library(dyplr)
Error in library(dyplr) : there is no package called ‘dyplr’
glimpse(train)
Observations: 891
Variables: 12
$ PassengerId <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1...
$ Survived <dbl> 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, ...
$ Pclass <dbl> 3, 1, 3, 1, 3, 3, 1, 3, 3, 2, 3, 1, 3, 3, 3, 2, 3, 2, 3, 3, ...
$ Name <chr> "Braund, Mr. Owen Harris", "Cumings, Mrs. John Bradley (Flor...
$ Sex <chr> "male", "female", "female", "female", "male", "male", "male"...
$ Age <dbl> 22, 38, 26, 35, 35, NA, 54, 2, 27, 14, 4, 58, 20, 39, 14, 55...
$ SibSp <dbl> 1, 1, 0, 1, 0, 0, 0, 3, 0, 1, 1, 0, 0, 1, 0, 0, 4, 0, 1, 0, ...
$ Parch <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0, 5, 0, 0, 1, 0, 0, 0, ...
$ Ticket <chr> "A/5 21171", "PC 17599", "STON/O2. 3101282", "113803", "3734...
$ Fare <dbl> 7.2500, 71.2833, 7.9250, 53.1000, 8.0500, 8.4583, 51.8625, 2...
$ Cabin <chr> NA, "C85", NA, "C123", NA, NA, "E46", NA, NA, NA, "G6", "C10...
$ Embarked <chr> "S", "C", "S", "S", "S", "Q", "S", "S", "S", "C", "S", "S", ...
Modelo 1
train%>%
group_by(Sex, Survived)%>%
summarise(n=n())
test%>%
mutate(Survived = if_else(Sex == "male",0,1))%>%
dplyr:: select(PassengerId, Survived)%>%
write.csv("modelo1.csv")
Error in test %>% mutate(Survived = if_else(Sex == "male", 0, 1)) %>% :
could not find function "%>%"
Modelo 2 (Regresion logistica)
train$Age <- ifelse(is.na(train$Age), 27,train$Age )
test$Age <- ifelse(is.na(test$Age), 27,test$Age )
fit_logit <- glm(Survived ~ Pclass + Sex + Embarked + Age, data = train, family = "binomial")
summary(fit_logit)
Call:
glm(formula = Survived ~ Pclass + Sex + Embarked + Age, family = "binomial",
data = train)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.5816 -0.6339 -0.4111 0.6620 2.4794
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.022981 0.473616 10.606 < 2e-16 ***
Pclass -1.158200 0.125167 -9.253 < 2e-16 ***
Sexmale -2.576963 0.187622 -13.735 < 2e-16 ***
EmbarkedQ -0.028847 0.368034 -0.078 0.9375
EmbarkedS -0.502394 0.229325 -2.191 0.0285 *
Age -0.033231 0.007428 -4.474 7.68e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1182.82 on 888 degrees of freedom
Residual deviance: 798.78 on 883 degrees of freedom
(2 observations deleted due to missingness)
AIC: 810.78
Number of Fisher Scoring iterations: 5
fit_logit_predict <- predict(fit_logit, test, type = "response")
fit_logit_predict
1 2 3 4 5 6 7
0.09940087 0.37381817 0.12351548 0.08104644 0.57808191 0.11960143 0.62775620
8 9 10 11 12 13 14
0.22499658 0.72115986 0.09719150 0.08104644 0.32230418 0.93073748 0.07825252
15 16 17 18 19 20 21
0.85821329 0.87091081 0.25686734 0.15104435 0.53711890 0.51324302 0.36821357
22 23 24 25 26 27 28
0.13823174 0.92166225 0.64335748 0.90633560 0.03944792 0.95826156 0.14476309
29 30 31 32 33 34 35
0.35961221 0.12721401 0.11564567 0.23679711 0.48734348 0.53711890 0.57221336
36 37 38 39 40 41 42
0.16200894 0.53711890 0.58616535 0.08613624 0.08104644 0.08910664 0.47207577
43 44 45 46 47 48 49
0.05247842 0.76981310 0.86610971 0.08613624 0.44829103 0.12404540 0.86656459
50 51 52 53 54 55 56
0.46248812 0.49696999 0.31699426 0.82340169 0.91922907 0.31699426 0.19944940
57 58 59 60 61 62 63
0.06332468 0.08613624 0.08104644 0.93513992 0.10949566 0.19213939 0.10629723
64 65 66 67 68 69 70
0.68749865 0.70178551 0.78700221 0.71532222 0.31508899 0.56406008 0.79714181
71 72 73 74 75 76 77
0.67304486 0.09719150 0.52056020 0.58436878 0.93712658 0.55176629 0.08104644
78 79 80 81 82 83 84
0.82269010 0.20266729 0.67304486 0.22653726 0.19138213 0.30092524 0.08104644
85 86 87 88 89 90 91
0.31078185 0.12721401 0.65074054 0.61012281 0.65074054 0.39192264 0.57808191
92 93 94 95 96 97 98
0.08104644 0.92166225 0.08104644 0.61231234 0.08613624 0.69779695 0.07623230
99 100 101 102 103 104 105
0.59420263 0.06738315 0.91952026 0.21925498 0.12404540 0.08355612 0.73432623
106 107 108 109 110 111 112
0.07860566 0.14738241 0.12404540 0.08104644 0.27139636 0.22568231 0.65074054
113 114 115 116 117 118 119
0.93513992 0.71192663 0.78054280 0.16427739 0.12721401 0.73355914 0.52285935
120 121 122 123 124 125 126
0.77564881 0.85880678 0.12404540 0.93712658 0.07860566 0.12404540 0.61799803
127 128 129 130 131 132 133
0.09431441 0.65074054 0.14573162 0.08878831 0.06950174 0.38380562 0.53711890
134 135 136 137 138 139 140
0.12721401 0.04927023 0.08878831 0.12907030 0.22499658 0.56995642 0.05415560
141 142 143 144 145 146 147
0.67121307 0.90600158 0.32316282 0.21361951 0.35199563 0.07168182 0.47207577
148 149 150 151 152 153 154
0.09431441 0.47207577 0.20266729 0.95691201 0.12721401 0.02815551 0.46248812
155 156 157 158 159 160 161
0.12314502 0.08878831 0.91672714 0.56995642 0.35199563 0.54536993 0.65074054
162 163 164 165 166 167 168
0.22076755 0.79251959 0.08104644 0.14991758 0.54536993 0.42378097 0.10629723
169 170 171 172 173 174 175
0.95108610 0.57808191 0.08104644 0.12721401 0.09151386 0.12721401 0.05415560
176 177 178 179 180 181 182
0.84628053 0.82340169 0.37597746 0.73260310 0.85043222 0.20266729 0.51456342
183 184 185 186 187 188 189
0.94071191 0.12404540 0.95108610 0.15420206 0.81851748 0.10949566 0.53711890
190 191 192 193 194 195 196
0.15420206 0.18203353 0.47207577 0.12862935 0.12715829 0.34555770 0.06738315
197 198 199 200 201 202 203
0.74808634 0.61012281 0.24285519 0.53711890 0.65074054 0.17625317 0.43191553
204 205 206 207 208 209 210
0.87416953 0.23084407 0.59642242 0.58818025 0.23679711 0.94093063 0.08613624
211 212 213 214 215 216 217
0.06950174 0.08104644 0.28136455 0.55238837 0.44601327 0.35199563 0.65074054
218 219 220 221 222 223 224
0.24810511 0.90053914 0.08104644 0.84679087 0.09719150 0.81352878 0.09719150
225 226 227 228 229 230 231
0.89124641 0.65726798 0.09151386 0.65074054 0.05331079 0.17234580 0.30195408
232 233 234 235 236 237 238
0.93490124 0.09719150 0.12404540 0.49795204 0.10014666 0.30175228 0.15535516
239 240 241 242 243 244 245
0.83285927 0.90633560 0.88463501 0.67013391 0.44829103 0.08104644 0.08104644
246 247 248 249 250 251 252
0.35961221 0.81352878 0.14573162 0.77564881 0.65726798 0.89785493 0.10014666
253 254 255 256 257 258 259
0.59642242 0.08878831 0.06843485 0.08104644 0.12404540 0.07860566 0.82818205
260 261 262 263 264 265 266
0.09719150 0.06043162 0.09719150 0.77564881 0.73355914 0.29581379 0.08104644
267 268 269 270 271 272 273
0.47207577 0.08104644 0.53711890 0.10949566 0.44008698 0.12404540 0.95260908
274 275 276 277 278 279 280
0.65074054 0.12721401 0.82340169 0.21361951 0.15420206 0.20266729 0.24901769
281 282 283 284 285 286 287
0.56995642 0.17423592 0.65074054 0.77717891 0.72701394 0.06138197 0.08104644
288 289 290 291 292 293 294
0.49696999 0.12721401 0.08104644 0.47207577 0.62775620 0.12721401 0.27372198
295 296 297 298 299 300 301
0.06138197 0.08355612 0.93543563 0.12721401 0.44731965 0.07623230 0.06950174
302 303 304 305 306 307 308
0.31699426 0.14164307 0.08878831 0.65074054 0.77479743 0.44731965 0.17385376
309 310 311 312 313 314 315
0.26070992 0.38950124 0.10629723 0.14683237 0.08104644 0.57199262 0.88463501
316 317 318 319 320 321 322
0.72204058 0.35289218 0.26812331 0.08104644 0.24901769 0.08355612 0.13477795
323 324 325 326 327 328 329
0.22499658 0.42282200 0.88759199 0.09151386 0.85880678 0.44008698 0.20809028
330 331 332 333 334 335 336
0.25528384 0.64773495 0.49795204 0.12721401 0.71442864 0.08104644 0.44731965
337 338 339 340 341 342 343
0.19213939 0.08910664 0.23084407 0.12721401 0.27469436 0.06950174 0.08104644
344 345 346 347 348 349 350
0.87406416 0.08104644 0.62581174 0.22499658 0.57091901 0.23679711 0.76387181
351 352 353 354 355 356 357
0.91446273 0.23084407 0.27469436 0.11908791 0.73891516 0.29398103 0.80246246
358 359 360 361 362 363 364
0.08104644 0.12404540 0.51226158 0.11786289 0.87091081 0.76387181 0.08104644
365 366 367 368 369 370 371
0.95408693 0.53711890 0.12721401 0.57808191 0.91446273 0.30278272 0.25528384
372 373 374 375 376 377 378
0.94451815 0.30092524 0.13765074 0.82748568 0.91446273 0.57808191 0.25528384
379 380 381 382 383 384 385
0.26070992 0.15484038 0.12404540 0.12770156 0.53711890 0.60218975 0.21925498
386 387 388 389 390 391 392
0.80323581 0.08878831 0.09389789 0.14738241 0.15054131 0.50527751 0.84125620
393 394 395 396 397 398 399
0.12314502 0.12623857 0.07623230 0.94071191 0.13529000 0.90633560 0.09431441
400 401 402 403 404 405 406
0.11030880 0.91415495 0.16307086 0.95826156 0.55490199 0.46477943 0.36935092
407 408 409 410 411 412 413
0.24285519 0.40763927 0.65074054 0.72036924 0.65074054 0.93127142 0.52884748
414 415 416 417 418
0.08104644 0.92882447 0.05676636 0.08104644 0.12721401
Survived <- ifelse(fit_logit_predict > 0.7, 1, 0)
cbind(test, Survived)%>%
dplyr::select(PassengerId, Survived)%>%
write.csv("modelo5.csv")
LS0tCnRpdGxlOiAiVGl0YW5pYyIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQpgYGB7cn0KbGlicmFyeShkeXBscikKCmBgYAoKYGBge3J9CmdsaW1wc2UodHJhaW4pCmBgYAoKIyMgTW9kZWxvIDEKYGBge3J9CnRyYWluJT4lIAogIGdyb3VwX2J5KFNleCwgU3Vydml2ZWQpJT4lCiAgc3VtbWFyaXNlKG49bigpKQpgYGAKCgpgYGB7cn0KdGVzdCU+JQogICAgbXV0YXRlKFN1cnZpdmVkID0gaWZfZWxzZShTZXggPT0gIm1hbGUiLDAsMSkpJT4lCiAgZHBseXI6OiBzZWxlY3QoUGFzc2VuZ2VySWQsIFN1cnZpdmVkKSU+JQogIHdyaXRlLmNzdigibW9kZWxvMS5jc3YiKQogIApgYGAKCiMjTW9kZWxvIDIgKFJlZ3Jlc2lvbiBsb2dpc3RpY2EpCgpgYGB7cn0KdHJhaW4kQWdlIDwtIGlmZWxzZShpcy5uYSh0cmFpbiRBZ2UpLCAyNyx0cmFpbiRBZ2UgKQp0ZXN0JEFnZSA8LSBpZmVsc2UoaXMubmEodGVzdCRBZ2UpLCAyNyx0ZXN0JEFnZSApCmZpdF9sb2dpdCA8LSBnbG0oU3Vydml2ZWQgfiBQY2xhc3MgKyBTZXggKyBFbWJhcmtlZCArIEFnZSwgZGF0YSA9IHRyYWluLCBmYW1pbHkgPSAiYmlub21pYWwiKQpzdW1tYXJ5KGZpdF9sb2dpdCkKYGBgCgpgYGB7cn0KZml0X2xvZ2l0X3ByZWRpY3QgPC0gcHJlZGljdChmaXRfbG9naXQsIHRlc3QsIHR5cGUgPSAicmVzcG9uc2UiKQpmaXRfbG9naXRfcHJlZGljdApTdXJ2aXZlZCA8LSBpZmVsc2UoZml0X2xvZ2l0X3ByZWRpY3QgPiAwLjcsIDEsIDApCmNiaW5kKHRlc3QsIFN1cnZpdmVkKSU+JQogICAgZHBseXI6OnNlbGVjdChQYXNzZW5nZXJJZCwgU3Vydml2ZWQpJT4lCiAgICB3cml0ZS5jc3YoIm1vZGVsbzUuY3N2IikKYGBgCgo=