this is HBR Case Study Store24 (A): Managing Employee Retention

setwd("I:/Ayan7926/My Files/IIEST 2K15-2K20/Intern/Internship/Resources/Week 3/week 3 day 1")
store <- read.csv(paste("Store24.csv", sep=""))
View(store)
summary(store)
##      store          Sales             Profit          MTenure      
##  Min.   : 1.0   Min.   : 699306   Min.   :122180   Min.   :  0.00  
##  1st Qu.:19.5   1st Qu.: 984579   1st Qu.:211004   1st Qu.:  6.67  
##  Median :38.0   Median :1127332   Median :265014   Median : 24.12  
##  Mean   :38.0   Mean   :1205413   Mean   :276314   Mean   : 45.30  
##  3rd Qu.:56.5   3rd Qu.:1362388   3rd Qu.:331314   3rd Qu.: 50.92  
##  Max.   :75.0   Max.   :2113089   Max.   :518998   Max.   :277.99  
##     CTenure              Pop             Comp          Visibility  
##  Min.   :  0.8871   Min.   : 1046   Min.   : 1.651   Min.   :2.00  
##  1st Qu.:  4.3943   1st Qu.: 5616   1st Qu.: 3.151   1st Qu.:3.00  
##  Median :  7.2115   Median : 8896   Median : 3.629   Median :3.00  
##  Mean   : 13.9315   Mean   : 9826   Mean   : 3.788   Mean   :3.08  
##  3rd Qu.: 17.2156   3rd Qu.:14104   3rd Qu.: 4.230   3rd Qu.:4.00  
##  Max.   :114.1519   Max.   :26519   Max.   :11.128   Max.   :5.00  
##     PedCount         Res          Hours24       CrewSkill    
##  Min.   :1.00   Min.   :0.00   Min.   :0.00   Min.   :2.060  
##  1st Qu.:2.00   1st Qu.:1.00   1st Qu.:1.00   1st Qu.:3.225  
##  Median :3.00   Median :1.00   Median :1.00   Median :3.500  
##  Mean   :2.96   Mean   :0.96   Mean   :0.84   Mean   :3.457  
##  3rd Qu.:4.00   3rd Qu.:1.00   3rd Qu.:1.00   3rd Qu.:3.655  
##  Max.   :5.00   Max.   :1.00   Max.   :1.00   Max.   :4.640  
##     MgrSkill        ServQual     
##  Min.   :2.957   Min.   : 57.90  
##  1st Qu.:3.344   1st Qu.: 78.95  
##  Median :3.589   Median : 89.47  
##  Mean   :3.638   Mean   : 87.15  
##  3rd Qu.:3.925   3rd Qu.: 99.90  
##  Max.   :4.622   Max.   :100.00
library(psych)
describe(store)
##            vars  n       mean        sd     median    trimmed       mad
## store         1 75      38.00     21.79      38.00      38.00     28.17
## Sales         2 75 1205413.12 304531.31 1127332.00 1182031.25 288422.04
## Profit        3 75  276313.61  89404.08  265014.00  270260.34  90532.00
## MTenure       4 75      45.30     57.67      24.12      33.58     29.67
## CTenure       5 75      13.93     17.70       7.21      10.60      6.14
## Pop           6 75    9825.59   5911.67    8896.00    9366.07   7266.22
## Comp          7 75       3.79      1.31       3.63       3.66      0.82
## Visibility    8 75       3.08      0.75       3.00       3.07      0.00
## PedCount      9 75       2.96      0.99       3.00       2.97      1.48
## Res          10 75       0.96      0.20       1.00       1.00      0.00
## Hours24      11 75       0.84      0.37       1.00       0.92      0.00
## CrewSkill    12 75       3.46      0.41       3.50       3.47      0.34
## MgrSkill     13 75       3.64      0.41       3.59       3.62      0.45
## ServQual     14 75      87.15     12.61      89.47      88.62     15.61
##                  min        max      range  skew kurtosis       se
## store           1.00      75.00      74.00  0.00    -1.25     2.52
## Sales      699306.00 2113089.00 1413783.00  0.71    -0.09 35164.25
## Profit     122180.00  518998.00  396818.00  0.62    -0.21 10323.49
## MTenure         0.00     277.99     277.99  2.01     3.90     6.66
## CTenure         0.89     114.15     113.26  3.52    15.00     2.04
## Pop          1046.00   26519.00   25473.00  0.62    -0.23   682.62
## Comp            1.65      11.13       9.48  2.48    11.31     0.15
## Visibility      2.00       5.00       3.00  0.25    -0.38     0.09
## PedCount        1.00       5.00       4.00  0.00    -0.52     0.11
## Res             0.00       1.00       1.00 -4.60    19.43     0.02
## Hours24         0.00       1.00       1.00 -1.82     1.32     0.04
## CrewSkill       2.06       4.64       2.58 -0.43     1.64     0.05
## MgrSkill        2.96       4.62       1.67  0.27    -0.53     0.05
## ServQual       57.90     100.00      42.10 -0.66    -0.72     1.46

mean,Sd of Profit,Ctenure,Mtenure

mean(store$Profit)
## [1] 276313.6
mean(store$MTenure)
## [1] 45.29644
mean(store$CTenure)
## [1] 13.9315
apply(store[,3:5],2,sd)
##      Profit     MTenure     CTenure 
## 89404.07634    57.67155    17.69752

top 10 and bottom profitable stores

ascorder<- store[order(store$Profit),]
View(ascorder)
ascorder[1:10,1:5]
##    store   Sales Profit     MTenure   CTenure
## 57    57  699306 122180  24.3485700  2.956879
## 66    66  879581 146058 115.2039000  3.876797
## 41    41  744211 147327  14.9180200 11.926080
## 55    55  925744 147672   6.6703910 18.365500
## 32    32  828918 149033  36.0792600  6.636550
## 13    13  857843 152513   0.6571813  1.577002
## 54    54  811190 159792   6.6703910  3.876797
## 52    52 1073008 169201  24.1185600  3.416838
## 61    61  716589 177046  21.8184200 13.305950
## 37    37 1202917 187765  23.1985000  1.347023
descorder<- store[order(-store$Profit),]
View(descorder)
descorder[1:10,1:5]
##    store   Sales Profit   MTenure    CTenure
## 74    74 1782957 518998 171.09720  29.519510
## 7      7 1809256 476355  62.53080   7.326488
## 9      9 2113089 474725 108.99350   6.061602
## 6      6 1703140 469050 149.93590  11.351130
## 44    44 1807740 439781 182.23640 114.151900
## 2      2 1619874 424007  86.22219   6.636550
## 45    45 1602362 410149  47.64565   9.166325
## 18    18 1704826 394039 239.96980  33.774130
## 11    11 1583446 389886  44.81977   2.036961
## 47    47 1665657 387853  12.84790   6.636550
plot(store$MTenure,store$Profit,main="Scatterplot of Profit vs MTenure",xlab = "Mtenure",ylab = "Profit")

plot(store$CTenure,store$Profit,main="Scatterplot of Profit vs CTenure",xlab = "Ctenure",ylab = "Profit")

cor(store)
##                  store       Sales      Profit     MTenure      CTenure
## store       1.00000000 -0.22693400 -0.19993481 -0.05655216  0.019930097
## Sales      -0.22693400  1.00000000  0.92387059  0.45488023  0.254315184
## Profit     -0.19993481  0.92387059  1.00000000  0.43886921  0.257678895
## MTenure    -0.05655216  0.45488023  0.43886921  1.00000000  0.243383135
## CTenure     0.01993010  0.25431518  0.25767890  0.24338314  1.000000000
## Pop        -0.28936691  0.40348147  0.43063326 -0.06089646 -0.001532449
## Comp        0.03194023 -0.23501372 -0.33454148  0.18087179 -0.070281327
## Visibility -0.02648858  0.13065638  0.13569207  0.15651731  0.066506016
## PedCount   -0.22117519  0.42391087  0.45023346  0.06198608 -0.084112627
## Res        -0.03142976 -0.16672402 -0.15947734 -0.06234721 -0.340340876
## Hours24     0.02687986  0.06324716 -0.02568703 -0.16513872  0.072865022
## CrewSkill   0.04866273  0.16402179  0.16008443  0.10162169  0.257154817
## MgrSkill   -0.07218804  0.31163056  0.32284842  0.22962743  0.124045346
## ServQual   -0.32246921  0.38638112  0.36245032  0.18168875  0.081156172
##                     Pop        Comp  Visibility     PedCount         Res
## store      -0.289366908  0.03194023 -0.02648858 -0.221175193 -0.03142976
## Sales       0.403481471 -0.23501372  0.13065638  0.423910867 -0.16672402
## Profit      0.430633264 -0.33454148  0.13569207  0.450233461 -0.15947734
## MTenure    -0.060896460  0.18087179  0.15651731  0.061986084 -0.06234721
## CTenure    -0.001532449 -0.07028133  0.06650602 -0.084112627 -0.34034088
## Pop         1.000000000 -0.26828355 -0.04998269  0.607638861 -0.23693726
## Comp       -0.268283553  1.00000000  0.02844548 -0.146325204  0.21923878
## Visibility -0.049982694  0.02844548  1.00000000 -0.141068116  0.02194756
## PedCount    0.607638861 -0.14632520 -0.14106812  1.000000000 -0.28437852
## Res        -0.236937265  0.21923878  0.02194756 -0.284378520  1.00000000
## Hours24    -0.221767927  0.12957478  0.04692587 -0.275973353 -0.08908708
## CrewSkill   0.282845090 -0.04229731 -0.19745297  0.213672596 -0.15331247
## MgrSkill    0.083554590  0.22407913  0.07348301  0.087475440 -0.03213640
## ServQual    0.123946521  0.01814508  0.20992919 -0.005445552  0.09081624
##                Hours24   CrewSkill    MgrSkill     ServQual
## store       0.02687986  0.04866273 -0.07218804 -0.322469213
## Sales       0.06324716  0.16402179  0.31163056  0.386381121
## Profit     -0.02568703  0.16008443  0.32284842  0.362450323
## MTenure    -0.16513872  0.10162169  0.22962743  0.181688755
## CTenure     0.07286502  0.25715482  0.12404535  0.081156172
## Pop        -0.22176793  0.28284509  0.08355459  0.123946521
## Comp        0.12957478 -0.04229731  0.22407913  0.018145080
## Visibility  0.04692587 -0.19745297  0.07348301  0.209929194
## PedCount   -0.27597335  0.21367260  0.08747544 -0.005445552
## Res        -0.08908708 -0.15331247 -0.03213640  0.090816237
## Hours24     1.00000000  0.10536295 -0.03883007  0.058325655
## CrewSkill   0.10536295  1.00000000 -0.02100949 -0.033516504
## MgrSkill   -0.03883007 -0.02100949  1.00000000  0.356702708
## ServQual    0.05832565 -0.03351650  0.35670271  1.000000000
cor(store$Profit,store$MTenure)
## [1] 0.4388692
cor(store$Profit,store$CTenure)
## [1] 0.2576789
library(corrgram)
corrgram(store[,1:14],order=FALSE,main ="Corrgram of store variables",lower.panel=panel.shade,upper.panel=panel.pie,text.panel=panel.txt)

cor.test(store$Profit,store$MTenure,method = "pearson")
## 
##  Pearson's product-moment correlation
## 
## data:  store$Profit and store$MTenure
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2353497 0.6055175
## sample estimates:
##       cor 
## 0.4388692
cor.test(store$Profit,store$CTenure,method = "pearson")
## 
##  Pearson's product-moment correlation
## 
## data:  store$Profit and store$CTenure
## t = 2.2786, df = 73, p-value = 0.02562
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03262507 0.45786339
## sample estimates:
##       cor 
## 0.2576789

the p-value in both the cases are 8.193e-05 and 0.02562 respectively.

fit<-lm(Profit~MTenure,data = store)
summary(fit)
## 
## Call:
## lm(formula = Profit ~ MTenure, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -177817  -52029   -8635   50871  188316 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 245496.3    11906.4  20.619  < 2e-16 ***
## MTenure        680.3      163.0   4.173 8.19e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 80880 on 73 degrees of freedom
## Multiple R-squared:  0.1926, Adjusted R-squared:  0.1815 
## F-statistic: 17.41 on 1 and 73 DF,  p-value: 8.193e-05
fit$coefficients
## (Intercept)     MTenure 
## 245496.2904    680.3475
fit<-lm(Profit~CTenure,data = store)
summary(fit)
## 
## Call:
## lm(formula = Profit ~ CTenure, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -139848  -64869   -9022   45057  222393 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 258178.4    12814.4  20.148   <2e-16 ***
## CTenure       1301.7      571.3   2.279   0.0256 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 86970 on 73 degrees of freedom
## Multiple R-squared:  0.0664, Adjusted R-squared:  0.05361 
## F-statistic: 5.192 on 1 and 73 DF,  p-value: 0.02562
fit$coefficients
## (Intercept)     CTenure 
##  258178.442    1301.739
fit<-lm(Profit~Comp,data = store)
summary(fit)
## 
## Call:
## lm(formula = Profit ~ Comp, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -172707  -65521  -24559   56628  209205 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   362702      30119  12.042  < 2e-16 ***
## Comp          -22807       7520  -3.033  0.00335 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 84830 on 73 degrees of freedom
## Multiple R-squared:  0.1119, Adjusted R-squared:  0.09975 
## F-statistic:   9.2 on 1 and 73 DF,  p-value: 0.003351
fit$coefficients
## (Intercept)        Comp 
##   362702.27   -22807.37
fit<-lm(Profit~Pop,data = store)
summary(fit)
## 
## Call:
## lm(formula = Profit ~ Pop, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -152198  -52285  -17228   43501  235602 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 2.123e+05  1.829e+04  11.611  < 2e-16 ***
## Pop         6.513e+00  1.598e+00   4.077 0.000115 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 81240 on 73 degrees of freedom
## Multiple R-squared:  0.1854, Adjusted R-squared:  0.1743 
## F-statistic: 16.62 on 1 and 73 DF,  p-value: 0.000115
fit$coefficients
## (Intercept)         Pop 
## 212323.4932      6.5126
fit<-lm(Profit~PedCount,data = store)
summary(fit)
## 
## Call:
## lm(formula = Profit ~ PedCount, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -131878  -57678   -1538   45741  200501 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   156254      29373   5.320 1.09e-06 ***
## PedCount       40561       9415   4.308 5.06e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 80370 on 73 degrees of freedom
## Multiple R-squared:  0.2027, Adjusted R-squared:  0.1918 
## F-statistic: 18.56 on 1 and 73 DF,  p-value: 5.057e-05
fit$coefficients
## (Intercept)    PedCount 
##   156253.57    40560.82
fit<-lm(Profit~Res,data = store)
summary(fit)
## 
## Call:
## lm(formula = Profit ~ Res, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -151243  -62419   -9467   57891  245575 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   345696      51305   6.738 3.18e-09 ***
## Res           -72273      52363  -1.380    0.172    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 88860 on 73 degrees of freedom
## Multiple R-squared:  0.02543,    Adjusted R-squared:  0.01208 
## F-statistic: 1.905 on 1 and 73 DF,  p-value: 0.1717
fit$coefficients
## (Intercept)         Res 
##   345695.67   -72272.97
fit<-lm(Profit~Hours24,data = store)
summary(fit)
## 
## Call:
## lm(formula = Profit ~ Hours24, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -153138  -64315  -11246   52884  237458 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   281540      25976   10.84   <2e-16 ***
## Hours24        -6222      28343   -0.22    0.827    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 89980 on 73 degrees of freedom
## Multiple R-squared:  0.0006598,  Adjusted R-squared:  -0.01303 
## F-statistic: 0.0482 on 1 and 73 DF,  p-value: 0.8268
fit$coefficients
## (Intercept)     Hours24 
##  281540.417   -6222.385
fit<-lm(Profit~Visibility,data = store)
summary(fit)
## 
## Call:
## lm(formula = Profit ~ Visibility, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -152838  -63359  -10946   43839  243980 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   226431      43855   5.163 2.02e-06 ***
## Visibility     16196      13840   1.170    0.246    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 89180 on 73 degrees of freedom
## Multiple R-squared:  0.01841,    Adjusted R-squared:  0.004966 
## F-statistic: 1.369 on 1 and 73 DF,  p-value: 0.2457
fit$coefficients
## (Intercept)  Visibility 
##   226430.94    16195.67

the explanatory variable(s) whose beta-coefficients are statistically significant (p < 0.05)- 1.Ctenure (0.025) 2.Comp(0.003) 3.Pop(0.0001) 4.PedCount(0.034) In () p-value are indicated (Ans)

the explanatory variable(s) whose beta-coefficients are not statistically significant (p > 0.05)- 1.Mtenure(0.0552) 2.Res(0.1717) 3.Hours24(0.8268) 4.Visibility(0.2457) In () p-value are indicated (Ans)

The expected change in the Profit at a store, if the Manager’s tenure i.e. number of months of experience with Store24, increases by one month is 680.3475 units.(Ans)

The expected change in the Profit at a store, if the Crew’s tenure i.e. number of months of experience with Store24, increases by one month is 1301.739 units.(Ans)