setwd("C:/Users/Prabha Shankar/Desktop/Winter Internship/R file")
store24.df <- read.csv("Store24.csv")
View(store24.df)
apply(store24.df[,3:5],2,mean)
## Profit MTenure CTenure
## 276313.61333 45.29644 13.93150
apply(store24.df[,3:5],2,sd)
## Profit MTenure CTenure
## 89404.07634 57.67155 17.69752
var1.df <- store24.df[order(-store24.df$Profit),]
var1.df[1:10,1:5]
## store Sales Profit MTenure CTenure
## 74 74 1782957 518998 171.09720 29.519510
## 7 7 1809256 476355 62.53080 7.326488
## 9 9 2113089 474725 108.99350 6.061602
## 6 6 1703140 469050 149.93590 11.351130
## 44 44 1807740 439781 182.23640 114.151900
## 2 2 1619874 424007 86.22219 6.636550
## 45 45 1602362 410149 47.64565 9.166325
## 18 18 1704826 394039 239.96980 33.774130
## 11 11 1583446 389886 44.81977 2.036961
## 47 47 1665657 387853 12.84790 6.636550
var2.df <- store24.df[order(store24.df$Profit),]
var2.df[1:10,1:5]
## store Sales Profit MTenure CTenure
## 57 57 699306 122180 24.3485700 2.956879
## 66 66 879581 146058 115.2039000 3.876797
## 41 41 744211 147327 14.9180200 11.926080
## 55 55 925744 147672 6.6703910 18.365500
## 32 32 828918 149033 36.0792600 6.636550
## 13 13 857843 152513 0.6571813 1.577002
## 54 54 811190 159792 6.6703910 3.876797
## 52 52 1073008 169201 24.1185600 3.416838
## 61 61 716589 177046 21.8184200 13.305950
## 37 37 1202917 187765 23.1985000 1.347023
library(car)
## Warning: package 'car' was built under R version 3.3.3
scatterplot(store24.df$MTenure ,store24.df$Profit,
xlab = "MTenure", ylab = "Profit",
main = "Scatterplot of Profit vs. MTenure")
##Task 2H #R To Draw scateer plot of profit vs CTenure
library(car)
scatterplot(store24.df$CTenure ,store24.df$Profit,
xlab = "CTenure", ylab = "Profit",
main = "Scatterplot of Profit vs. CTenure")
##Task 2I #R To construct the corelation matrix
round(digits=2,cor(store24.df))
## store Sales Profit MTenure CTenure Pop Comp Visibility
## store 1.00 -0.23 -0.20 -0.06 0.02 -0.29 0.03 -0.03
## Sales -0.23 1.00 0.92 0.45 0.25 0.40 -0.24 0.13
## Profit -0.20 0.92 1.00 0.44 0.26 0.43 -0.33 0.14
## MTenure -0.06 0.45 0.44 1.00 0.24 -0.06 0.18 0.16
## CTenure 0.02 0.25 0.26 0.24 1.00 0.00 -0.07 0.07
## Pop -0.29 0.40 0.43 -0.06 0.00 1.00 -0.27 -0.05
## Comp 0.03 -0.24 -0.33 0.18 -0.07 -0.27 1.00 0.03
## Visibility -0.03 0.13 0.14 0.16 0.07 -0.05 0.03 1.00
## PedCount -0.22 0.42 0.45 0.06 -0.08 0.61 -0.15 -0.14
## Res -0.03 -0.17 -0.16 -0.06 -0.34 -0.24 0.22 0.02
## Hours24 0.03 0.06 -0.03 -0.17 0.07 -0.22 0.13 0.05
## CrewSkill 0.05 0.16 0.16 0.10 0.26 0.28 -0.04 -0.20
## MgrSkill -0.07 0.31 0.32 0.23 0.12 0.08 0.22 0.07
## ServQual -0.32 0.39 0.36 0.18 0.08 0.12 0.02 0.21
## PedCount Res Hours24 CrewSkill MgrSkill ServQual
## store -0.22 -0.03 0.03 0.05 -0.07 -0.32
## Sales 0.42 -0.17 0.06 0.16 0.31 0.39
## Profit 0.45 -0.16 -0.03 0.16 0.32 0.36
## MTenure 0.06 -0.06 -0.17 0.10 0.23 0.18
## CTenure -0.08 -0.34 0.07 0.26 0.12 0.08
## Pop 0.61 -0.24 -0.22 0.28 0.08 0.12
## Comp -0.15 0.22 0.13 -0.04 0.22 0.02
## Visibility -0.14 0.02 0.05 -0.20 0.07 0.21
## PedCount 1.00 -0.28 -0.28 0.21 0.09 -0.01
## Res -0.28 1.00 -0.09 -0.15 -0.03 0.09
## Hours24 -0.28 -0.09 1.00 0.11 -0.04 0.06
## CrewSkill 0.21 -0.15 0.11 1.00 -0.02 -0.03
## MgrSkill 0.09 -0.03 -0.04 -0.02 1.00 0.36
## ServQual -0.01 0.09 0.06 -0.03 0.36 1.00
round(digits=2,cor(store24.df$Profit,store24.df$MTenure))
## [1] 0.44
round(digits=2,cor(store24.df$Profit,store24.df$CTenure))
## [1] 0.26
library(corrgram)
## Warning: package 'corrgram' was built under R version 3.3.3
corrgram(store24.df, lower.panel=panel.shade,
upper.panel=panel.pie, text.panel=panel.txt,
main="Corrgram of Store Variables")
##Task 2L #Pearson’s Correlation test on the correlation between Profit and MTenure.
cor.test(store24.df$Profit,store24.df$MTenure)
##
## Pearson's product-moment correlation
##
## data: store24.df$Profit and store24.df$MTenure
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.2353497 0.6055175
## sample estimates:
## cor
## 0.4388692
cor.test(store24.df$Profit,store24.df$CTenure)
##
## Pearson's product-moment correlation
##
## data: store24.df$Profit and store24.df$CTenure
## t = 2.2786, df = 73, p-value = 0.02562
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.03262507 0.45786339
## sample estimates:
## cor
## 0.2576789
var3 <- lm(store24.df$Profit ~ store24.df$MTenure + store24.df$CTenure
+ store24.df$Comp + store24.df$Pop
+ store24.df$PedCount + store24.df$Res
+ store24.df$Hours24 + store24.df$Visibility,
data=store24.df)
summary(var3)
##
## Call:
## lm(formula = store24.df$Profit ~ store24.df$MTenure + store24.df$CTenure +
## store24.df$Comp + store24.df$Pop + store24.df$PedCount +
## store24.df$Res + store24.df$Hours24 + store24.df$Visibility,
## data = store24.df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -105789 -35946 -7069 33780 112390
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7610.041 66821.994 0.114 0.909674
## store24.df$MTenure 760.993 127.086 5.988 9.72e-08 ***
## store24.df$CTenure 944.978 421.687 2.241 0.028400 *
## store24.df$Comp -25286.887 5491.937 -4.604 1.94e-05 ***
## store24.df$Pop 3.667 1.466 2.501 0.014890 *
## store24.df$PedCount 34087.359 9073.196 3.757 0.000366 ***
## store24.df$Res 91584.675 39231.283 2.334 0.022623 *
## store24.df$Hours24 63233.307 19641.114 3.219 0.001994 **
## store24.df$Visibility 12625.447 9087.620 1.389 0.169411
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 56970 on 66 degrees of freedom
## Multiple R-squared: 0.6379, Adjusted R-squared: 0.594
## F-statistic: 14.53 on 8 and 66 DF, p-value: 5.382e-12
A.With one month increase in Manager’s tenure of work experience, a Store is statistically expected to increase it’s profits by 760.993. B.With one month increase in Crew’s tenure of work experience, a Store is statistically expected to increase it’s profits 944.978 .