This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
store<- read.csv(paste("Store24.csv", sep=""))
summary(store)
## store Sales Profit MTenure
## Min. : 1.0 Min. : 699306 Min. :122180 Min. : 0.00
## 1st Qu.:19.5 1st Qu.: 984579 1st Qu.:211004 1st Qu.: 6.67
## Median :38.0 Median :1127332 Median :265014 Median : 24.12
## Mean :38.0 Mean :1205413 Mean :276314 Mean : 45.30
## 3rd Qu.:56.5 3rd Qu.:1362388 3rd Qu.:331314 3rd Qu.: 50.92
## Max. :75.0 Max. :2113089 Max. :518998 Max. :277.99
## CTenure Pop Comp Visibility
## Min. : 0.8871 Min. : 1046 Min. : 1.651 Min. :2.00
## 1st Qu.: 4.3943 1st Qu.: 5616 1st Qu.: 3.151 1st Qu.:3.00
## Median : 7.2115 Median : 8896 Median : 3.629 Median :3.00
## Mean : 13.9315 Mean : 9826 Mean : 3.788 Mean :3.08
## 3rd Qu.: 17.2156 3rd Qu.:14104 3rd Qu.: 4.230 3rd Qu.:4.00
## Max. :114.1519 Max. :26519 Max. :11.128 Max. :5.00
## PedCount Res Hours24 CrewSkill
## Min. :1.00 Min. :0.00 Min. :0.00 Min. :2.060
## 1st Qu.:2.00 1st Qu.:1.00 1st Qu.:1.00 1st Qu.:3.225
## Median :3.00 Median :1.00 Median :1.00 Median :3.500
## Mean :2.96 Mean :0.96 Mean :0.84 Mean :3.457
## 3rd Qu.:4.00 3rd Qu.:1.00 3rd Qu.:1.00 3rd Qu.:3.655
## Max. :5.00 Max. :1.00 Max. :1.00 Max. :4.640
## MgrSkill ServQual
## Min. :2.957 Min. : 57.90
## 1st Qu.:3.344 1st Qu.: 78.95
## Median :3.589 Median : 89.47
## Mean :3.638 Mean : 87.15
## 3rd Qu.:3.925 3rd Qu.: 99.90
## Max. :4.622 Max. :100.00
library(psych)
describe(store$Profit)
## vars n mean sd median trimmed mad min max range
## X1 1 75 276313.6 89404.08 265014 270260.3 90532 122180 518998 396818
## skew kurtosis se
## X1 0.62 -0.21 10323.49
describe(store$MTenure)
## vars n mean sd median trimmed mad min max range skew kurtosis
## X1 1 75 45.3 57.67 24.12 33.58 29.67 0 277.99 277.99 2.01 3.9
## se
## X1 6.66
describe(store$CTenure)
## vars n mean sd median trimmed mad min max range skew kurtosis
## X1 1 75 13.93 17.7 7.21 10.6 6.14 0.89 114.15 113.26 3.52 15
## se
## X1 2.04
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
store1 <- select(store, store, Sales, Profit, MTenure, CTenure)
newdata <- store1[order(store1$Profit), ]
names(newdata)[1] <- "StoreID"
newdata[1:10, ]
## StoreID Sales Profit MTenure CTenure
## 57 57 699306 122180 24.3485700 2.956879
## 66 66 879581 146058 115.2039000 3.876797
## 41 41 744211 147327 14.9180200 11.926080
## 55 55 925744 147672 6.6703910 18.365500
## 32 32 828918 149033 36.0792600 6.636550
## 13 13 857843 152513 0.6571813 1.577002
## 54 54 811190 159792 6.6703910 3.876797
## 52 52 1073008 169201 24.1185600 3.416838
## 61 61 716589 177046 21.8184200 13.305950
## 37 37 1202917 187765 23.1985000 1.347023
newdata[66:75, ]
## StoreID Sales Profit MTenure CTenure
## 47 47 1665657 387853 12.84790 6.636550
## 11 11 1583446 389886 44.81977 2.036961
## 18 18 1704826 394039 239.96980 33.774130
## 45 45 1602362 410149 47.64565 9.166325
## 2 2 1619874 424007 86.22219 6.636550
## 44 44 1807740 439781 182.23640 114.151900
## 6 6 1703140 469050 149.93590 11.351130
## 9 9 2113089 474725 108.99350 6.061602
## 7 7 1809256 476355 62.53080 7.326488
## 74 74 1782957 518998 171.09720 29.519510
library(car)
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
## recode
## The following object is masked from 'package:psych':
##
## logit
scatterplot(store$Profit ~ store$MTenure, main = "Scatterplot of Profit vs. MTenure", xlab = "MTenure", ylab = "Profit")
scatterplot(store$Profit ~ store$CTenure, main = "Scatterplot of Profit vs. CTenure", xlab = "CTenure", ylab = "Profit")
cor(store)
## store Sales Profit MTenure CTenure
## store 1.00000000 -0.22693400 -0.19993481 -0.05655216 0.019930097
## Sales -0.22693400 1.00000000 0.92387059 0.45488023 0.254315184
## Profit -0.19993481 0.92387059 1.00000000 0.43886921 0.257678895
## MTenure -0.05655216 0.45488023 0.43886921 1.00000000 0.243383135
## CTenure 0.01993010 0.25431518 0.25767890 0.24338314 1.000000000
## Pop -0.28936691 0.40348147 0.43063326 -0.06089646 -0.001532449
## Comp 0.03194023 -0.23501372 -0.33454148 0.18087179 -0.070281327
## Visibility -0.02648858 0.13065638 0.13569207 0.15651731 0.066506016
## PedCount -0.22117519 0.42391087 0.45023346 0.06198608 -0.084112627
## Res -0.03142976 -0.16672402 -0.15947734 -0.06234721 -0.340340876
## Hours24 0.02687986 0.06324716 -0.02568703 -0.16513872 0.072865022
## CrewSkill 0.04866273 0.16402179 0.16008443 0.10162169 0.257154817
## MgrSkill -0.07218804 0.31163056 0.32284842 0.22962743 0.124045346
## ServQual -0.32246921 0.38638112 0.36245032 0.18168875 0.081156172
## Pop Comp Visibility PedCount Res
## store -0.289366908 0.03194023 -0.02648858 -0.221175193 -0.03142976
## Sales 0.403481471 -0.23501372 0.13065638 0.423910867 -0.16672402
## Profit 0.430633264 -0.33454148 0.13569207 0.450233461 -0.15947734
## MTenure -0.060896460 0.18087179 0.15651731 0.061986084 -0.06234721
## CTenure -0.001532449 -0.07028133 0.06650602 -0.084112627 -0.34034088
## Pop 1.000000000 -0.26828355 -0.04998269 0.607638861 -0.23693726
## Comp -0.268283553 1.00000000 0.02844548 -0.146325204 0.21923878
## Visibility -0.049982694 0.02844548 1.00000000 -0.141068116 0.02194756
## PedCount 0.607638861 -0.14632520 -0.14106812 1.000000000 -0.28437852
## Res -0.236937265 0.21923878 0.02194756 -0.284378520 1.00000000
## Hours24 -0.221767927 0.12957478 0.04692587 -0.275973353 -0.08908708
## CrewSkill 0.282845090 -0.04229731 -0.19745297 0.213672596 -0.15331247
## MgrSkill 0.083554590 0.22407913 0.07348301 0.087475440 -0.03213640
## ServQual 0.123946521 0.01814508 0.20992919 -0.005445552 0.09081624
## Hours24 CrewSkill MgrSkill ServQual
## store 0.02687986 0.04866273 -0.07218804 -0.322469213
## Sales 0.06324716 0.16402179 0.31163056 0.386381121
## Profit -0.02568703 0.16008443 0.32284842 0.362450323
## MTenure -0.16513872 0.10162169 0.22962743 0.181688755
## CTenure 0.07286502 0.25715482 0.12404535 0.081156172
## Pop -0.22176793 0.28284509 0.08355459 0.123946521
## Comp 0.12957478 -0.04229731 0.22407913 0.018145080
## Visibility 0.04692587 -0.19745297 0.07348301 0.209929194
## PedCount -0.27597335 0.21367260 0.08747544 -0.005445552
## Res -0.08908708 -0.15331247 -0.03213640 0.090816237
## Hours24 1.00000000 0.10536295 -0.03883007 0.058325655
## CrewSkill 0.10536295 1.00000000 -0.02100949 -0.033516504
## MgrSkill -0.03883007 -0.02100949 1.00000000 0.356702708
## ServQual 0.05832565 -0.03351650 0.35670271 1.000000000
cor(store$Profit, store$MTenure)
## [1] 0.4388692
cor(store$Profit, store$CTenure)
## [1] 0.2576789
library(corrgram)
corrgram(store, order = TRUE, lower.panel = panel.shade, upper.panel = panel.pie, text.panel = panel.txt, main = "Corrgram of Store variables")
cor.test(store$Profit, store$MTenure)
##
## Pearson's product-moment correlation
##
## data: store$Profit and store$MTenure
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.2353497 0.6055175
## sample estimates:
## cor
## 0.4388692
cor.test(store$Profit, store$CTenure)
##
## Pearson's product-moment correlation
##
## data: store$Profit and store$CTenure
## t = 2.2786, df = 73, p-value = 0.02562
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.03262507 0.45786339
## sample estimates:
## cor
## 0.2576789
fit <- lm(Profit ~ MTenure + CTenure + Comp + Pop + PedCount + Res + Hours24 + Visibility, data = store)
summary(fit)
##
## Call:
## lm(formula = Profit ~ MTenure + CTenure + Comp + Pop + PedCount +
## Res + Hours24 + Visibility, data = store)
##
## Residuals:
## Min 1Q Median 3Q Max
## -105789 -35946 -7069 33780 112390
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7610.041 66821.994 0.114 0.909674
## MTenure 760.993 127.086 5.988 9.72e-08 ***
## CTenure 944.978 421.687 2.241 0.028400 *
## Comp -25286.887 5491.937 -4.604 1.94e-05 ***
## Pop 3.667 1.466 2.501 0.014890 *
## PedCount 34087.359 9073.196 3.757 0.000366 ***
## Res 91584.675 39231.283 2.334 0.022623 *
## Hours24 63233.307 19641.114 3.219 0.001994 **
## Visibility 12625.447 9087.620 1.389 0.169411
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 56970 on 66 degrees of freedom
## Multiple R-squared: 0.6379, Adjusted R-squared: 0.594
## F-statistic: 14.53 on 8 and 66 DF, p-value: 5.382e-12
Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.