Calling the summary function and checking it with Exhibit 3

summary(store)
##      store          Sales             Profit          MTenure      
##  Min.   : 1.0   Min.   : 699306   Min.   :122180   Min.   :  0.00  
##  1st Qu.:19.5   1st Qu.: 984579   1st Qu.:211004   1st Qu.:  6.67  
##  Median :38.0   Median :1127332   Median :265014   Median : 24.12  
##  Mean   :38.0   Mean   :1205413   Mean   :276314   Mean   : 45.30  
##  3rd Qu.:56.5   3rd Qu.:1362388   3rd Qu.:331314   3rd Qu.: 50.92  
##  Max.   :75.0   Max.   :2113089   Max.   :518998   Max.   :277.99  
##     CTenure              Pop             Comp          Visibility  
##  Min.   :  0.8871   Min.   : 1046   Min.   : 1.651   Min.   :2.00  
##  1st Qu.:  4.3943   1st Qu.: 5616   1st Qu.: 3.151   1st Qu.:3.00  
##  Median :  7.2115   Median : 8896   Median : 3.629   Median :3.00  
##  Mean   : 13.9315   Mean   : 9826   Mean   : 3.788   Mean   :3.08  
##  3rd Qu.: 17.2156   3rd Qu.:14104   3rd Qu.: 4.230   3rd Qu.:4.00  
##  Max.   :114.1519   Max.   :26519   Max.   :11.128   Max.   :5.00  
##     PedCount         Res          Hours24       CrewSkill    
##  Min.   :1.00   Min.   :0.00   Min.   :0.00   Min.   :2.060  
##  1st Qu.:2.00   1st Qu.:1.00   1st Qu.:1.00   1st Qu.:3.225  
##  Median :3.00   Median :1.00   Median :1.00   Median :3.500  
##  Mean   :2.96   Mean   :0.96   Mean   :0.84   Mean   :3.457  
##  3rd Qu.:4.00   3rd Qu.:1.00   3rd Qu.:1.00   3rd Qu.:3.655  
##  Max.   :5.00   Max.   :1.00   Max.   :1.00   Max.   :4.640  
##     MgrSkill        ServQual     
##  Min.   :2.957   Min.   : 57.90  
##  1st Qu.:3.344   1st Qu.: 78.95  
##  Median :3.589   Median : 89.47  
##  Mean   :3.638   Mean   : 87.15  
##  3rd Qu.:3.925   3rd Qu.: 99.90  
##  Max.   :4.622   Max.   :100.00

Now calculating the mean and Standard Deviation of Profit

mean(store$Profit)
## [1] 276313.6
sd(store$Profit)
## [1] 89404.08

Mean profit comes out to be 276313.6 and SD is 89404.08

mean(store$MTenure)
## [1] 45.29644
sd(store$MTenure)
## [1] 57.67155

Mean Mtenure comes out to be 45.296 months and SD is 57.57 months

mean(store$CTenure)
## [1] 13.9315
sd(store$CTenure)
## [1] 17.69752

Mean Ctenure is nearly 14 months and SD is 17.697 months

attach(store)
## The following object is masked _by_ .GlobalEnv:
## 
##     store
newdata <- store[order(-Profit), ]
data.frame(newdata$store, newdata$Sales, newdata$Profit, newdata$MTenure, newdata$CTenure)[1:10,]
##    newdata.store newdata.Sales newdata.Profit newdata.MTenure
## 1             74       1782957         518998       171.09720
## 2              7       1809256         476355        62.53080
## 3              9       2113089         474725       108.99350
## 4              6       1703140         469050       149.93590
## 5             44       1807740         439781       182.23640
## 6              2       1619874         424007        86.22219
## 7             45       1602362         410149        47.64565
## 8             18       1704826         394039       239.96980
## 9             11       1583446         389886        44.81977
## 10            47       1665657         387853        12.84790
##    newdata.CTenure
## 1        29.519510
## 2         7.326488
## 3         6.061602
## 4        11.351130
## 5       114.151900
## 6         6.636550
## 7         9.166325
## 8        33.774130
## 9         2.036961
## 10        6.636550

This is the table showing the top 10 most profitable store

newdata <- store[order(Profit), ]
data.frame(newdata$store, newdata$Sales, newdata$Profit, newdata$MTenure, newdata$CTenure)[1:10,]
##    newdata.store newdata.Sales newdata.Profit newdata.MTenure
## 1             57        699306         122180      24.3485700
## 2             66        879581         146058     115.2039000
## 3             41        744211         147327      14.9180200
## 4             55        925744         147672       6.6703910
## 5             32        828918         149033      36.0792600
## 6             13        857843         152513       0.6571813
## 7             54        811190         159792       6.6703910
## 8             52       1073008         169201      24.1185600
## 9             61        716589         177046      21.8184200
## 10            37       1202917         187765      23.1985000
##    newdata.CTenure
## 1         2.956879
## 2         3.876797
## 3        11.926080
## 4        18.365500
## 5         6.636550
## 6         1.577002
## 7         3.876797
## 8         3.416838
## 9        13.305950
## 10        1.347023

This is the table showing data of 10 least profitable store

library(car)
scatterplot(store$MTenure, store$Profit, xlab = "MTenure", ylab = "Profit", main = "Scatter plot between Mtenure and Profit")

This is the plot of profit vs Mtenure

scatterplot(store$CTenure, store$Profit, xlab = "Ctenure", ylab = "Profit", main = "Scatter plot between Ctenure and Profit")

This is scatter plot of Profit vs Ctenure

round(cor(store),2)
##            store Sales Profit MTenure CTenure   Pop  Comp Visibility
## store       1.00 -0.23  -0.20   -0.06    0.02 -0.29  0.03      -0.03
## Sales      -0.23  1.00   0.92    0.45    0.25  0.40 -0.24       0.13
## Profit     -0.20  0.92   1.00    0.44    0.26  0.43 -0.33       0.14
## MTenure    -0.06  0.45   0.44    1.00    0.24 -0.06  0.18       0.16
## CTenure     0.02  0.25   0.26    0.24    1.00  0.00 -0.07       0.07
## Pop        -0.29  0.40   0.43   -0.06    0.00  1.00 -0.27      -0.05
## Comp        0.03 -0.24  -0.33    0.18   -0.07 -0.27  1.00       0.03
## Visibility -0.03  0.13   0.14    0.16    0.07 -0.05  0.03       1.00
## PedCount   -0.22  0.42   0.45    0.06   -0.08  0.61 -0.15      -0.14
## Res        -0.03 -0.17  -0.16   -0.06   -0.34 -0.24  0.22       0.02
## Hours24     0.03  0.06  -0.03   -0.17    0.07 -0.22  0.13       0.05
## CrewSkill   0.05  0.16   0.16    0.10    0.26  0.28 -0.04      -0.20
## MgrSkill   -0.07  0.31   0.32    0.23    0.12  0.08  0.22       0.07
## ServQual   -0.32  0.39   0.36    0.18    0.08  0.12  0.02       0.21
##            PedCount   Res Hours24 CrewSkill MgrSkill ServQual
## store         -0.22 -0.03    0.03      0.05    -0.07    -0.32
## Sales          0.42 -0.17    0.06      0.16     0.31     0.39
## Profit         0.45 -0.16   -0.03      0.16     0.32     0.36
## MTenure        0.06 -0.06   -0.17      0.10     0.23     0.18
## CTenure       -0.08 -0.34    0.07      0.26     0.12     0.08
## Pop            0.61 -0.24   -0.22      0.28     0.08     0.12
## Comp          -0.15  0.22    0.13     -0.04     0.22     0.02
## Visibility    -0.14  0.02    0.05     -0.20     0.07     0.21
## PedCount       1.00 -0.28   -0.28      0.21     0.09    -0.01
## Res           -0.28  1.00   -0.09     -0.15    -0.03     0.09
## Hours24       -0.28 -0.09    1.00      0.11    -0.04     0.06
## CrewSkill      0.21 -0.15    0.11      1.00    -0.02    -0.03
## MgrSkill       0.09 -0.03   -0.04     -0.02     1.00     0.36
## ServQual      -0.01  0.09    0.06     -0.03     0.36     1.00

Here we have obtained correlation matrix between variables upto 2 decimal places

round(cor(store$Profit, store$MTenure), 2)
## [1] 0.44
round(cor(store$Profit, store$CTenure), 2)
## [1] 0.26

Here we obtain correlation between i) Profit and Mtenure ii) Profit and Ctenure

library(corrgram)
corrgram(store, order=TRUE, lower.panel=panel.shade,
        upper.panel=panel.pie, text.panel=panel.txt,
        main="Corrgram of correlations between store variables")

Here is the correlation plot using the corrgram library showing the correlation between variables of the store dataset

cor.test(store$Profit, store$MTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  store$Profit and store$MTenure
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2353497 0.6055175
## sample estimates:
##       cor 
## 0.4388692

Here is the Pearson’s correlation test performed for profit vs Mtenure

cor.test(store$Profit, store$CTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  store$Profit and store$CTenure
## t = 2.2786, df = 73, p-value = 0.02562
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03262507 0.45786339
## sample estimates:
##       cor 
## 0.2576789

Here is the Pearson’s correlation test performed for profit vs Ctenure

myfit <- lm(Profit ~ MTenure + CTenure + Comp + Pop + PedCount + Res + Hours24 + Visibility  ,data= store)
summary(myfit)
## 
## Call:
## lm(formula = Profit ~ MTenure + CTenure + Comp + Pop + PedCount + 
##     Res + Hours24 + Visibility, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -105789  -35946   -7069   33780  112390 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   7610.041  66821.994   0.114 0.909674    
## MTenure        760.993    127.086   5.988 9.72e-08 ***
## CTenure        944.978    421.687   2.241 0.028400 *  
## Comp        -25286.887   5491.937  -4.604 1.94e-05 ***
## Pop              3.667      1.466   2.501 0.014890 *  
## PedCount     34087.359   9073.196   3.757 0.000366 ***
## Res          91584.675  39231.283   2.334 0.022623 *  
## Hours24      63233.307  19641.114   3.219 0.001994 ** 
## Visibility   12625.447   9087.620   1.389 0.169411    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 56970 on 66 degrees of freedom
## Multiple R-squared:  0.6379, Adjusted R-squared:  0.594 
## F-statistic: 14.53 on 8 and 66 DF,  p-value: 5.382e-12

Here are the coeffcients of all the variables with corresponding p values

fitted(myfit)
##        1        2        3        4        5        6        7        8 
## 282884.6 311616.6 247387.2 188867.1 308773.0 379779.2 392304.9 371985.2 
##        9       10       11       12       13       14       15       16 
## 443237.0 300474.6 390414.7 420779.0 210319.6 268639.8 279296.3 202381.0 
##       17       18       19       20       21       22       23       24 
## 352534.2 455293.3 256081.6 275088.3 277490.0 271166.4 309003.2 214340.6 
##       25       26       27       28       29       30       31       32 
## 246051.2 219299.0 258929.7 280699.0 210844.3 260034.8 197082.6 191247.4 
##       33       34       35       36       37       38       39       40 
## 207234.6 370486.2 318628.6 232328.1 240430.8 199026.7 260630.9 173787.2 
##       41       42       43       44       45       46       47       48 
## 237766.0 277755.6 375932.0 475485.8 350220.8 279391.3 399517.8 208750.4 
##       49       50       51       52       53       54       55       56 
## 215972.9 307812.7 282907.8 212113.7 252711.1 195979.6 214674.3 167063.9 
##       57       58       59       60       61       62       63       64 
## 227968.7 218550.3 265067.8 331875.7 192084.1 218925.7 238526.9 318618.1 
##       65       66       67       68       69       70       71       72 
## 293397.2 218979.5 261546.3 240964.4 280082.4 282110.4 205893.0 262434.7 
##       73       74       75 
## 269862.0 412871.4 252828.2
residuals(myfit)
##            1            2            3            4            5 
##  -17870.5566  112390.4448  -24652.2001   21254.9195   -8292.9911 
##            6            7            8            9           10 
##   89270.7785   84050.0803  -10870.2458   31488.0240  -21849.6437 
##           11           12           13           14           15 
##    -528.7222  -91759.0426  -57806.5916   -7068.7877  -75345.2520 
##           16           17           18           19           20 
##   -6104.0234  -86950.2209  -61254.3355    5413.3764   -5853.2921 
##           21           22           23           24           25 
##    5094.0156   95869.5511  -31589.1824   53013.4120   36072.8170 
##           26           27           28           29           30 
##   -7386.9737  -28735.7167   -7662.9590   53111.6789   73572.1725 
##           31           32           33           34           35 
##   14802.3715  -42214.3885   85510.4023   11712.8399    3995.3758 
##           36           37           38           39           40 
##  -13036.0714  -52665.8054    4157.3337  -39500.8957   49125.8347 
##           41           42           43           44           45 
##  -90438.9845  -13683.5771  -38699.0221  -35704.8151   59928.2412 
##           46           47           48           49           50 
##   36388.7486  -11664.7868   75418.5740  -20696.9041  -56799.7045 
##           51           52           53           54           55 
##  -45563.7849  -42912.6649  112306.9000  -36187.6388  -67002.3454 
##           56           57           58           59           60 
##   22171.0985 -105788.7112    9050.7093   38001.1613   24195.2780 
##           61           62           63           64           65 
##  -15038.1182  -16284.7396     509.1427  -97461.0600    8243.7616 
##           66           67           68           69           70 
##  -72921.5481  100520.7352   -4625.3831   95310.5717  -27907.3903 
##           71           72           73           74           75 
##   -7364.0084  -65662.7214    9331.0473  106126.6026   43997.8062

SO here is the fitted data according to the myfit linear model and the difference with actual data.

Executive Summary

The main insights from the analysis are:

  1. The correlation of PRofit with manager tenure is 0.44 which means there is a strong relation with profit generation capacity of the firm with the tenure of the manager. The low p-value also suggests that.
  2. The correlation between profit with Crew tenure is 0.26 which means the relation is good but not as strong enough as that of the profit - Manager tenure relation. The p-value of 0.03 is also not too low to indicate a strong relationship.
  3. For every monthly increment in manager tenure the observed increase in profit is 760 and for every increase in monthly crew tenure the profit goes up by 945. However the pr value of the regression analysis of Mtenure is 9.72 e- 08 which is very ow and indcates a very strong relation as compared to 0.0284 value of C tenure
  4. Besides tenure analysis of managers and crew there is a positive and strong correlation of profit Population, pedestrian Count, Managerial Skill and Service Quality.

Key Suggestion

The firm should focus on increasing the manager tenure as it indicates a higher correlation with profit then the crew tenure. However negligence of crew tenure is not appreciated. Also the firm can look upto analyse other variables like Managerial skill, Service quality population which have shown a positive correlation with profit.