knitr::opts_chunk$set(
  fig.path = "README_figs/README-"
)

Synopsis

This project involves exploring the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database. This database tracks characteristics of major storms and weather events in the United States, including when and where they occur, as well as estimates of any fatalities, injuries, and property damage. Storms and other severe weather events can cause both public health and economic problems for communities and municipalities. Many severe events can result in fatalities, injuries, and property damage, and preventing such outcomes to the extent possible is a key concern. The events in the database start in the year 1950 and end in November 2011. In the earlier years of the database there are generally fewer events recorded, most likely due to a lack of good records.

Data Processing

Load Libraries

library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.4.2
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.4.2
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(knitr)
## Warning: package 'knitr' was built under R version 3.4.2

Load data

setwd("/Users/Anna/Desktop/Coursera Data Science")

Download file of dataset

url <- "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
download.file(url, destfile ='repdata-data-StormData.csv.bz2')

Read data

stormdata <- read.csv("repdata-data-StormData.csv.bz2")
head(stormdata)
##   STATE__           BGN_DATE BGN_TIME TIME_ZONE COUNTY COUNTYNAME STATE
## 1       1  4/18/1950 0:00:00     0130       CST     97     MOBILE    AL
## 2       1  4/18/1950 0:00:00     0145       CST      3    BALDWIN    AL
## 3       1  2/20/1951 0:00:00     1600       CST     57    FAYETTE    AL
## 4       1   6/8/1951 0:00:00     0900       CST     89    MADISON    AL
## 5       1 11/15/1951 0:00:00     1500       CST     43    CULLMAN    AL
## 6       1 11/15/1951 0:00:00     2000       CST     77 LAUDERDALE    AL
##    EVTYPE BGN_RANGE BGN_AZI BGN_LOCATI END_DATE END_TIME COUNTY_END
## 1 TORNADO         0                                               0
## 2 TORNADO         0                                               0
## 3 TORNADO         0                                               0
## 4 TORNADO         0                                               0
## 5 TORNADO         0                                               0
## 6 TORNADO         0                                               0
##   COUNTYENDN END_RANGE END_AZI END_LOCATI LENGTH WIDTH F MAG FATALITIES
## 1         NA         0                      14.0   100 3   0          0
## 2         NA         0                       2.0   150 2   0          0
## 3         NA         0                       0.1   123 2   0          0
## 4         NA         0                       0.0   100 2   0          0
## 5         NA         0                       0.0   150 2   0          0
## 6         NA         0                       1.5   177 2   0          0
##   INJURIES PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES
## 1       15    25.0          K       0                                    
## 2        0     2.5          K       0                                    
## 3        2    25.0          K       0                                    
## 4        2     2.5          K       0                                    
## 5        2     2.5          K       0                                    
## 6        6     2.5          K       0                                    
##   LATITUDE LONGITUDE LATITUDE_E LONGITUDE_ REMARKS REFNUM
## 1     3040      8812       3051       8806              1
## 2     3042      8755          0          0              2
## 3     3340      8742          0          0              3
## 4     3458      8626          0          0              4
## 5     3412      8642          0          0              5
## 6     3450      8748          0          0              6

Results

Tornados and floods are the most damaging weather events overall.

Event types harmful to population health

Population health determined by the number of fatalties and injuries. Fatalities and injuries classified by type and then ordered.

Fatalities Data

fatalityData <- (subset(stormdata, FATALITIES > 0))[c(8, 23)]
fatalityGroupedData <- aggregate(FATALITIES ~ EVTYPE, data = fatalityData, FUN = "sum", na.rm = TRUE)
fatalityGroupedData <- fatalityGroupedData[order(fatalityGroupedData$FATALITIES, decreasing=TRUE), ]
fatalityGroupedData <- fatalityGroupedData[1:5, ]
fatalityGroupedData$EVTYPE <- factor(fatalityGroupedData$EVTYPE, levels=fatalityGroupedData$EVTYPE)

Injuries Data

injuryData <- (subset(stormdata, INJURIES > 0))[c(8, 24)]
injuryGroupedData <- aggregate(INJURIES ~ EVTYPE, data = injuryData, FUN = "sum", na.rm = TRUE)
injuryGroupedData <- injuryGroupedData[order(injuryGroupedData$INJURIES, decreasing=TRUE), ]
injuryGroupedData <- injuryGroupedData[1:5, ]
injuryGroupedData$EVTYPE <- factor(injuryGroupedData$EVTYPE, levels=injuryGroupedData$EVTYPE)

Fatalites Figure

ggplot(fatalityGroupedData, aes(x=EVTYPE, y=FATALITIES)) +
  geom_bar(stat="identity") +
  xlab("Types") + 
  ylab("Fatalities") +
  ggtitle("Total Fatalities")

Injuries figure

ggplot(injuryGroupedData, aes(x=EVTYPE, y=INJURIES)) +
  geom_bar(stat="identity") +
  xlab("Types") + 
  ylab("Injuries") +
  ggtitle("Total Injuries")

Tornados are the most damaging weather type to population health (in both fatalities and injuries).

Event types with greatest economic impact

Economic impact measured by property and crop damage. Code converts to monitary value.

damageAmount <- function(amount, magnitude)
{
  returnAmount <- 0
  if (toupper(magnitude)[1]=="K")
  {
    returnAmount <- (amount * 1000)
  }
  if (toupper(magnitude)[1]=="M")
  {
    returnAmount <- (amount * 1000000)
  }
  if (toupper(magnitude)[1]=="B")
  {
    returnAmount <- (amount * 1000000000)
  }
  return(returnAmount)
}

damageData <- (subset(stormdata, PROPDMG > 0 | CROPDMG > 0))[c(8, 25, 26, 27, 28)]
damageData$DamageAmount <- ((mapply(damageAmount, damageData$PROPDMG, damageData$PROPDMGEXP)) +
                                  (mapply(damageAmount, damageData$CROPDMG, damageData$CROPDMGEXP)))
                          
damageGroupedData <- aggregate(DamageAmount ~ EVTYPE, data = damageData, FUN = "sum", na.rm = TRUE)
damageGroupedData <- damageGroupedData[order(damageGroupedData$DamageAmount, decreasing=TRUE), ]
damageGroupedData <- damageGroupedData[1:5, ]
damageGroupedData$EVTYPE <- factor(damageGroupedData$EVTYPE, levels=damageGroupedData$EVTYPE)

List of Top 5 weather events

head(damageGroupedData, 5)
##                EVTYPE DamageAmount
## 72              FLOOD 150319678250
## 197 HURRICANE/TYPHOON  71913712800
## 354           TORNADO  57352113590
## 299       STORM SURGE  43323541000
## 116              HAIL  18758221170

Floods are the most damaging weather event (by crop and property damage).