64 
## 237375.2 237375.2 277936.0 318496.9 196814.4 318496.9 277936.0 277936.0 
##       65       66       67       68       69       70       71       72 
## 196814.4 277936.0 277936.0 237375.2 277936.0 318496.9 196814.4 196814.4 
##       73       74       75 
## 277936.0 318496.9 318496.9
residuals(fit)
##             1             2             3             4             5 
##  -12922.04629  146070.95371  -55201.04629  -27253.22247  -58577.69393 
##             6             7             8             9            10 
##  150553.12989  117297.30607   83178.95371  156228.12989     688.95371 
##            11            12            13            14            15 
##   30828.30607   10523.12989  -84862.22247   24195.77753 -114545.87011 
##            16            17            18            19            20 
##  -81659.04629  -52912.87011  116102.95371  -16441.04629   31859.77753 
##            21            22            23            24            25 
##    4647.95371   89099.95371  -41082.87011  -10582.04629    4187.95371 
##            26            27            28            29            30 
##  -25463.22247   -7181.22247  -45460.87011   26580.77753   96231.77753 
##            31            32            33            34            35 
##  -25490.22247 -128903.04629   55369.77753   63702.12989   44687.95371 
##            36            37            38            39            40 
##  -18083.22247  -90171.04629  -34191.22247  -97366.87011  -95583.87011 
##            41            42            43            44            45 
## -130609.04629   26696.77753   59296.95371  121284.12989  132212.95371 
##            46            47            48            49            50 
##   37843.95371   28795.30607   46793.77753   -1538.39865  -67483.87011 
##            51            52            53            54            55 
##  -81152.87011 -108735.04629  127642.77753  -77583.22247 -130264.04629 
##            56            57            58            59            60 
##  -88701.04629 -115195.22247   -9774.22247   25132.95371   37574.12989 
##            61            62            63            64            65 
##  -19768.39865 -115855.87011  -38900.04629  -56779.04629  104826.60135 
##            66            67            68            69            70 
## -131878.04629   84130.95371   -1036.22247   97456.95371  -64293.87011 
##            71            72            73            74            75 
##    1714.60135     -42.39865    1256.95371  200501.12989  -21670.87011
summary(fit)
## 
## Call:
## lm(formula = Profit ~ PedCount, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -131878  -57678   -1538   45741  200501 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   156254      29373   5.320 1.09e-06 ***
## PedCount       40561       9415   4.308 5.06e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 80370 on 73 degrees of freedom
## Multiple R-squared:  0.2027, Adjusted R-squared:  0.1918 
## F-statistic: 18.56 on 1 and 73 DF,  p-value: 5.057e-05
fit<-lm(Profit~Res,data = store)
summary(fit)
## 
## Call:
## lm(formula = Profit ~ Res, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -151243  -62419   -9467   57891  245575 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   345696      51305   6.738 3.18e-09 ***
## Res           -72273      52363  -1.380    0.172    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 88860 on 73 degrees of freedom
## Multiple R-squared:  0.02543,    Adjusted R-squared:  0.01208 
## F-statistic: 1.905 on 1 and 73 DF,  p-value: 0.1717
fit$coefficients
## (Intercept)         Res 
##   345695.67   -72272.97
confint(fit)
##                 2.5 %    97.5 %
## (Intercept)  243445.6 447945.74
## Res         -176631.5  32085.58
store$Profit
##  [1] 265014 424007 222735 210122 300480 469050 476355 361115 474725 278625
## [11] 389886 329020 152513 261571 203951 196277 265584 394039 261495 269235
## [21] 282584 367036 277414 267354 282124 211912 230194 273036 263956 333607
## [31] 211885 149033 292745 382199 322624 219292 187765 203184 221130 222913
## [41] 147327 264072 337233 439781 410149 315780 387853 284169 195276 251013
## [51] 237344 169201 365018 159792 147672 189235 122180 227601 303069 356071
## [61] 177046 202641 239036 221157 301641 146058 362067 236339 375393 254203
## [71] 198529 196772 279193 518998 296826
fitted(fit)
##        1        2        3        4        5        6        7        8 
## 273422.7 273422.7 273422.7 273422.7 345695.7 273422.7 273422.7 273422.7 
##        9       10       11       12       13       14       15       16 
## 273422.7 273422.7 273422.7 273422.7 273422.7 273422.7 273422.7 273422.7 
##       17       18       19       20       21       22       23       24 
## 273422.7 273422.7 273422.7 273422.7 273422.7 273422.7 273422.7 273422.7 
##       25       26       27       28       29       30       31       32 
## 273422.7 273422.7 273422.7 273422.7 273422.7 273422.7 273422.7 273422.7 
##       33       34       35       36       37       38       39       40 
## 273422.7 273422.7 273422.7 273422.7 273422.7 273422.7 273422.7 273422.7 
##       41       42       43       44       45       46       47       48 
## 273422.7 273422.7 273422.7 345695.7 273422.7 273422.7 273422.7 273422.7 
##       49       50       51       52       53       54       55       56 
## 273422.7 273422.7 273422.7 273422.7 273422.7 273422.7 273422.7 273422.7 
##       57       58       59       60       61       62       63       64 
## 273422.7 273422.7 273422.7 273422.7 273422.7 273422.7 273422.7 273422.7 
##       65       66       67       68       69       70       71       72 
## 273422.7 273422.7 273422.7 273422.7 273422.7 273422.7 273422.7 273422.7 
##       73       74       75 
## 273422.7 273422.7 345695.7
residuals(fit)
##            1            2            3            4            5 
##   -8408.6944  150584.3056  -50687.6944  -63300.6944  -45215.6667 
##            6            7            8            9           10 
##  195627.3056  202932.3056   87692.3056  201302.3056    5202.3056 
##           11           12           13           14           15 
##  116463.3056   55597.3056 -120909.6944  -11851.6944  -69471.6944 
##           16           17           18           19           20 
##  -77145.6944   -7838.6944  120616.3056  -11927.6944   -4187.6944 
##           21           22           23           24           25 
##    9161.3056   93613.3056    3991.3056   -6068.6944    8701.3056 
##           26           27           28           29           30 
##  -61510.6944  -43228.6944    -386.6944   -9466.6944   60184.3056 
##           31           32           33           34           35 
##  -61537.6944 -124389.6944   19322.3056  108776.3056   49201.3056 
##           36           37           38           39           40 
##  -54130.6944  -85657.6944  -70238.6944  -52292.6944  -50509.6944 
##           41           42           43           44           45 
## -126095.6944   -9350.6944   63810.3056   94085.3333  136726.3056 
##           46           47           48           49           50 
##   42357.3056  114430.3056   10746.3056  -78146.6944  -22409.6944 
##           51           52           53           54           55 
##  -36078.6944 -104221.6944   91595.3056 -113630.6944 -125750.6944 
##           56           57           58           59           60 
##  -84187.6944 -151242.6944  -45821.6944   29646.3056   82648.3056 
##           61           62           63           64           65 
##  -96376.6944  -70781.6944  -34386.6944  -52265.6944   28218.3056 
##           66           67           68           69           70 
## -127364.6944   88644.3056  -37083.6944  101970.3056  -19219.6944 
##           71           72           73           74           75 
##  -74893.6944  -76650.6944    5770.3056  245575.3056  -48869.6667
summary(fit)
## 
## Call:
## lm(formula = Profit ~ Res, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -151243  -62419   -9467   57891  245575 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   345696      51305   6.738 3.18e-09 ***
## Res           -72273      52363  -1.380    0.172    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 88860 on 73 degrees of freedom
## Multiple R-squared:  0.02543,    Adjusted R-squared:  0.01208 
## F-statistic: 1.905 on 1 and 73 DF,  p-value: 0.1717
fit<-lm(Profit~Hours24,data = store)
summary(fit)
## 
## Call:
## lm(formula = Profit ~ Hours24, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -153138  -64315  -11246   52884  237458 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   281540      25976   10.84   <2e-16 ***
## Hours24        -6222      28343   -0.22    0.827    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 89980 on 73 degrees of freedom
## Multiple R-squared:  0.0006598,  Adjusted R-squared:  -0.01303 
## F-statistic: 0.0482 on 1 and 73 DF,  p-value: 0.8268
fit$coefficients
## (Intercept)     Hours24 
##  281540.417   -6222.385
confint(fit)
##                 2.5 %    97.5 %
## (Intercept) 229769.66 333311.17
## Hours24     -62708.91  50264.14
store$Profit
##  [1] 265014 424007 222735 210122 300480 469050 476355 361115 474725 278625
## [11] 389886 329020 152513 261571 203951 196277 265584 394039 261495 269235
## [21] 282584 367036 277414 267354 282124 211912 230194 273036 263956 333607
## [31] 211885 149033 292745 382199 322624 219292 187765 203184 221130 222913
## [41] 147327 264072 337233 439781 410149 315780 387853 284169 195276 251013
## [51] 237344 169201 365018 159792 147672 189235 122180 227601 303069 356071
## [61] 177046 202641 239036 221157 301641 146058 362067 236339 375393 254203
## [71] 198529 196772 279193 518998 296826
fitted(fit)
##        1        2        3        4        5        6        7        8 
## 275318.0 275318.0 275318.0 275318.0 275318.0 281540.4 275318.0 275318.0 
##        9       10       11       12       13       14       15       16 
## 275318.0 281540.4 275318.0 281540.4 275318.0 275318.0 275318.0 281540.4 
##       17       18       19       20       21       22       23       24 
## 275318.0 275318.0 275318.0 275318.0 275318.0 275318.0 275318.0 281540.4 
##       25       26       27       28       29       30       31       32 
## 275318.0 275318.0 275318.0 281540.4 275318.0 275318.0 275318.0 281540.4 
##       33       34       35       36       37       38       39       40 
## 275318.0 275318.0 275318.0 275318.0 275318.0 275318.0 275318.0 275318.0 
##       41       42       43       44       45       46       47       48 
## 275318.0 275318.0 275318.0 275318.0 275318.0 275318.0 275318.0 275318.0 
##       49       50       51       52       53       54       55       56 
## 275318.0 281540.4 275318.0 275318.0 275318.0 275318.0 275318.0 281540.4 
##       57       58       59       60       61       62       63       64 
## 275318.0 275318.0 275318.0 275318.0 275318.0 281540.4 275318.0 275318.0 
##       65       66       67       68       69       70       71       72 
## 275318.0 275318.0 275318.0 275318.0 275318.0 281540.4 275318.0 275318.0 
##       73       74       75 
## 275318.0 281540.4 275318.0
residuals(fit)
##           1           2           3           4           5           6 
##  -10304.032  148688.968  -52583.032  -65196.032   25161.968  187509.583 
##           7           8           9          10          11          12 
##  201036.968   85796.968  199406.968   -2915.417  114567.968   47479.583 
##          13          14          15          16          17          18 
## -122805.032  -13747.032  -71367.032  -85263.417   -9734.032  118720.968 
##          19          20          21          22          23          24 
##  -13823.032   -6083.032    7265.968   91717.968    2095.968  -14186.417 
##          25          26          27          28          29          30 
##    6805.968  -63406.032  -45124.032   -8504.417  -11362.032   58288.968 
##          31          32          33          34          35          36 
##  -63433.032 -132507.417   17426.968  106880.968   47305.968  -56026.032 
##          37          38          39          40          41          42 
##  -87553.032  -72134.032  -54188.032  -52405.032 -127991.032  -11246.032 
##          43          44          45          46          47          48 
##   61914.968  164462.968  134830.968   40461.968  112534.968    8850.968 
##          49          50          51          52          53          54 
##  -80042.032  -30527.417  -37974.032 -106117.032   89699.968 -115526.032 
##          55          56          57          58          59          60 
## -127646.032  -92305.417 -153138.032  -47717.032   27750.968   80752.968 
##          61          62          63          64          65          66 
##  -98272.032  -78899.417  -36282.032  -54161.032   26322.968 -129260.032 
##          67          68          69          70          71          72 
##   86748.968  -38979.032  100074.968  -27337.417  -76789.032  -78546.032 
##          73          74          75 
##    3874.968  237457.583   21507.968
summary(fit)
## 
## Call:
## lm(formula = Profit ~ Hours24, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -153138  -64315  -11246   52884  237458 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   281540      25976   10.84   <2e-16 ***
## Hours24        -6222      28343   -0.22    0.827    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 89980 on 73 degrees of freedom
## Multiple R-squared:  0.0006598,  Adjusted R-squared:  -0.01303 
## F-statistic: 0.0482 on 1 and 73 DF,  p-value: 0.8268
fit<-lm(Profit~Visibility,data = store)
summary(fit)
## 
## Call:
## lm(formula = Profit ~ Visibility, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -152838  -63359  -10946   43839  243980 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   226431      43855   5.163 2.02e-06 ***
## Visibility     16196      13840   1.170    0.246    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 89180 on 73 degrees of freedom
## Multiple R-squared:  0.01841,    Adjusted R-squared:  0.004966 
## F-statistic: 1.369 on 1 and 73 DF,  p-value: 0.2457
fit$coefficients
## (Intercept)  Visibility 
##   226430.94    16195.67
confint(fit)
##                 2.5 %    97.5 %
## (Intercept) 139028.99 313832.90
## Visibility  -11388.14  43779.49
store$Profit
##  [1] 265014 424007 222735 210122 300480 469050 476355 361115 474725 278625
## [11] 389886 329020 152513 261571 203951 196277 265584 394039 261495 269235
## [21] 282584 367036 277414 267354 282124 211912 230194 273036 263956 333607
## [31] 211885 149033 292745 382199 322624 219292 187765 203184 221130 222913
## [41] 147327 264072 337233 439781 410149 315780 387853 284169 195276 251013
## [51] 237344 169201 365018 159792 147672 189235 122180 227601 303069 356071
## [61] 177046 202641 239036 221157 301641 146058 362067 236339 375393 254203
## [71] 198529 196772 279193 518998 296826
fitted(fit)
##        1        2        3        4        5        6        7        8 
## 275018.0 291213.6 275018.0 291213.6 258822.3 275018.0 258822.3 291213.6 
##        9       10       11       12       13       14       15       16 
## 258822.3 291213.6 258822.3 291213.6 275018.0 291213.6 275018.0 275018.0 
##       17       18       19       20       21       22       23       24 
## 275018.0 307409.3 258822.3 275018.0 275018.0 291213.6 275018.0 258822.3 
##       25       26       27       28       29       30       31       32 
## 275018.0 275018.0 275018.0 275018.0 275018.0 275018.0 258822.3 275018.0 
##       33       34       35       36       37       38       39       40 
## 275018.0 291213.6 291213.6 275018.0 275018.0 275018.0 258822.3 275018.0 
##       41       42       43       44       45       46       47       48 
## 258822.3 275018.0 291213.6 275018.0 307409.3 291213.6 258822.3 275018.0 
##       49       50       51       52       53       54       55       56 
## 291213.6 275018.0 258822.3 275018.0 258822.3 275018.0 291213.6 258822.3 
##       57       58       59       60       61       62       63       64 
## 275018.0 291213.6 275018.0 275018.0 275018.0 275018.0 275018.0 291213.6 
##       65       66       67       68       69       70       71       72 
## 275018.0 258822.3 275018.0 291213.6 275018.0 275018.0 258822.3 258822.3 
##       73       74       75 
## 291213.6 275018.0 291213.6
residuals(fit)
##           1           2           3           4           5           6 
##  -10003.960  132793.368  -52282.960  -81091.632   41657.713  194032.040 
##           7           8           9          10          11          12 
##  217532.713   69901.368  215902.713  -12588.632  131063.713   37806.368 
##          13          14          15          16          17          18 
## -122504.960  -29642.632  -71066.960  -78740.960   -9433.960   86629.696 
##          19          20          21          22          23          24 
##    2672.713   -5782.960    7566.040   75822.368    2396.040    8531.713 
##          25          26          27          28          29          30 
##    7106.040  -63105.960  -44823.960   -1981.960  -11061.960   58589.040 
##          31          32          33          34          35          36 
##  -46937.287 -125984.960   17727.040   90985.368   31410.368  -55725.960 
##          37          38          39          40          41          42 
##  -87252.960  -71833.960  -37692.287  -52104.960 -111495.287  -10945.960 
##          43          44          45          46          47          48 
##   46019.368  164763.040  102739.696   24566.368  129030.713    9151.040 
##          49          50          51          52          53          54 
##  -95937.632  -24004.960  -21478.287 -105816.960  106195.713 -115225.960 
##          55          56          57          58          59          60 
## -143541.632  -69587.287 -152837.960  -63612.632   28051.040   81053.040 
##          61          62          63          64          65          66 
##  -97971.960  -72376.960  -35981.960  -70056.632   26623.040 -112764.287 
##          67          68          69          70          71          72 
##   87049.040  -54874.632  100375.040  -20814.960  -60293.287  -62050.287 
##          73          74          75 
##  -12020.632  243980.040    5612.368
summary(fit)
## 
## Call:
## lm(formula = Profit ~ Visibility, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -152838  -63359  -10946   43839  243980 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   226431      43855   5.163 2.02e-06 ***
## Visibility     16196      13840   1.170    0.246    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 89180 on 73 degrees of freedom
## Multiple R-squared:  0.01841,    Adjusted R-squared:  0.004966 
## F-statistic: 1.369 on 1 and 73 DF,  p-value: 0.2457

the explanatory variable(s) whose beta-coefficients are statistically significant (p < 0.05)- 1.Ctenure (0.025) 2.Comp(0.003) 3.Pop(0.0001) 4.PedCount(0.034) In () p-value are indicated (Ans)

the explanatory variable(s) whose beta-coefficients are not statistically significant (p > 0.05)- 1.Mtenure(0.0552) 2.Res(0.1717) 3.Hours24(0.8268) 4.Visibility(0.2457) In () p-value are indicated (Ans)

The expected change in the Profit at a store, if the Manager’s tenure i.e. number of months of experience with Store24, increases by one month is 680.3475 units.(Ans)

The expected change in the Profit at a store, if the Crew’s tenure i.e. number of months of experience with Store24, increases by one month is 1301.739 units.(Ans)

Excecutive Report:- So,finally I come to an end of the data analysis of the data frame called store24.Here the variables used for the data frames are :- -store id, -Sales(Fiscal Year 2000 Sales), -profit(Fiscal Year 2000 Profit before corporate overhead allocations, rent, and depreciation), -Mtenure(Average manager tenure during FY-2000 where tenure is defined as the number of months of experience with Store24), -Ctenure(Average crew tenure during FY-2000 where tenure is defined as the number of months of experience with Store24), -Comp(Number of competitors per 10,000 people within a ½ mile radius), -Pop(Population within a ½ mile radius), -Visible(5-point rating on visibility of store front with 5 being the highest), -PedCount(5-point rating on pedestrian foot traffic volume with 5 being the highest), -Hours24(Indicator for open 24 hours or not) & -Res(Indicator for located in residential vs. industrial area).

Here we find the correlation co-efficient between (Profit,Mtenure) & (Profit,Ctenure) the values are 0.4388692 & 0.2576789 respectively.

The expected change in the Profit at a store, if the Manager’s tenure i.e. number of months of experience with Store24, increases by one month is 680.3475 units.(Ans)

The expected change in the Profit at a store, if the Crew’s tenure i.e. number of months of experience with Store24, increases by one month is 1301.739 units.(Ans)

Besides this,i have done run a regression of Profit on {MTenure, CTenure Comp, Pop, PedCount, Res, Hours24, Visibility}. by running in all cases,the first result i get these:-

the explanatory variable(s) whose beta-coefficients are statistically significant (p < 0.05)- 1.Ctenure (0.025) 2.Comp(0.003) 3.Pop(0.0001) 4.PedCount(0.034) In () p-value are indicated (Ans)

the explanatory variable(s) whose beta-coefficients are not statistically significant (p > 0.05)- 1.Mtenure(0.0552) 2.Res(0.1717) 3.Hours24(0.8268) 4.Visibility(0.2457) In () p-value are indicated (Ans)

For regression in (Profit,Mtenure):- -adjusted R-squared i get 0.1815 -multiple R-squared i get 0.1926 -p-value: 8.193e-05

For regression in (Profit,Ctenure) -adjusted R-squared i get 0.05361 -multiple R-squared i get 0.0664 -p-value: 0.02562

For regression in (Profit,Comp) -adjusted R-squared i get 0.09975 -Multiple R-squared: 0.1119 -p-value: 0.003351

For regression in (Profit,Pop) -adjusted R-squared i get 0.1743 -multiple R-squared i get 0.1854 -p-value: 0.000115

For regression in (Profit,PedCount) -adjusted R-squared i get 0.1918 -multiple R-squared i get 0.2027 -p-value: 5.057e-05

For regression in (Profit,Res) -adjusted R-squared i get 0.01208 -multiple R-squared i get 0.02543 -p-value: 0.1717

For regression in (Profit,Hours24) -adjusted R-squared i get -0.01303 -Multiple R-squared: 0.0006598 -p-value: 0.8268

here the r-squared is negative i.e the corresponding variable doesn’t help at all in predicting the profit values.In real,it’s obvious because here Hours24 indicates whether the shop remains open for 24 hours or not.Obviously how ’ll it predict the the profit values For regression in (Profit,Visibility) adjusted R-squared i get 0.004966 multiple R-squared i get 0.01841 p-value: 0.2457

some of the cases i can clearly the fit is not very good due to poor values multiple R-squared values and p-values of F-Statistic.For some cases,although the r-sqaured value is not high but the p-value suggests that fit is good.

In all the cases,the adjusted R-sqaured values are not so good,the modulus of residual values of profit differs by a large margin becuase the profit values in all the stores are also large numbers. So i can say that it’s all overall not a good model to predict the profit values.(Ans)

Thank You!