store24 <- read.csv("C:/Program Files/RStudio/files/Store24.csv")
View(store24)
summary(store24)
##      store          Sales             Profit          MTenure      
##  Min.   : 1.0   Min.   : 699306   Min.   :122180   Min.   :  0.00  
##  1st Qu.:19.5   1st Qu.: 984579   1st Qu.:211004   1st Qu.:  6.67  
##  Median :38.0   Median :1127332   Median :265014   Median : 24.12  
##  Mean   :38.0   Mean   :1205413   Mean   :276314   Mean   : 45.30  
##  3rd Qu.:56.5   3rd Qu.:1362388   3rd Qu.:331314   3rd Qu.: 50.92  
##  Max.   :75.0   Max.   :2113089   Max.   :518998   Max.   :277.99  
##     CTenure              Pop             Comp          Visibility  
##  Min.   :  0.8871   Min.   : 1046   Min.   : 1.651   Min.   :2.00  
##  1st Qu.:  4.3943   1st Qu.: 5616   1st Qu.: 3.151   1st Qu.:3.00  
##  Median :  7.2115   Median : 8896   Median : 3.629   Median :3.00  
##  Mean   : 13.9315   Mean   : 9826   Mean   : 3.788   Mean   :3.08  
##  3rd Qu.: 17.2156   3rd Qu.:14104   3rd Qu.: 4.230   3rd Qu.:4.00  
##  Max.   :114.1519   Max.   :26519   Max.   :11.128   Max.   :5.00  
##     PedCount         Res          Hours24       CrewSkill    
##  Min.   :1.00   Min.   :0.00   Min.   :0.00   Min.   :2.060  
##  1st Qu.:2.00   1st Qu.:1.00   1st Qu.:1.00   1st Qu.:3.225  
##  Median :3.00   Median :1.00   Median :1.00   Median :3.500  
##  Mean   :2.96   Mean   :0.96   Mean   :0.84   Mean   :3.457  
##  3rd Qu.:4.00   3rd Qu.:1.00   3rd Qu.:1.00   3rd Qu.:3.655  
##  Max.   :5.00   Max.   :1.00   Max.   :1.00   Max.   :4.640  
##     MgrSkill        ServQual     
##  Min.   :2.957   Min.   : 57.90  
##  1st Qu.:3.344   1st Qu.: 78.95  
##  Median :3.589   Median : 89.47  
##  Mean   :3.638   Mean   : 87.15  
##  3rd Qu.:3.925   3rd Qu.: 99.90  
##  Max.   :4.622   Max.   :100.00

==> mean and standard deviation of Profit.

mean(store24$Profit)
## [1] 276313.6
sd(store24$Profit)
## [1] 89404.08

==> mean and standard deviation of MTenure.

mean(store24$MTenure)
## [1] 45.29644
sd(store24$MTenure)
## [1] 57.67155

==> mean and standard deviation of CTenure.

mean(store24$CTenure)
## [1] 13.9315
sd(store24$CTenure)
## [1] 17.69752

==> {StoreID, Sales, Profit, MTenure, CTenure} of the top 10 most profitable stores.

attach(store24)
profit_st <- store24[order(Profit),]
profit_st[1:10,]
##    store   Sales Profit     MTenure   CTenure   Pop     Comp Visibility
## 57    57  699306 122180  24.3485700  2.956879  3642 2.973376          3
## 66    66  879581 146058 115.2039000  3.876797  1046 6.569790          2
## 41    41  744211 147327  14.9180200 11.926080  9701 4.364600          2
## 55    55  925744 147672   6.6703910 18.365500 10532 6.389294          4
## 32    32  828918 149033  36.0792600  6.636550  9697 4.641468          3
## 13    13  857843 152513   0.6571813  1.577002 14186 4.435671          3
## 54    54  811190 159792   6.6703910  3.876797  3747 3.756011          3
## 52    52 1073008 169201  24.1185600  3.416838 14859 6.585143          3
## 61    61  716589 177046  21.8184200 13.305950  3014 3.263994          3
## 37    37 1202917 187765  23.1985000  1.347023  8870 4.491863          3
##    PedCount Res Hours24 CrewSkill MgrSkill ServQual
## 57        2   1       1      3.35 2.956667 84.21266
## 66        3   1       1      4.03 3.673333 80.26675
## 41        3   1       1      3.03 3.672222 81.13993
## 55        3   1       1      3.49 3.477778 76.31346
## 32        3   1       0      3.28 3.550000 73.68654
## 13        2   1       1      4.10 3.000000 76.30609
## 54        2   1       1      3.08 3.933333 65.78734
## 52        3   1       1      3.83 3.833333 94.73510
## 61        1   1       1      3.07 3.126667 73.68654
## 37        3   1       1      3.38 4.016667 73.68654

==> {StoreID, Sales, Profit, MTenure, CTenure} of the top 10 least profitable stores.

attach(store24)
## The following objects are masked from store24 (pos = 3):
## 
##     Comp, CrewSkill, CTenure, Hours24, MgrSkill, MTenure,
##     PedCount, Pop, Profit, Res, Sales, ServQual, store, Visibility
profit_st <- store24[order(-Profit),]
profit_st[1:10,]
##    store   Sales Profit   MTenure    CTenure   Pop     Comp Visibility
## 74    74 1782957 518998 171.09720  29.519510 10913 2.319850          3
## 7      7 1809256 476355  62.53080   7.326488 17754 3.377900          2
## 9      9 2113089 474725 108.99350   6.061602 26519 2.637630          2
## 6      6 1703140 469050 149.93590  11.351130 16926 3.184613          3
## 44    44 1807740 439781 182.23640 114.151900 20624 3.628561          3
## 2      2 1619874 424007  86.22219   6.636550  8630 4.235555          4
## 45    45 1602362 410149  47.64565   9.166325 17808 3.472609          5
## 18    18 1704826 394039 239.96980  33.774130  3807 3.994713          5
## 11    11 1583446 389886  44.81977   2.036961 21550 3.272398          2
## 47    47 1665657 387853  12.84790   6.636550 23623 2.422707          2
##    PedCount Res Hours24 CrewSkill MgrSkill  ServQual
## 74        4   1       0      3.50 4.405556  94.73878
## 7         5   1       1      3.94 4.100000  81.57837
## 9         4   1       1      3.22 3.583333 100.00000
## 6         4   1       0      3.58 4.605556  94.73510
## 44        4   0       1      4.06 4.172222  86.84327
## 2         3   1       1      3.20 3.556667  94.73510
## 45        3   1       1      3.58 4.622222 100.00000
## 18        3   1       1      3.18 3.866667  97.36939
## 11        5   1       1      3.43 3.200000 100.00000
## 47        5   1       1      4.23 3.950000  99.80105

==> Scatter plot of Profit vs. MTenure.

scatter.smooth(store24$MTenure, store24$Profit,xlab="Mtenure",ylab="Profit",main="Profit vs Mtenure")

==> Scatter plot of Profit vs. CTenure.

scatter.smooth(store24$CTenure, store24$Profit,xlab="Ctenure",ylab="Profit",main="Profit vs Ctenure")

==> Correlation Matrix for all the variables in the dataset.(up to 2 Decimal places)

options(digits = 2)
cor(store24)
##             store  Sales Profit MTenure CTenure     Pop   Comp Visibility
## store       1.000 -0.227 -0.200  -0.057  0.0199 -0.2894  0.032     -0.026
## Sales      -0.227  1.000  0.924   0.455  0.2543  0.4035 -0.235      0.131
## Profit     -0.200  0.924  1.000   0.439  0.2577  0.4306 -0.335      0.136
## MTenure    -0.057  0.455  0.439   1.000  0.2434 -0.0609  0.181      0.157
## CTenure     0.020  0.254  0.258   0.243  1.0000 -0.0015 -0.070      0.067
## Pop        -0.289  0.403  0.431  -0.061 -0.0015  1.0000 -0.268     -0.050
## Comp        0.032 -0.235 -0.335   0.181 -0.0703 -0.2683  1.000      0.028
## Visibility -0.026  0.131  0.136   0.157  0.0665 -0.0500  0.028      1.000
## PedCount   -0.221  0.424  0.450   0.062 -0.0841  0.6076 -0.146     -0.141
## Res        -0.031 -0.167 -0.159  -0.062 -0.3403 -0.2369  0.219      0.022
## Hours24     0.027  0.063 -0.026  -0.165  0.0729 -0.2218  0.130      0.047
## CrewSkill   0.049  0.164  0.160   0.102  0.2572  0.2828 -0.042     -0.197
## MgrSkill   -0.072  0.312  0.323   0.230  0.1240  0.0836  0.224      0.073
## ServQual   -0.322  0.386  0.362   0.182  0.0812  0.1239  0.018      0.210
##            PedCount    Res Hours24 CrewSkill MgrSkill ServQual
## store       -0.2212 -0.031   0.027     0.049   -0.072  -0.3225
## Sales        0.4239 -0.167   0.063     0.164    0.312   0.3864
## Profit       0.4502 -0.159  -0.026     0.160    0.323   0.3625
## MTenure      0.0620 -0.062  -0.165     0.102    0.230   0.1817
## CTenure     -0.0841 -0.340   0.073     0.257    0.124   0.0812
## Pop          0.6076 -0.237  -0.222     0.283    0.084   0.1239
## Comp        -0.1463  0.219   0.130    -0.042    0.224   0.0181
## Visibility  -0.1411  0.022   0.047    -0.197    0.073   0.2099
## PedCount     1.0000 -0.284  -0.276     0.214    0.087  -0.0054
## Res         -0.2844  1.000  -0.089    -0.153   -0.032   0.0908
## Hours24     -0.2760 -0.089   1.000     0.105   -0.039   0.0583
## CrewSkill    0.2137 -0.153   0.105     1.000   -0.021  -0.0335
## MgrSkill     0.0875 -0.032  -0.039    -0.021    1.000   0.3567
## ServQual    -0.0054  0.091   0.058    -0.034    0.357   1.0000

==> Correlation between Profit and MTenure.(up to 2 Decimal places)

cor.test(store24[,"Profit"],store24[,"MTenure"])
## 
##  Pearson's product-moment correlation
## 
## data:  store24[, "Profit"] and store24[, "MTenure"]
## t = 4, df = 70, p-value = 8e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.24 0.61
## sample estimates:
##  cor 
## 0.44

==> Correlation between Profit and MTenure.(up to 2 Decimal places)

cor.test(store24[,"Profit"],store24[,"CTenure"])
## 
##  Pearson's product-moment correlation
## 
## data:  store24[, "Profit"] and store24[, "CTenure"]
## t = 2, df = 70, p-value = 0.03
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.033 0.458
## sample estimates:
##  cor 
## 0.26

==> Corrgram based on all variables in the dataset.

library(corrgram)
corrgram(store24, order=TRUE, lower.panel=panel.shade,
        upper.panel=panel.pie, text.panel=panel.txt)

==> Pearson’s Correlation test on the correlation between Profit and MTenure.

cor.test(store24[,"Profit"],store24[,"MTenure"],method="pearson")
## 
##  Pearson's product-moment correlation
## 
## data:  store24[, "Profit"] and store24[, "MTenure"]
## t = 4, df = 70, p-value = 8e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.24 0.61
## sample estimates:
##  cor 
## 0.44

p-value = 8e-05

==> Pearson’s Correlation test on the correlation between Profit and CTenure.

cor.test(store24[,"Profit"],store24[,"MTenure"],method="pearson")
## 
##  Pearson's product-moment correlation
## 
## data:  store24[, "Profit"] and store24[, "MTenure"]
## t = 4, df = 70, p-value = 8e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.24 0.61
## sample estimates:
##  cor 
## 0.44

p-value = 0.03

==> Regression of Profit on {MTenure, CTenure Comp, Pop, PedCount, Res, Hours24, Visibility}.

regression<-lm(Profit~MTenure+CTenure+Comp+Pop+PedCount+Res+Hours24+Visibility, data=store24)
summary(regression)
## 
## Call:
## lm(formula = Profit ~ MTenure + CTenure + Comp + Pop + PedCount + 
##     Res + Hours24 + Visibility, data = store24)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -105789  -35946   -7069   33780  112390 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   7610.04   66821.99    0.11  0.90967    
## MTenure        760.99     127.09    5.99  9.7e-08 ***
## CTenure        944.98     421.69    2.24  0.02840 *  
## Comp        -25286.89    5491.94   -4.60  1.9e-05 ***
## Pop              3.67       1.47    2.50  0.01489 *  
## PedCount     34087.36    9073.20    3.76  0.00037 ***
## Res          91584.68   39231.28    2.33  0.02262 *  
## Hours24      63233.31   19641.11    3.22  0.00199 ** 
## Visibility   12625.45    9087.62    1.39  0.16941    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 57000 on 66 degrees of freedom
## Multiple R-squared:  0.638,  Adjusted R-squared:  0.594 
## F-statistic: 14.5 on 8 and 66 DF,  p-value: 5.38e-12
fitted(regression)
##      1      2      3      4      5      6      7      8      9     10 
## 282885 311617 247387 188867 308773 379779 392305 371985 443237 300475 
##     11     12     13     14     15     16     17     18     19     20 
## 390415 420779 210320 268640 279296 202381 352534 455293 256082 275088 
##     21     22     23     24     25     26     27     28     29     30 
## 277490 271166 309003 214341 246051 219299 258930 280699 210844 260035 
##     31     32     33     34     35     36     37     38     39     40 
## 197083 191247 207235 370486 318629 232328 240431 199027 260631 173787 
##     41     42     43     44     45     46     47     48     49     50 
## 237766 277756 375932 475486 350221 279391 399518 208750 215973 307813 
##     51     52     53     54     55     56     57     58     59     60 
## 282908 212114 252711 195980 214674 167064 227969 218550 265068 331876 
##     61     62     63     64     65     66     67     68     69     70 
## 192084 218926 238527 318618 293397 218980 261546 240964 280082 282110 
##     71     72     73     74     75 
## 205893 262435 269862 412871 252828
residuals(regression)
##       1       2       3       4       5       6       7       8       9 
##  -17871  112390  -24652   21255   -8293   89271   84050  -10870   31488 
##      10      11      12      13      14      15      16      17      18 
##  -21850    -529  -91759  -57807   -7069  -75345   -6104  -86950  -61254 
##      19      20      21      22      23      24      25      26      27 
##    5413   -5853    5094   95870  -31589   53013   36073   -7387  -28736 
##      28      29      30      31      32      33      34      35      36 
##   -7663   53112   73572   14802  -42214   85510   11713    3995  -13036 
##      37      38      39      40      41      42      43      44      45 
##  -52666    4157  -39501   49126  -90439  -13684  -38699  -35705   59928 
##      46      47      48      49      50      51      52      53      54 
##   36389  -11665   75419  -20697  -56800  -45564  -42913  112307  -36188 
##      55      56      57      58      59      60      61      62      63 
##  -67002   22171 -105789    9051   38001   24195  -15038  -16285     509 
##      64      65      66      67      68      69      70      71      72 
##  -97461    8244  -72922  100521   -4625   95311  -27907   -7364  -65663 
##      73      74      75 
##    9331  106127   43998

For every one month increase in the tenure of the manager at Store24, the profit goes up by 761, and for every one month increase in the tenure of the crew at Store24, the profit goes up by 945.

Summary