Summary

store <- read.csv(paste("Store24.csv", sep=""))
library(psych)
summary(store)
##      store          Sales             Profit          MTenure      
##  Min.   : 1.0   Min.   : 699306   Min.   :122180   Min.   :  0.00  
##  1st Qu.:19.5   1st Qu.: 984579   1st Qu.:211004   1st Qu.:  6.67  
##  Median :38.0   Median :1127332   Median :265014   Median : 24.12  
##  Mean   :38.0   Mean   :1205413   Mean   :276314   Mean   : 45.30  
##  3rd Qu.:56.5   3rd Qu.:1362388   3rd Qu.:331314   3rd Qu.: 50.92  
##  Max.   :75.0   Max.   :2113089   Max.   :518998   Max.   :277.99  
##     CTenure              Pop             Comp          Visibility  
##  Min.   :  0.8871   Min.   : 1046   Min.   : 1.651   Min.   :2.00  
##  1st Qu.:  4.3943   1st Qu.: 5616   1st Qu.: 3.151   1st Qu.:3.00  
##  Median :  7.2115   Median : 8896   Median : 3.629   Median :3.00  
##  Mean   : 13.9315   Mean   : 9826   Mean   : 3.788   Mean   :3.08  
##  3rd Qu.: 17.2156   3rd Qu.:14104   3rd Qu.: 4.230   3rd Qu.:4.00  
##  Max.   :114.1519   Max.   :26519   Max.   :11.128   Max.   :5.00  
##     PedCount         Res          Hours24       CrewSkill    
##  Min.   :1.00   Min.   :0.00   Min.   :0.00   Min.   :2.060  
##  1st Qu.:2.00   1st Qu.:1.00   1st Qu.:1.00   1st Qu.:3.225  
##  Median :3.00   Median :1.00   Median :1.00   Median :3.500  
##  Mean   :2.96   Mean   :0.96   Mean   :0.84   Mean   :3.457  
##  3rd Qu.:4.00   3rd Qu.:1.00   3rd Qu.:1.00   3rd Qu.:3.655  
##  Max.   :5.00   Max.   :1.00   Max.   :1.00   Max.   :4.640  
##     MgrSkill        ServQual     
##  Min.   :2.957   Min.   : 57.90  
##  1st Qu.:3.344   1st Qu.: 78.95  
##  Median :3.589   Median : 89.47  
##  Mean   :3.638   Mean   : 87.15  
##  3rd Qu.:3.925   3rd Qu.: 99.90  
##  Max.   :4.622   Max.   :100.00

Mean and Standard Deviation

Mean of Profit: 276313.6

Standard deviation of Profit: 89404.07634

Mean of MTenure: 45.29644

Standard deviation of MTenure: 57.6155

Mean of CTenure: 13.9315

Standard deviation of CTenure: 17.69752

mean(store$Profit)
## [1] 276313.6
mean(store$MTenure)
## [1] 45.29644
mean(store$CTenure)
## [1] 13.9315
apply(store[,3:5],2,sd)                  
##      Profit     MTenure     CTenure 
## 89404.07634    57.67155    17.69752

Most Profitable Stores & Least Profitable Stores

The 10 Most Profitable Stores:

topmost<- store[order(-store$Profit),]
View(topmost)
topmost[1:10,1:5]                 
##    store   Sales Profit   MTenure    CTenure
## 74    74 1782957 518998 171.09720  29.519510
## 7      7 1809256 476355  62.53080   7.326488
## 9      9 2113089 474725 108.99350   6.061602
## 6      6 1703140 469050 149.93590  11.351130
## 44    44 1807740 439781 182.23640 114.151900
## 2      2 1619874 424007  86.22219   6.636550
## 45    45 1602362 410149  47.64565   9.166325
## 18    18 1704826 394039 239.96980  33.774130
## 11    11 1583446 389886  44.81977   2.036961
## 47    47 1665657 387853  12.84790   6.636550

The 10 Least Profitable Stores:

bottomleast<- store[order(store$Profit),]
View(bottomleast)
bottomleast[1:10,1:5]                 
##    store   Sales Profit     MTenure   CTenure
## 57    57  699306 122180  24.3485700  2.956879
## 66    66  879581 146058 115.2039000  3.876797
## 41    41  744211 147327  14.9180200 11.926080
## 55    55  925744 147672   6.6703910 18.365500
## 32    32  828918 149033  36.0792600  6.636550
## 13    13  857843 152513   0.6571813  1.577002
## 54    54  811190 159792   6.6703910  3.876797
## 52    52 1073008 169201  24.1185600  3.416838
## 61    61  716589 177046  21.8184200 13.305950
## 37    37 1202917 187765  23.1985000  1.347023

Scatter Plots

A scatter plot of Profit vs. MTenure

library(car)
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
 scatterplot(store$Profit ~ store$MTenure, 
    xlab="MTenure", ylab="Profit", 
    main="Scatter Plot of Profit Vs MTenure", 
    labels=row.names(store))                 

A scatter plot of Profit vs. CTenure

 scatterplot(store$Profit ~ store$CTenure, 
    xlab="CTenure", ylab="Profit", 
    main="Scatter Plot of Profit Vs CTenure", 
    labels=row.names(store))               

Correlation Matrix

 round (cor(store), digits = 2)
##            store Sales Profit MTenure CTenure   Pop  Comp Visibility
## store       1.00 -0.23  -0.20   -0.06    0.02 -0.29  0.03      -0.03
## Sales      -0.23  1.00   0.92    0.45    0.25  0.40 -0.24       0.13
## Profit     -0.20  0.92   1.00    0.44    0.26  0.43 -0.33       0.14
## MTenure    -0.06  0.45   0.44    1.00    0.24 -0.06  0.18       0.16
## CTenure     0.02  0.25   0.26    0.24    1.00  0.00 -0.07       0.07
## Pop        -0.29  0.40   0.43   -0.06    0.00  1.00 -0.27      -0.05
## Comp        0.03 -0.24  -0.33    0.18   -0.07 -0.27  1.00       0.03
## Visibility -0.03  0.13   0.14    0.16    0.07 -0.05  0.03       1.00
## PedCount   -0.22  0.42   0.45    0.06   -0.08  0.61 -0.15      -0.14
## Res        -0.03 -0.17  -0.16   -0.06   -0.34 -0.24  0.22       0.02
## Hours24     0.03  0.06  -0.03   -0.17    0.07 -0.22  0.13       0.05
## CrewSkill   0.05  0.16   0.16    0.10    0.26  0.28 -0.04      -0.20
## MgrSkill   -0.07  0.31   0.32    0.23    0.12  0.08  0.22       0.07
## ServQual   -0.32  0.39   0.36    0.18    0.08  0.12  0.02       0.21
##            PedCount   Res Hours24 CrewSkill MgrSkill ServQual
## store         -0.22 -0.03    0.03      0.05    -0.07    -0.32
## Sales          0.42 -0.17    0.06      0.16     0.31     0.39
## Profit         0.45 -0.16   -0.03      0.16     0.32     0.36
## MTenure        0.06 -0.06   -0.17      0.10     0.23     0.18
## CTenure       -0.08 -0.34    0.07      0.26     0.12     0.08
## Pop            0.61 -0.24   -0.22      0.28     0.08     0.12
## Comp          -0.15  0.22    0.13     -0.04     0.22     0.02
## Visibility    -0.14  0.02    0.05     -0.20     0.07     0.21
## PedCount       1.00 -0.28   -0.28      0.21     0.09    -0.01
## Res           -0.28  1.00   -0.09     -0.15    -0.03     0.09
## Hours24       -0.28 -0.09    1.00      0.11    -0.04     0.06
## CrewSkill      0.21 -0.15    0.11      1.00    -0.02    -0.03
## MgrSkill       0.09 -0.03   -0.04     -0.02     1.00     0.36
## ServQual      -0.01  0.09    0.06     -0.03     0.36     1.00
round(cor(store$Profit,store$MTenure),digits = 2)
## [1] 0.44
round(cor(store$Profit,store$CTenure),digits = 2)
## [1] 0.26

The correlation between Profit and MTenure = 0.44

The correlation between Profit and CTenure = 0.26

Corrgram based on all variables in the dataset:

library(corrgram)
corrgram(store, order=FALSE, lower.panel=panel.shade,
         upper.panel=panel.pie, text.panel=panel.txt,
         main="Corrgram of Store Variables")

Managerially relevant correlations:

Pearson’s Correlation Tests

Test on the correlation between Profit and MTenure

p-value: 8.193e-05

Thus, we neglect the null hypothesis since the p value < 0.05. There exists a relation between Profit and MTenure.

cor.test(store$Profit,store$MTenure,method = "pearson")
## 
##  Pearson's product-moment correlation
## 
## data:  store$Profit and store$MTenure
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2353497 0.6055175
## sample estimates:
##       cor 
## 0.4388692

Test on the correlation between Profit and CTenure

p-value: 0.02562

Thus, we neglect the null hypothesis since the p value < 0.05. There exists a relation between Profit and CTenure.

cor.test(store$Profit,store$CTenure,method = "pearson")
## 
##  Pearson's product-moment correlation
## 
## data:  store$Profit and store$CTenure
## t = 2.2786, df = 73, p-value = 0.02562
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03262507 0.45786339
## sample estimates:
##       cor 
## 0.2576789

Regression Analysis

reg<-lm(Profit ~MTenure+CTenure+Comp+Pop+PedCount+Res+Hours24+Visibility, data = store)
reg
## 
## Call:
## lm(formula = Profit ~ MTenure + CTenure + Comp + Pop + PedCount + 
##     Res + Hours24 + Visibility, data = store)
## 
## Coefficients:
## (Intercept)      MTenure      CTenure         Comp          Pop  
##    7610.041      760.993      944.978   -25286.887        3.667  
##    PedCount          Res      Hours24   Visibility  
##   34087.359    91584.675    63233.307    12625.447

The explanatory variable(s) whose beta-coefficients are statistically significant (p < 0.05):

MTenure

CTenure

Comp

Pop

PedCount

summary(reg)$coef[summary(reg)$coef[,4] <= .05, 4]
##      MTenure      CTenure         Comp          Pop     PedCount 
## 9.715897e-08 2.839955e-02 1.938381e-05 1.489046e-02 3.664408e-04 
##          Res      Hours24 
## 2.262320e-02 1.993586e-03

The explanatory variable(s) whose beta-coefficients are not statistically significant (p > 0.05):

Intercept

Visibility

summary(reg)$coef[summary(reg)$coef[,4] > .05, 4]
## (Intercept)  Visibility 
##   0.9096745   0.1694106

Q. What is expected change in the Profit at a store, if the Manager’s tenure i.e. number of months of experience with Store24, increases by one month?

A. The expected change in the Profit at a store, if the Manager’s tenure increases by one month is 760.99 dollars

round(summary(reg)$coefficients["MTenure",1], digits=2)
## [1] 760.99

Q. What is expected change in the Profit at a store, if the Crew’s tenure i.e. number of months of experience with Store24, increases by one month?

A. The expected change in the Profit at a store, if the Crew’s tenure increases by one month is 944.98 dollars

round(summary(reg)$coefficients["CTenure",1], digits=2)
## [1] 944.98

Executive Summary

Based on the regression analysis, we can reject the null hypothesis because of the p value. Thus, we know that there is a relation between tenure of manager, tenure of the crew and profits.

From this, we gain that managers should have incentives for employees such as bonuses and should also invest in their employees through skill development programs. This can help in increasing the tenure of the crew.

We can see that tenure of a manager has greater impact on profits than tenure of the crew. Hence, effective policies should be in place in order to retain managers and increase their tenure in order to increase their profits.