Chopped Master Analysis

We were given a data set consisting of roughly 4000 entries with 25 variables about resturaunt ratings. Our goal was to figure out what made a person rate a resturaunt a certain way.

We discussed what we wanted to do with our data and after going through our different types of analysis that we have learned this semester, we decided we wanted to run a linear regression, a logistical regression, and then focus on CART analysis with decision trees. We also concluded that we wanted to use rating as our dependent variable to try and predict that variable.

We started by bringing in our original data set and then 3 of the edited data set we used.

We also created a table and barchart to show the distribution of our dependent variable, rating.

RRD <- read.csv("~/Business Analytics/RestaurantRatersComplete.csv")
RRDE <- read.csv("~/Business Analytics/RRD Edited2.csv")
RRDE2 <- read.csv("~/Business Analytics/RRD Edited2.csv")
RRDE3 <- read.csv("~/Business Analytics/RRD Edited2.csv")

library(lattice)
head(RRDE)
##   smoker    drink_level dress_preference ambience transport marital_status
## 1   TRUE social drinker         informal   family    public         single
## 2   TRUE social drinker         informal   family    public         single
## 3   TRUE social drinker         informal   family    public         single
## 4   TRUE social drinker         informal   family    public         single
## 5  FALSE     abstemious    no preference   family car owner         single
## 6  FALSE     abstemious    no preference   family car owner         single
##         hijos birth_year  religion activity budget rating food_rating
## 1 independent       1989  Catholic  student   high      0           0
## 2 independent       1989  Catholic  student   high      0           0
## 3 independent       1989  Catholic  student   high      0           1
## 4 independent       1989  Catholic  student   high      0           1
## 5 independent       1943 Christian  student   high      1           2
## 6 independent       1943 Christian  student   high      1           2
##   service_rating
## 1              0
## 2              0
## 3              1
## 4              1
## 5              1
## 6              0
table(RRDE$rating)
## 
##    0    1    2 
## 1773  968 1202
barchart(table(RRDE$rating),ylab="Rating",col="red")

Data Cleanup

At first glance we saw that there was some missing data. We had roughly 200 cells of question marks so we chose to remove these as that was a very small amount compared to 4000 rows. We did the removal in excel just by sorting the columns to find the missing data and deleting them.

Then in order for us to run our logisitic regression and CART analysis we needed to change our categorical variables to numeric. Most of the variables were categorical so we had to do quite a bit of recoding to make dummy variables for these. We had to make many assumptions as there wasn’t much information given about the variables. For example we are assuming that for the rating variable that 0 is a bad rating, 1 is an average rating, and 2 is a perfect rating. We also assumed we could scale all of these variables on an increasing scale. A good example of our thought process would be the transport variable where we decided car owner was the best, on foot was the worst, and that public was between the two. The only variable we didn’t scale was religion, where we clumped all the religions together so a person was either religious or not. Below you can see our recode.

library(car)
## Warning: package 'car' was built under R version 3.4.2
RRDE3$smoker=recode(RRDE3$smoker,"'FALSE'=0; 'TRUE'=1")
RRDE3$drink_level=recode(RRDE3$drink_level,"'abstemious'=0; 'casual drinker'=1; 'social drinker'=2")
RRDE3$dress_preference=recode(RRDE3$dress_preference,"'no preference'=0; 'informal'=1; 'formal'=2; 'elegant'=3")
RRDE3$ambience=recode(RRDE3$ambience,"'solitary'=0; 'friends'=1; 'family'=2")
RRDE3$transport=recode(RRDE3$transport,"'on foot'=0; 'public'=1; 'car owner'=2")
RRDE3$marital_status=recode(RRDE3$marital_status,"'single'=0; 'widowed'=1; 'married'=2")
RRDE3$hijos=recode(RRDE3$hijos,"'dependent'=0; 'independent'=1; 'kids'=2")
RRDE3$activity=recode(RRDE3$activity,"'unemployed'=0; 'student'=1; 'working-class'=2; 'professional'=3")
RRDE3$budget=recode(RRDE3$budget,"'low'=0; 'medium'=1; 'high'=2")
RRDE3$religion=recode(RRDE3$religion,"'none'=0; 'Catholic'=1; 'Christian'=1; 'Jewish'=1; 'Mormon'=1")
RRDE3$rating=recode(RRDE3$rating,"'0'=0; '1'=0; '2'=1")

This was our first recode for the RRDE3 which we will use for our logistic regression because we recoded rating to be binary, either 0 for a non-perfect rating or 1 for a perfect rating. There will be another recode for RRDE2 which we will use for our CART analysis because we left our rating as a 0, 1, or 2. This recode is the same besides the rating variable. This recode is below.

RRDE2$smoker=recode(RRDE2$smoker,"'FALSE'=0; 'TRUE'=1")
RRDE2$drink_level=recode(RRDE2$drink_level,"'abstemious'=0; 'casual drinker'=1; 'social drinker'=2")
RRDE2$dress_preference=recode(RRDE2$dress_preference,"'no preference'=0; 'informal'=1; 'formal'=2; 'elegant'=3")
RRDE2$ambience=recode(RRDE2$ambience,"'solitary'=0; 'friends'=1; 'family'=2")
RRDE2$transport=recode(RRDE2$transport,"'on foot'=0; 'public'=1; 'car owner'=2")
RRDE2$marital_status=recode(RRDE2$marital_status,"'single'=0; 'widowed'=1; 'married'=2")
RRDE2$hijos=recode(RRDE2$hijos,"'dependent'=0; 'independent'=1; 'kids'=2")
RRDE2$activity=recode(RRDE2$activity,"'unemployed'=0; 'student'=1; 'working-class'=2; 'professional'=3")
RRDE2$budget=recode(RRDE2$budget,"'low'=0; 'medium'=1; 'high'=2")
RRDE2$religion=recode(RRDE2$religion,"'none'=0; 'Catholic'=1; 'Christian'=1; 'Jewish'=1; 'Mormon'=1")

Linear Regression

We wanted to start with a linear regression as it is one of the easier things to try right away and see how it works. Also it can give a pretty good idea of what may or may not be significant as far as variables are concerned.

m1=lm(rating~.,data=RRDE)
summary(m1)
## 
## Call:
## lm(formula = rating ~ ., data = RRDE)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.91982 -0.07269 -0.01253  0.06254  1.90696 
## 
## Coefficients:
##                                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    5.8934985  1.6133807   3.653 0.000263 ***
## smokerTRUE                    -0.0343015  0.0259226  -1.323 0.185837    
## drink_levelcasual drinker     -0.0680991  0.0254250  -2.678 0.007428 ** 
## drink_levelsocial drinker     -0.1078001  0.0253675  -4.250 2.19e-05 ***
## dress_preferenceformal        -0.0806879  0.0672568  -1.200 0.230329    
## dress_preferenceinformal      -0.2004827  0.0695671  -2.882 0.003975 ** 
## dress_preferenceno preference -0.2006370  0.0712205  -2.817 0.004870 ** 
## ambiencefriends                0.0512738  0.0222279   2.307 0.021122 *  
## ambiencesolitary              -0.0339017  0.0267831  -1.266 0.205665    
## transporton foot              -0.0810585  0.0323891  -2.503 0.012367 *  
## transportpublic               -0.1638244  0.0256980  -6.375 2.04e-10 ***
## marital_statussingle           0.1276733  0.0509882   2.504 0.012321 *  
## marital_statuswidow            0.5316636  0.1003315   5.299 1.23e-07 ***
## hijosindependent              -0.0918057  0.0833669  -1.101 0.270866    
## hijoskids                     -0.3145672  0.0840026  -3.745 0.000183 ***
## birth_year                    -0.0027530  0.0008356  -3.295 0.000994 ***
## religionChristian             -0.1012856  0.0531072  -1.907 0.056569 .  
## religionJewish                -0.4772020  0.0978924  -4.875 1.13e-06 ***
## religionMormon                -0.3960469  0.1122700  -3.528 0.000424 ***
## religionnone                  -0.1064383  0.0285816  -3.724 0.000199 ***
## activitystudent                0.0260464  0.0314700   0.828 0.407915    
## activityunemployed            -0.4237667  0.1426878  -2.970 0.002997 ** 
## activityworking-class          0.2436041  0.1380733   1.764 0.077758 .  
## budgetlow                      0.1024578  0.0643328   1.593 0.111326    
## budgetmedium                   0.1296879  0.0622091   2.085 0.037160 *  
## food_rating                    0.4019010  0.0128045  31.387  < 2e-16 ***
## service_rating                 0.4430751  0.0120789  36.682  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3553 on 3916 degrees of freedom
## Multiple R-squared:  0.8291, Adjusted R-squared:  0.828 
## F-statistic: 730.7 on 26 and 3916 DF,  p-value: < 2.2e-16

As you can see from our output, our adujusted R^2 was .828 which is very good. The thing we didn’t like was that we included food rating and service rating in this as we thought of those as very linear predictors of overall rating. We decided to run another linear regression while excluding those variables.

m2=lm(rating~.-food_rating-service_rating,data=RRDE)
summary(m2)
## 
## Call:
## lm(formula = rating ~ . - food_rating - service_rating, data = RRDE)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.12437 -0.21372 -0.04191  0.34246  1.80844 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                   11.562597   2.453929   4.712 2.54e-06 ***
## smokerTRUE                    -0.069991   0.039413  -1.776 0.075837 .  
## drink_levelcasual drinker     -0.278258   0.038389  -7.248 5.06e-13 ***
## drink_levelsocial drinker     -0.099708   0.038635  -2.581 0.009895 ** 
## dress_preferenceformal        -0.309930   0.102320  -3.029 0.002469 ** 
## dress_preferenceinformal      -0.586003   0.105637  -5.547 3.09e-08 ***
## dress_preferenceno preference -0.691712   0.107970  -6.407 1.66e-10 ***
## ambiencefriends                0.019435   0.033847   0.574 0.565874    
## ambiencesolitary               0.011622   0.040729   0.285 0.775386    
## transporton foot               0.150827   0.049035   3.076 0.002113 ** 
## transportpublic               -0.317942   0.039001  -8.152 4.76e-16 ***
## marital_statussingle          -0.710426   0.075553  -9.403  < 2e-16 ***
## marital_statuswidow           -0.598117   0.150746  -3.968 7.39e-05 ***
## hijosindependent              -0.010283   0.126920  -0.081 0.935427    
## hijoskids                     -1.188992   0.126387  -9.408  < 2e-16 ***
## birth_year                    -0.004371   0.001272  -3.437 0.000595 ***
## religionChristian             -0.304440   0.080768  -3.769 0.000166 ***
## religionJewish                -0.580632   0.149064  -3.895 9.98e-05 ***
## religionMormon                -0.622124   0.170925  -3.640 0.000276 ***
## religionnone                   0.033246   0.043426   0.766 0.443977    
## activitystudent               -0.058774   0.047897  -1.227 0.219861    
## activityunemployed            -0.706535   0.216765  -3.259 0.001126 ** 
## activityworking-class         -0.423875   0.209736  -2.021 0.043348 *  
## budgetlow                     -0.160007   0.097790  -1.636 0.101872    
## budgetmedium                   0.165608   0.094744   1.748 0.080552 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5411 on 3918 degrees of freedom
## Multiple R-squared:  0.6034, Adjusted R-squared:  0.6009 
## F-statistic: 248.3 on 24 and 3918 DF,  p-value: < 2.2e-16

Now looking at this output you can see that our R^2 dropped drastically. Although .60 isn’t terrible, you can tell that food and service ratings are what is dominating our regressions.

The next step I wanted to do was run a training and test set on our data set.

set.seed(1)
n=length(RRDE$rating)
n1=2700
n2=n-n1
train=sample(1:n,n1)

m7=lm(rating~.,data=RRDE[train,])
summary(m7)
## 
## Call:
## lm(formula = rating ~ ., data = RRDE[train, ])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.60386 -0.07570 -0.01157  0.04994  1.90309 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    9.874168   1.948945   5.066 4.33e-07 ***
## smokerTRUE                    -0.018268   0.030692  -0.595 0.551759    
## drink_levelcasual drinker     -0.061937   0.030474  -2.032 0.042209 *  
## drink_levelsocial drinker     -0.101196   0.031172  -3.246 0.001183 ** 
## dress_preferenceformal        -0.006525   0.075507  -0.086 0.931148    
## dress_preferenceinformal      -0.155562   0.078722  -1.976 0.048248 *  
## dress_preferenceno preference -0.119038   0.080834  -1.473 0.140973    
## ambiencefriends                0.046512   0.026661   1.745 0.081175 .  
## ambiencesolitary              -0.021905   0.032399  -0.676 0.499027    
## transporton foot              -0.085072   0.039499  -2.154 0.031346 *  
## transportpublic               -0.181663   0.031173  -5.828 6.30e-09 ***
## marital_statussingle           0.155445   0.060826   2.556 0.010656 *  
## marital_statuswidow            0.643030   0.111410   5.772 8.75e-09 ***
## hijosindependent              -0.114208   0.104428  -1.094 0.274203    
## hijoskids                     -0.324818   0.106349  -3.054 0.002278 ** 
## birth_year                    -0.004795   0.001009  -4.752 2.12e-06 ***
## religionChristian             -0.156663   0.059628  -2.627 0.008654 ** 
## religionJewish                -0.390398   0.116970  -3.338 0.000857 ***
## religionMormon                -0.294024   0.135112  -2.176 0.029631 *  
## religionnone                  -0.117977   0.034017  -3.468 0.000532 ***
## activitystudent                0.079406   0.038903   2.041 0.041336 *  
## activityunemployed            -0.478342   0.161422  -2.963 0.003070 ** 
## activityworking-class          0.323035   0.158886   2.033 0.042139 *  
## budgetlow                      0.062614   0.082684   0.757 0.448955    
## budgetmedium                   0.118878   0.080315   1.480 0.138951    
## food_rating                    0.381054   0.015334  24.850  < 2e-16 ***
## service_rating                 0.455689   0.014570  31.275  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3506 on 2673 degrees of freedom
## Multiple R-squared:  0.8339, Adjusted R-squared:  0.8323 
## F-statistic: 516.1 on 26 and 2673 DF,  p-value: < 2.2e-16
pred=predict(m7,newdat=RRDE[-train,])
obs=RRDE$rating[-train]
diff=obs-pred
percdiff=abs(diff)/obs
me=mean(diff)
rmse=sqrt(sum(diff**2)/n2)
mape=100*(mean(percdiff))
me   # mean error
## [1] -0.01413392
rmse # root mean square error
## [1] 0.3678476
mape # mean absolute percent error 
## [1] Inf

Here we see that our training and test sets did okay so our data set would be good at predicting but we would still like to dive further into other analysis.

Logistic Regression

As mentioned before, we have recode one of the data sets to be used in a logistic regression analysis by making our dependent variable binary.

m2=glm(rating~., family=binomial,data=RRDE3)
m2
## 
## Call:  glm(formula = rating ~ ., family = binomial, data = RRDE3)
## 
## Coefficients:
##         (Intercept)               smoker         drink_level1  
##            69.87837             -0.58323              0.22203  
##        drink_level2    dress_preference1    dress_preference2  
##             0.01060              0.17308              0.25062  
##   dress_preference3            ambience1            ambience2  
##             0.51823              0.91948              0.83211  
##          transport1           transport2      marital_status2  
##            -1.25954             -0.28712              0.04129  
## marital_statuswidow               hijos1               hijos2  
##             2.75872             -0.95435             -2.33720  
##          birth_year            religion1            activity1  
##            -0.04271              0.87638             10.14821  
##           activity2            activity3              budget1  
##            12.13832              9.37795              0.19138  
##             budget2          food_rating       service_rating  
##            -2.09213              1.51763              2.14975  
## 
## Degrees of Freedom: 3942 Total (i.e. Null);  3919 Residual
## Null Deviance:       4849 
## Residual Deviance: 2025  AIC: 2073
summary(m2)
## 
## Call:
## glm(formula = rating ~ ., family = binomial, data = RRDE3)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.1271  -0.2062  -0.1098   0.3141   3.4999  
## 
## Coefficients:
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)          69.87837  266.57180   0.262 0.793216    
## smoker               -0.58323    0.21708  -2.687 0.007216 ** 
## drink_level1          0.22203    0.21634   1.026 0.304752    
## drink_level2          0.01060    0.22241   0.048 0.962004    
## dress_preference1     0.17308    0.23504   0.736 0.461516    
## dress_preference2     0.25062    0.21875   1.146 0.251937    
## dress_preference3     0.51823    0.45785   1.132 0.257691    
## ambience1             0.91948    0.27926   3.293 0.000993 ***
## ambience2             0.83211    0.21899   3.800 0.000145 ***
## transport1           -1.25954    0.28488  -4.421 9.81e-06 ***
## transport2           -0.28712    0.30154  -0.952 0.341002    
## marital_status2       0.04129    0.45160   0.091 0.927156    
## marital_statuswidow   2.75872    0.68822   4.008 6.11e-05 ***
## hijos1               -0.95435    1.07941  -0.884 0.376620    
## hijos2               -2.33719    1.11829  -2.090 0.036620 *  
## birth_year           -0.04271    0.00749  -5.702 1.18e-08 ***
## religion1             0.87638    0.24572   3.567 0.000362 ***
## activity1            10.14821  266.15825   0.038 0.969585    
## activity2            12.13832  266.17031   0.046 0.963626    
## activity3             9.37795  266.15823   0.035 0.971893    
## budget1               0.19138    0.17623   1.086 0.277480    
## budget2              -2.09213    0.48374  -4.325 1.53e-05 ***
## food_rating           1.51763    0.10348  14.666  < 2e-16 ***
## service_rating        2.14975    0.10568  20.342  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 4849.2  on 3942  degrees of freedom
## Residual deviance: 2024.7  on 3919  degrees of freedom
## AIC: 2072.7
## 
## Number of Fisher Scoring iterations: 13

Here we get our regression output but I think a training and test data set and calculating error give us a better idea about how well our data set is a predicting.

n=dim(RRDE3)[1]
n
## [1] 3943
n1=floor(n*(0.6))
n1
## [1] 2365
n2=n-n1
n2
## [1] 1578
train=sample(1:n,n1)

response=RRDE3$rating
XRRDE3 <- model.matrix(rating~.,data=RRDE3)[,-1] 

xtrain <- XRRDE3[train,]
xnew <- XRRDE3[-train,]
ytrain <- response[train]
ynew <- response[-train]

## model fitted on the training data set
m9=glm(response~.,family=binomial,data=data.frame(response=ytrain,xtrain))
summary(m9)
## 
## Call:
## glm(formula = response ~ ., family = binomial, data = data.frame(response = ytrain, 
##     xtrain))
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.1472  -0.1891  -0.1009   0.2764   3.5448  
## 
## Coefficients:
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)          95.54370  515.00490   0.186 0.852821    
## smoker               -0.28006    0.28844  -0.971 0.331578    
## drink_level1         -0.06522    0.28915  -0.226 0.821554    
## drink_level2         -0.07640    0.30562  -0.250 0.802589    
## dress_preference1     0.25544    0.32042   0.797 0.425342    
## dress_preference2     0.19136    0.29757   0.643 0.520171    
## dress_preference3     1.43589    0.64527   2.225 0.026064 *  
## ambience1             1.43661    0.38306   3.750 0.000177 ***
## ambience2             0.92837    0.30189   3.075 0.002104 ** 
## transport1           -1.50333    0.38934  -3.861 0.000113 ***
## transport2           -0.71146    0.41025  -1.734 0.082879 .  
## marital_status2      -0.34982    0.60913  -0.574 0.565763    
## marital_statuswidow   2.89613    0.89743   3.227 0.001250 ** 
## hijos1               -1.16799    1.11035  -1.052 0.292840    
## hijos2               -2.40295    1.18518  -2.027 0.042611 *  
## birth_year           -0.05598    0.01079  -5.190 2.11e-07 ***
## religion1             1.21311    0.34362   3.530 0.000415 ***
## activity1            10.53501  514.56171   0.020 0.983665    
## activity2            13.11259  514.57691   0.025 0.979670    
## activity3             9.49395  514.56172   0.018 0.985279    
## budget1               0.19441    0.23367   0.832 0.405403    
## budget2              -2.52656    0.72788  -3.471 0.000518 ***
## food_rating           1.58027    0.13792  11.458  < 2e-16 ***
## service_rating        2.31552    0.14443  16.032  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 2915.2  on 2364  degrees of freedom
## Residual deviance: 1162.3  on 2341  degrees of freedom
## AIC: 1210.3
## 
## Number of Fisher Scoring iterations: 14
## create predictions for the test (evaluation) data set
ptest=predict(m9,newdata=data.frame(xnew),type="response")  
## predicted probabilities
hist(ptest)

plot(ynew~ptest)

## coding as 1 if probability 0.5 or larger
gg1=floor(ptest+0.5)
ttt=table(ynew,gg1)
ttt
##     gg1
## ynew    0    1
##    0 1028   73
##    1  112  365
error=(ttt[1,2]+ttt[2,1])/n2
error
## [1] 0.117237
bb=cbind(ptest,ynew)
bb
##             ptest ynew
## 2    2.203520e-04    0
## 5    6.280620e-01    0
## 7    1.072628e-02    0
## 8    1.072628e-02    0
## 12   1.069184e-03    0
## 14   1.069184e-03    0
## 16   1.072628e-02    0
## 20   6.280620e-01    1
## 22   3.478541e-01    1
## 24   3.478541e-01    1
## 25   3.478541e-01    1
## 26   3.478541e-01    1
## 31   8.446742e-02    0
## 34   5.077236e-03    0
## 37   5.077236e-03    0
## 40   5.077236e-03    0
## 41   5.077236e-03    0
## 42   5.077236e-03    0
## 43   5.077236e-03    0
## 50   5.077236e-03    0
## 52   5.077236e-03    0
## 53   5.077236e-03    0
## 54   5.077236e-03    0
## 62   5.077236e-03    0
## 64   5.077236e-03    0
## 70   5.077236e-03    0
## 72   5.077236e-03    0
## 86   5.077236e-03    0
## 88   5.077236e-03    0
## 89   5.077236e-03    0
## 94   5.077236e-03    0
## 96   5.077236e-03    0
## 101  5.077236e-03    0
## 105  5.077236e-03    0
## 106  5.077236e-03    0
## 107  5.077236e-03    0
## 110  5.077236e-03    0
## 111  5.077236e-03    0
## 116  5.077236e-03    0
## 118  5.077236e-03    0
## 119  5.077236e-03    0
## 122  5.077236e-03    0
## 129  5.077236e-03    0
## 130  5.077236e-03    0
## 135  5.077236e-03    0
## 139  5.077236e-03    0
## 140  5.077236e-03    0
## 141  5.077236e-03    0
## 142  5.077236e-03    0
## 156  5.077236e-03    0
## 159  5.077236e-03    0
## 160  5.077236e-03    0
## 161  5.077236e-03    0
## 163  5.077236e-03    0
## 166  5.077236e-03    0
## 167  5.077236e-03    0
## 168  5.077236e-03    0
## 173  5.077236e-03    0
## 176  5.077236e-03    0
## 184  5.077236e-03    0
## 186  5.077236e-03    0
## 189  5.077236e-03    0
## 194  5.077236e-03    0
## 195  5.077236e-03    0
## 200  5.077236e-03    0
## 205  5.077236e-03    0
## 206  5.077236e-03    0
## 210  5.077236e-03    0
## 211  5.077236e-03    0
## 213  5.077236e-03    0
## 218  5.077236e-03    0
## 219  5.077236e-03    0
## 224  5.077236e-03    0
## 225  5.077236e-03    0
## 227  5.077236e-03    0
## 229  5.077236e-03    0
## 233  5.077236e-03    0
## 235  5.077236e-03    0
## 237  5.077236e-03    0
## 238  5.077236e-03    0
## 239  5.077236e-03    0
## 240  5.077236e-03    0
## 241  5.077236e-03    0
## 242  5.077236e-03    0
## 243  5.077236e-03    0
## 244  5.077236e-03    0
## 245  5.077236e-03    0
## 249  5.077236e-03    0
## 252  5.077236e-03    0
## 256  5.077236e-03    0
## 257  5.077236e-03    0
## 259  5.077236e-03    0
## 261  5.077236e-03    0
## 262  5.077236e-03    0
## 264  5.077236e-03    0
## 266  5.077236e-03    0
## 267  5.077236e-03    0
## 268  5.077236e-03    0
## 270  5.077236e-03    0
## 272  5.077236e-03    0
## 275  5.077236e-03    0
## 282  5.077236e-03    0
## 283  5.077236e-03    0
## 284  5.077236e-03    0
## 286  5.077236e-03    0
## 290  5.077236e-03    0
## 292  5.077236e-03    0
## 293  5.077236e-03    0
## 295  5.077236e-03    0
## 298  5.077236e-03    0
## 299  5.077236e-03    0
## 301  5.077236e-03    0
## 303  5.077236e-03    0
## 305  5.077236e-03    0
## 306  5.077236e-03    0
## 312  5.077236e-03    0
## 314  5.077236e-03    0
## 315  5.077236e-03    0
## 316  5.077236e-03    0
## 319  5.077236e-03    0
## 322  5.077236e-03    0
## 328  5.077236e-03    0
## 329  5.077236e-03    0
## 333  5.077236e-03    0
## 336  5.077236e-03    0
## 337  5.077236e-03    0
## 339  5.077236e-03    0
## 340  5.077236e-03    0
## 341  5.077236e-03    0
## 342  5.077236e-03    0
## 343  5.077236e-03    0
## 346  5.077236e-03    0
## 347  5.077236e-03    0
## 350  5.077236e-03    0
## 353  5.077236e-03    0
## 354  5.077236e-03    0
## 356  5.077236e-03    0
## 358  5.077236e-03    0
## 359  5.077236e-03    0
## 362  5.077236e-03    0
## 365  5.077236e-03    0
## 367  5.077236e-03    0
## 368  5.077236e-03    0
## 371  5.077236e-03    0
## 373  5.077236e-03    0
## 381  5.077236e-03    0
## 385  5.077236e-03    0
## 387  5.077236e-03    0
## 391  5.077236e-03    0
## 398  5.077236e-03    0
## 399  5.077236e-03    0
## 403  5.077236e-03    0
## 404  5.077236e-03    0
## 406  5.077236e-03    0
## 407  5.077236e-03    0
## 414  5.077236e-03    0
## 417  5.077236e-03    0
## 418  5.077236e-03    0
## 419  5.077236e-03    0
## 420  5.077236e-03    0
## 421  5.077236e-03    0
## 424  5.077236e-03    0
## 426  5.077236e-03    0
## 428  5.077236e-03    0
## 430  5.077236e-03    0
## 431  5.077236e-03    0
## 433  5.077236e-03    0
## 435  5.077236e-03    0
## 438  5.077236e-03    0
## 440  5.077236e-03    0
## 443  5.077236e-03    0
## 445  5.077236e-03    0
## 447  5.077236e-03    0
## 448  5.077236e-03    0
## 449  5.077236e-03    0
## 454  5.077236e-03    0
## 459  5.077236e-03    0
## 460  5.077236e-03    0
## 467  5.077236e-03    0
## 471  5.077236e-03    0
## 472  5.077236e-03    0
## 473  5.077236e-03    0
## 477  5.077236e-03    0
## 478  5.077236e-03    0
## 483  5.077236e-03    0
## 485  5.077236e-03    0
## 486  5.077236e-03    0
## 487  5.077236e-03    0
## 490  5.077236e-03    0
## 491  5.077236e-03    0
## 496  5.077236e-03    0
## 501  5.077236e-03    0
## 506  5.077236e-03    0
## 510  5.077236e-03    0
## 512  5.077236e-03    0
## 515  5.077236e-03    0
## 516  5.077236e-03    0
## 523  5.077236e-03    0
## 528  5.077236e-03    0
## 529  5.077236e-03    0
## 535  5.077236e-03    0
## 538  5.077236e-03    0
## 541  5.077236e-03    0
## 542  5.077236e-03    0
## 543  5.077236e-03    0
## 544  5.077236e-03    0
## 545  5.077236e-03    0
## 546  5.077236e-03    0
## 550  5.077236e-03    0
## 556  5.077236e-03    0
## 558  5.077236e-03    0
## 559  5.077236e-03    0
## 560  5.077236e-03    0
## 563  5.077236e-03    0
## 565  5.077236e-03    0
## 567  5.077236e-03    0
## 568  5.077236e-03    0
## 570  5.077236e-03    0
## 573  5.077236e-03    0
## 574  5.077236e-03    0
## 576  5.077236e-03    0
## 578  5.077236e-03    0
## 581  5.077236e-03    0
## 582  5.077236e-03    0
## 583  5.077236e-03    0
## 586  5.077236e-03    0
## 587  5.077236e-03    0
## 589  5.077236e-03    0
## 592  5.077236e-03    0
## 598  5.077236e-03    0
## 601  5.077236e-03    0
## 602  5.077236e-03    0
## 604  5.077236e-03    0
## 609  5.077236e-03    0
## 611  5.077236e-03    0
## 612  5.077236e-03    0
## 614  5.077236e-03    0
## 618  5.077236e-03    0
## 621  5.077236e-03    0
## 622  5.077236e-03    0
## 623  5.077236e-03    0
## 625  5.077236e-03    0
## 627  5.077236e-03    0
## 628  5.077236e-03    0
## 630  5.077236e-03    0
## 635  5.077236e-03    0
## 636  5.077236e-03    0
## 639  5.077236e-03    0
## 640  5.077236e-03    0
## 643  5.077236e-03    0
## 645  5.077236e-03    0
## 647  5.077236e-03    0
## 648  5.077236e-03    0
## 649  5.077236e-03    0
## 650  5.077236e-03    0
## 651  5.077236e-03    0
## 654  5.077236e-03    0
## 656  5.077236e-03    0
## 657  5.077236e-03    0
## 662  5.077236e-03    0
## 664  5.077236e-03    0
## 665  5.077236e-03    0
## 666  5.077236e-03    0
## 667  5.077236e-03    0
## 668  5.077236e-03    0
## 671  5.077236e-03    0
## 672  5.077236e-03    0
## 673  5.077236e-03    0
## 674  5.077236e-03    0
## 677  5.077236e-03    0
## 680  5.077236e-03    0
## 683  5.077236e-03    0
## 687  5.077236e-03    0
## 690  5.077236e-03    0
## 692  5.077236e-03    0
## 693  5.077236e-03    0
## 699  5.077236e-03    0
## 700  5.077236e-03    0
## 702  5.077236e-03    0
## 703  5.077236e-03    0
## 704  5.077236e-03    0
## 706  5.077236e-03    0
## 710  5.077236e-03    0
## 711  5.077236e-03    0
## 712  5.077236e-03    0
## 717  5.077236e-03    0
## 719  5.077236e-03    0
## 724  5.077236e-03    0
## 725  5.077236e-03    0
## 726  5.077236e-03    0
## 727  5.077236e-03    0
## 729  5.077236e-03    0
## 733  5.077236e-03    0
## 738  5.077236e-03    0
## 739  5.077236e-03    0
## 740  5.077236e-03    0
## 742  5.077236e-03    0
## 746  5.077236e-03    0
## 747  5.077236e-03    0
## 748  5.077236e-03    0
## 750  5.077236e-03    0
## 752  5.077236e-03    0
## 753  5.077236e-03    0
## 754  5.077236e-03    0
## 755  5.077236e-03    0
## 759  5.077236e-03    0
## 760  5.077236e-03    0
## 762  5.077236e-03    0
## 763  5.077236e-03    0
## 768  5.077236e-03    0
## 774  5.077236e-03    0
## 781  5.077236e-03    0
## 783  5.077236e-03    0
## 784  5.077236e-03    0
## 792  5.077236e-03    0
## 794  5.077236e-03    0
## 795  5.077236e-03    0
## 799  5.077236e-03    0
## 804  5.077236e-03    0
## 805  5.077236e-03    0
## 810  5.077236e-03    0
## 812  5.077236e-03    0
## 818  5.077236e-03    0
## 821  5.077236e-03    0
## 826  5.077236e-03    0
## 828  5.077236e-03    0
## 829  5.077236e-03    0
## 837  5.077236e-03    0
## 839  5.077236e-03    0
## 841  5.077236e-03    0
## 843  5.077236e-03    0
## 854  5.077236e-03    0
## 857  5.077236e-03    0
## 858  5.077236e-03    0
## 860  5.077236e-03    0
## 861  5.077236e-03    0
## 862  5.077236e-03    0
## 863  5.077236e-03    0
## 865  5.077236e-03    0
## 866  5.077236e-03    0
## 867  5.077236e-03    0
## 869  5.077236e-03    0
## 870  5.077236e-03    0
## 871  5.077236e-03    0
## 872  5.077236e-03    0
## 875  5.077236e-03    0
## 877  5.077236e-03    0
## 880  5.077236e-03    0
## 884  5.077236e-03    0
## 886  5.077236e-03    0
## 888  5.077236e-03    0
## 889  5.077236e-03    0
## 891  5.077236e-03    0
## 892  5.077236e-03    0
## 896  5.077236e-03    0
## 897  5.077236e-03    0
## 898  5.077236e-03    0
## 899  5.077236e-03    0
## 902  5.077236e-03    0
## 905  5.077236e-03    0
## 906  5.077236e-03    0
## 907  5.077236e-03    0
## 911  5.077236e-03    0
## 913  5.077236e-03    0
## 916  5.077236e-03    0
## 919  5.077236e-03    0
## 921  5.077236e-03    0
## 923  5.077236e-03    0
## 925  5.077236e-03    0
## 927  5.077236e-03    0
## 929  5.077236e-03    0
## 932  5.077236e-03    0
## 935  5.077236e-03    0
## 936  5.077236e-03    0
## 946  5.077236e-03    0
## 947  5.077236e-03    0
## 950  5.077236e-03    0
## 956  5.077236e-03    0
## 958  5.077236e-03    0
## 962  5.077236e-03    0
## 969  5.077236e-03    0
## 970  5.077236e-03    0
## 972  5.077236e-03    0
## 975  5.077236e-03    0
## 977  5.077236e-03    0
## 979  5.077236e-03    0
## 980  5.077236e-03    0
## 981  5.077236e-03    0
## 982  5.077236e-03    0
## 984  5.077236e-03    0
## 987  5.077236e-03    0
## 992  5.077236e-03    0
## 993  5.077236e-03    0
## 996  5.077236e-03    0
## 997  5.077236e-03    0
## 998  5.077236e-03    0
## 1000 5.077236e-03    0
## 1001 5.077236e-03    0
## 1004 5.077236e-03    0
## 1005 5.077236e-03    0
## 1007 5.077236e-03    0
## 1012 5.077236e-03    0
## 1014 5.077236e-03    0
## 1015 5.077236e-03    0
## 1017 5.077236e-03    0
## 1019 5.077236e-03    0
## 1029 5.077236e-03    0
## 1030 5.077236e-03    0
## 1031 5.077236e-03    0
## 1034 5.077236e-03    0
## 1035 5.077236e-03    0
## 1039 5.077236e-03    0
## 1040 5.077236e-03    0
## 1044 5.077236e-03    0
## 1048 5.077236e-03    0
## 1053 5.077236e-03    0
## 1056 5.077236e-03    0
## 1057 5.077236e-03    0
## 1059 5.077236e-03    0
## 1065 5.077236e-03    0
## 1074 5.077236e-03    0
## 1075 5.077236e-03    0
## 1082 5.077236e-03    0
## 1084 5.077236e-03    0
## 1085 5.077236e-03    0
## 1088 5.077236e-03    0
## 1089 5.077236e-03    0
## 1090 5.077236e-03    0
## 1094 5.077236e-03    0
## 1095 5.077236e-03    0
## 1099 5.077236e-03    0
## 1102 5.077236e-03    0
## 1103 5.077236e-03    0
## 1104 5.077236e-03    0
## 1105 5.077236e-03    0
## 1107 5.077236e-03    0
## 1108 5.077236e-03    0
## 1109 5.077236e-03    0
## 1111 5.077236e-03    0
## 1113 5.077236e-03    0
## 1115 5.077236e-03    0
## 1119 5.077236e-03    0
## 1121 5.077236e-03    0
## 1122 5.077236e-03    0
## 1123 5.077236e-03    0
## 1124 5.077236e-03    0
## 1126 5.077236e-03    0
## 1133 5.077236e-03    0
## 1134 5.077236e-03    0
## 1136 5.077236e-03    0
## 1137 5.077236e-03    0
## 1139 5.077236e-03    0
## 1140 5.077236e-03    0
## 1141 5.077236e-03    0
## 1144 5.077236e-03    0
## 1146 5.077236e-03    0
## 1147 5.077236e-03    0
## 1148 5.077236e-03    0
## 1149 5.077236e-03    0
## 1150 5.077236e-03    0
## 1151 5.077236e-03    0
## 1152 5.077236e-03    0
## 1153 5.077236e-03    0
## 1154 5.077236e-03    0
## 1155 5.077236e-03    0
## 1159 5.077236e-03    0
## 1161 5.077236e-03    0
## 1163 5.077236e-03    0
## 1164 5.077236e-03    0
## 1166 5.077236e-03    0
## 1167 5.077236e-03    0
## 1168 5.077236e-03    0
## 1171 5.077236e-03    0
## 1172 5.077236e-03    0
## 1173 5.077236e-03    0
## 1175 5.077236e-03    0
## 1176 5.077236e-03    0
## 1179 5.077236e-03    0
## 1182 5.077236e-03    0
## 1185 5.077236e-03    0
## 1189 5.077236e-03    0
## 1190 5.077236e-03    0
## 1194 5.077236e-03    0
## 1196 5.077236e-03    0
## 1198 5.077236e-03    0
## 1200 5.077236e-03    0
## 1201 5.077236e-03    0
## 1204 5.077236e-03    0
## 1205 5.077236e-03    0
## 1208 5.077236e-03    0
## 1212 5.077236e-03    0
## 1214 5.077236e-03    0
## 1220 5.077236e-03    0
## 1224 5.077236e-03    0
## 1226 5.077236e-03    0
## 1230 5.077236e-03    0
## 1231 5.077236e-03    0
## 1234 5.077236e-03    0
## 1235 5.077236e-03    0
## 1237 5.077236e-03    0
## 1238 5.077236e-03    0
## 1240 5.077236e-03    0
## 1245 5.077236e-03    0
## 1246 5.077236e-03    0
## 1251 5.077236e-03    0
## 1252 5.077236e-03    0
## 1255 5.077236e-03    0
## 1258 5.077236e-03    0
## 1260 5.077236e-03    0
## 1261 5.077236e-03    0
## 1263 5.077236e-03    0
## 1264 5.077236e-03    0
## 1267 5.077236e-03    0
## 1270 5.077236e-03    0
## 1271 5.077236e-03    0
## 1273 5.077236e-03    0
## 1278 5.077236e-03    0
## 1282 5.077236e-03    0
## 1288 5.077236e-03    0
## 1290 5.077236e-03    0
## 1294 5.077236e-03    0
## 1297 5.077236e-03    0
## 1298 5.077236e-03    0
## 1299 5.077236e-03    0
## 1305 5.077236e-03    0
## 1310 5.077236e-03    0
## 1312 5.077236e-03    0
## 1313 5.077236e-03    0
## 1315 5.077236e-03    0
## 1316 5.077236e-03    0
## 1319 5.077236e-03    0
## 1322 5.077236e-03    0
## 1323 5.077236e-03    0
## 1325 5.077236e-03    0
## 1327 5.077236e-03    0
## 1333 5.077236e-03    0
## 1338 5.077236e-03    0
## 1340 5.077236e-03    0
## 1341 5.077236e-03    0
## 1342 5.077236e-03    0
## 1345 5.077236e-03    0
## 1346 5.077236e-03    0
## 1347 5.077236e-03    0
## 1348 5.077236e-03    0
## 1352 5.077236e-03    0
## 1358 5.077236e-03    0
## 1359 5.077236e-03    0
## 1360 5.077236e-03    0
## 1362 5.077236e-03    0
## 1365 5.077236e-03    0
## 1366 5.077236e-03    0
## 1368 5.077236e-03    0
## 1374 5.077236e-03    0
## 1375 5.077236e-03    0
## 1376 5.077236e-03    0
## 1377 5.077236e-03    0
## 1385 5.077236e-03    0
## 1386 5.077236e-03    0
## 1389 5.077236e-03    0
## 1390 5.077236e-03    0
## 1391 5.077236e-03    0
## 1393 5.077236e-03    0
## 1398 5.077236e-03    0
## 1399 5.077236e-03    0
## 1400 5.077236e-03    0
## 1405 5.077236e-03    0
## 1406 5.077236e-03    0
## 1407 5.077236e-03    0
## 1408 5.077236e-03    0
## 1410 5.077236e-03    0
## 1411 5.077236e-03    0
## 1413 5.077236e-03    0
## 1414 5.077236e-03    0
## 1419 5.077236e-03    0
## 1422 5.077236e-03    0
## 1424 5.077236e-03    0
## 1428 5.077236e-03    0
## 1431 5.077236e-03    0
## 1439 5.077236e-03    0
## 1441 5.077236e-03    0
## 1444 5.077236e-03    0
## 1445 5.077236e-03    0
## 1447 5.077236e-03    0
## 1448 5.077236e-03    0
## 1452 5.077236e-03    0
## 1455 5.077236e-03    0
## 1458 5.077236e-03    0
## 1462 5.077236e-03    0
## 1463 5.077236e-03    0
## 1464 5.077236e-03    0
## 1466 5.077236e-03    0
## 1467 5.077236e-03    0
## 1477 1.186653e-02    0
## 1479 3.233621e-02    0
## 1482 1.396232e-01    0
## 1484 2.629595e-03    0
## 1485 2.629595e-03    0
## 1486 2.665067e-03    0
## 1488 2.665067e-03    0
## 1490 9.327588e-01    0
## 1492 8.446742e-02    0
## 1501 8.922621e-01    0
## 1502 1.084589e-01    0
## 1507 1.186653e-02    0
## 1511 3.291638e-03    0
## 1512 1.397601e-01    0
## 1514 6.498290e-01    0
## 1515 4.707948e-01    0
## 1522 3.233621e-02    0
## 1525 3.233621e-02    0
## 1531 1.148121e-01    0
## 1532 1.148121e-01    0
## 1533 1.148121e-01    0
## 1538 1.148121e-01    0
## 1539 1.148121e-01    0
## 1544 9.665959e-01    0
## 1548 8.194535e-01    1
## 1550 8.194535e-01    1
## 1551 8.194535e-01    1
## 1556 4.498055e-01    1
## 1558 6.303655e-01    1
## 1559 4.498055e-01    1
## 1560 4.498055e-01    1
## 1562 4.498055e-01    1
## 1570 7.225701e-02    1
## 1572 4.498055e-01    1
## 1575 8.922621e-01    1
## 1577 8.922621e-01    1
## 1578 8.922621e-01    1
## 1580 8.922621e-01    1
## 1581 8.922621e-01    1
## 1591 1.464844e-01    1
## 1597 4.545828e-01    1
## 1598 3.896474e-01    1
## 1599 1.161846e-01    1
## 1602 9.929340e-01    1
## 1603 6.770043e-01    0
## 1605 8.697151e-03    0
## 1606 1.636630e-03    0
## 1607 1.636630e-03    0
## 1610 2.247463e-03    0
## 1615 2.247463e-03    0
## 1616 2.247463e-03    0
## 1620 2.169132e-03    0
## 1622 1.661746e-02    0
## 1623 1.661746e-02    0
## 1625 1.661746e-02    0
## 1626 5.218666e-03    0
## 1627 5.218666e-03    0
## 1628 5.218666e-03    0
## 1631 5.218666e-03    0
## 1633 2.392830e-01    0
## 1634 3.513839e-01    0
## 1635 1.467702e-02    0
## 1637 1.467702e-02    0
## 1638 1.467702e-02    0
## 1640 1.467702e-02    0
## 1641 1.467702e-02    0
## 1647 1.399613e-01    0
## 1649 1.399613e-01    0
## 1650 9.568160e-02    0
## 1653 4.466369e-03    0
## 1654 2.132271e-02    0
## 1656 3.702404e-03    0
## 1657 3.702404e-03    0
## 1658 3.702404e-03    0
## 1661 3.702404e-03    0
## 1662 3.702404e-03    0
## 1663 3.702404e-03    0
## 1666 1.893504e-02    0
## 1668 3.958599e-03    0
## 1672 6.975486e-01    0
## 1677 9.520628e-04    0
## 1679 9.520628e-04    0
## 1682 3.281284e-02    0
## 1683 4.219454e-03    0
## 1685 4.219454e-03    0
## 1687 1.692841e-03    0
## 1688 1.692841e-03    0
## 1689 1.692841e-03    0
## 1692 1.692841e-03    0
## 1693 1.692841e-03    0
## 1694 1.692841e-03    0
## 1695 1.692841e-03    0
## 1696 1.692841e-03    0
## 1698 3.845305e-02    0
## 1703 6.878846e-02    0
## 1704 3.459108e-03    0
## 1705 3.459108e-03    0
## 1706 3.459108e-03    0
## 1707 3.459108e-03    0
## 1712 3.459108e-03    0
## 1715 3.122487e-03    0
## 1717 3.122487e-03    0
## 1718 4.126851e-03    0
## 1721 2.181475e-02    0
## 1722 2.181475e-02    0
## 1723 3.093862e-03    0
## 1724 3.093862e-03    0
## 1725 3.439820e-02    0
## 1733 2.814228e-01    0
## 1735 6.787727e-01    0
## 1736 3.031935e-01    0
## 1740 6.787727e-01    0
## 1744 2.499723e-01    0
## 1748 2.499723e-01    0
## 1751 2.499723e-01    0
## 1753 2.499723e-01    0
## 1754 2.499723e-01    0
## 1755 2.590259e-02    0
## 1756 2.590259e-02    0
## 1758 2.011989e-01    0
## 1760 5.501943e-01    0
## 1763 5.501943e-01    0
## 1764 5.501943e-01    0
## 1768 5.501943e-01    0
## 1772 1.044654e-02    0
## 1774 9.661042e-02    0
## 1775 9.661042e-02    0
## 1781 9.661042e-02    0
## 1782 1.461616e-01    0
## 1783 2.484337e-02    0
## 1784 2.484337e-02    0
## 1786 2.484337e-02    0
## 1790 5.562069e-01    0
## 1793 5.562069e-01    0
## 1795 5.562069e-01    0
## 1797 2.051370e-01    0
## 1799 2.051370e-01    0
## 1801 2.051370e-01    0
## 1804 7.233267e-01    0
## 1805 7.233267e-01    0
## 1810 7.233267e-01    0
## 1811 9.269867e-01    0
## 1812 9.269867e-01    0
## 1814 9.269867e-01    0
## 1819 2.392830e-01    0
## 1822 2.392830e-01    0
## 1824 4.228957e-01    0
## 1825 7.806360e-01    0
## 1827 8.889616e-01    0
## 1828 8.889616e-01    0
## 1831 8.889616e-01    0
## 1834 1.808034e-01    0
## 1835 1.808034e-01    0
## 1837 1.808034e-01    0
## 1838 2.132271e-02    0
## 1840 2.132271e-02    0
## 1845 4.730726e-01    0
## 1846 4.730726e-01    0
## 1848 4.730726e-01    0
## 1850 4.730726e-01    0
## 1851 4.730726e-01    0
## 1852 4.730726e-01    0
## 1858 4.308969e-02    0
## 1862 9.005175e-01    0
## 1863 4.718977e-01    0
## 1864 1.554078e-01    0
## 1868 9.112422e-01    0
## 1871 5.033453e-01    0
## 1875 1.545600e-01    0
## 1877 8.999361e-01    0
## 1879 1.545600e-01    0
## 1880 4.702849e-01    0
## 1882 4.702849e-01    0
## 1885 8.569647e-02    0
## 1889 6.975486e-01    0
## 1890 6.975486e-01    0
## 1892 2.772674e-01    0
## 1893 2.772674e-01    0
## 1894 2.772674e-01    0
## 1899 2.772674e-01    0
## 1900 2.772674e-01    0
## 1903 2.772674e-01    0
## 1906 2.772674e-01    0
## 1907 2.772674e-01    0
## 1908 2.772674e-01    0
## 1915 1.724971e-01    0
## 1916 1.724971e-01    0
## 1917 9.055603e-01    0
## 1918 1.322052e-01    0
## 1920 2.411548e-01    0
## 1922 3.041672e-02    0
## 1929 1.335176e-01    0
## 1931 4.280198e-01    0
## 1933 1.767469e-02    0
## 1934 1.541686e-01    0
## 1936 1.541686e-01    0
## 1938 4.028760e-02    0
## 1941 9.174498e-01    0
## 1947 6.073218e-01    0
## 1948 3.014852e-01    1
## 1949 3.014852e-01    1
## 1952 9.550217e-01    1
## 1953 8.138586e-01    1
## 1954 9.550217e-01    1
## 1957 7.986857e-01    1
## 1958 7.986857e-01    1
## 1960 7.986857e-01    1
## 1961 7.986857e-01    1
## 1962 7.986857e-01    1
## 1967 3.031935e-01    1
## 1968 1.725905e-01    1
## 1969 8.150824e-01    1
## 1970 1.725905e-01    1
## 1972 9.921059e-01    1
## 1975 9.921059e-01    1
## 1976 9.921059e-01    1
## 1981 8.314069e-01    1
## 1983 8.314069e-01    1
## 1984 8.314069e-01    1
## 1985 5.038392e-01    1
## 1986 5.038392e-01    1
## 1991 9.873438e-01    1
## 1994 9.873438e-01    1
## 1999 2.499723e-01    1
## 2001 2.499723e-01    1
## 2003 7.714921e-01    1
## 2004 7.714921e-01    1
## 2005 6.422193e-02    1
## 2006 6.422193e-02    1
## 2011 9.425151e-01    1
## 2019 5.667543e-01    1
## 2020 9.298336e-01    1
## 2021 9.298336e-01    1
## 2022 5.667543e-01    1
## 2024 9.298336e-01    1
## 2025 9.298336e-01    1
## 2026 9.298336e-01    1
## 2027 9.298336e-01    1
## 2030 2.011989e-01    1
## 2036 9.405582e-01    1
## 2040 8.402812e-01    1
## 2041 8.402812e-01    1
## 2042 8.402812e-01    1
## 2043 8.402812e-01    1
## 2046 9.761314e-01    1
## 2047 2.484337e-02    1
## 2048 2.484337e-02    1
## 2053 2.484337e-02    1
## 2061 5.562069e-01    1
## 2063 5.562069e-01    1
## 2066 5.562069e-01    1
## 2067 5.562069e-01    1
## 2068 9.269867e-01    1
## 2070 9.269867e-01    1
## 2071 9.269867e-01    1
## 2078 7.233267e-01    1
## 2079 7.233267e-01    1
## 2083 6.043585e-01    1
## 2085 9.992379e-01    1
## 2086 9.992379e-01    1
## 2087 9.992379e-01    1
## 2092 9.992379e-01    1
## 2097 8.889616e-01    1
## 2101 4.414356e-01    1
## 2103 8.889616e-01    1
## 2104 8.889616e-01    1
## 2105 4.414356e-01    1
## 2106 4.414356e-01    1
## 2109 8.889616e-01    1
## 2112 9.149505e-01    1
## 2113 9.149505e-01    1
## 2116 9.149505e-01    1
## 2117 9.149505e-01    1
## 2118 9.149505e-01    1
## 2123 9.568160e-02    1
## 2125 8.947811e-01    1
## 2128 1.473859e-01    1
## 2129 7.652723e-02    1
## 2130 8.947811e-01    1
## 2131 4.563665e-01    1
## 2133 4.563665e-01    1
## 2134 8.947811e-01    1
## 2135 9.009390e-01    1
## 2139 9.009390e-01    1
## 2140 9.009390e-01    1
## 2141 9.009390e-01    1
## 2143 9.009390e-01    1
## 2144 9.009390e-01    1
## 2148 9.009390e-01    1
## 2150 9.009390e-01    1
## 2156 9.009390e-01    1
## 2160 9.009390e-01    1
## 2162 6.519060e-01    1
## 2164 6.519060e-01    1
## 2166 6.519060e-01    1
## 2168 6.519060e-01    1
## 2172 6.519060e-01    1
## 2176 8.729883e-01    1
## 2177 8.729883e-01    1
## 2178 8.729883e-01    1
## 2190 9.112422e-01    1
## 2195 5.033453e-01    1
## 2196 4.120309e-02    1
## 2199 5.033453e-01    1
## 2200 1.726599e-01    1
## 2201 1.726599e-01    1
## 2202 1.726599e-01    1
## 2205 4.702849e-01    1
## 2207 1.545600e-01    1
## 2208 4.870440e-01    1
## 2210 4.870440e-01    1
## 2211 4.870440e-01    1
## 2212 9.017604e-01    1
## 2217 6.975486e-01    1
## 2218 6.975486e-01    1
## 2221 6.975486e-01    1
## 2225 6.975486e-01    1
## 2226 6.975486e-01    1
## 2229 6.975486e-01    1
## 2232 6.975486e-01    1
## 2233 6.975486e-01    1
## 2235 6.975486e-01    1
## 2237 9.496805e-01    1
## 2241 9.496805e-01    1
## 2247 9.496805e-01    1
## 2248 9.496805e-01    1
## 2250 9.496805e-01    1
## 2254 9.496805e-01    1
## 2259 9.496805e-01    1
## 2260 9.496805e-01    1
## 2266 9.496805e-01    1
## 2271 9.496805e-01    1
## 2272 9.496805e-01    1
## 2277 9.496805e-01    1
## 2279 9.496805e-01    1
## 2280 9.496805e-01    1
## 2286 9.496805e-01    1
## 2290 9.496805e-01    1
## 2294 9.496805e-01    1
## 2296 9.496805e-01    1
## 2302 9.496805e-01    1
## 2315 9.496805e-01    1
## 2317 9.496805e-01    1
## 2318 9.496805e-01    1
## 2319 9.496805e-01    1
## 2322 9.496805e-01    1
## 2324 9.496805e-01    1
## 2325 9.496805e-01    1
## 2330 9.496805e-01    1
## 2332 9.496805e-01    1
## 2337 9.496805e-01    1
## 2338 9.496805e-01    1
## 2341 9.496805e-01    1
## 2342 9.496805e-01    1
## 2343 9.496805e-01    1
## 2345 6.507226e-01    1
## 2348 6.507226e-01    1
## 2350 6.507226e-01    1
## 2353 6.507226e-01    1
## 2355 6.507226e-01    1
## 2356 6.507226e-01    1
## 2359 6.507226e-01    1
## 2360 6.507226e-01    1
## 2361 6.507226e-01    1
## 2362 6.507226e-01    1
## 2365 9.055603e-01    1
## 2367 9.055603e-01    1
## 2368 9.055603e-01    1
## 2370 9.055603e-01    1
## 2371 9.055603e-01    1
## 2372 9.055603e-01    1
## 2378 4.695379e-01    1
## 2385 1.484753e-02    1
## 2387 1.324524e-01    1
## 2388 1.324524e-01    1
## 2390 6.073218e-01    1
## 2391 1.324524e-01    1
## 2393 9.885339e-01    1
## 2395 9.885339e-01    1
## 2396 9.885339e-01    1
## 2399 3.140544e-03    0
## 2403 3.140544e-03    0
## 2404 3.140544e-03    0
## 2407 8.840511e-01    0
## 2408 8.840511e-01    0
## 2414 1.341882e-01    0
## 2415 8.840511e-01    0
## 2416 8.840511e-01    0
## 2421 4.294365e-01    0
## 2422 4.294365e-01    0
## 2423 9.549393e-01    0
## 2424 3.010815e-01    0
## 2428 1.341882e-01    1
## 2431 8.840511e-01    1
## 2433 8.840511e-01    1
## 2434 8.840511e-01    1
## 2437 8.840511e-01    1
## 2441 9.549393e-01    1
## 2442 9.549393e-01    1
## 2443 8.135679e-01    1
## 2445 9.549393e-01    1
## 2449 9.549393e-01    1
## 2457 1.096957e-02    0
## 2458 1.096957e-02    0
## 2459 1.096957e-02    0
## 2461 1.096957e-02    0
## 2466 1.096957e-02    0
## 2481 1.096957e-02    0
## 2482 1.096957e-02    0
## 2484 1.096957e-02    0
## 2485 2.387546e-02    0
## 2488 1.250695e-01    0
## 2489 1.761922e-01    0
## 2490 4.218314e-02    0
## 2491 4.328694e-03    0
## 2494 6.444663e-03    0
## 2498 2.593968e-02    0
## 2499 5.588073e-03    0
## 2503 5.588073e-03    0
## 2505 5.588073e-03    0
## 2507 5.588073e-03    0
## 2510 5.588073e-03    0
## 2512 5.588073e-03    0
## 2513 5.588073e-03    0
## 2523 5.588073e-03    0
## 2527 5.588073e-03    0
## 2528 5.588073e-03    0
## 2531 5.588073e-03    0
## 2532 5.588073e-03    0
## 2536 5.588073e-03    0
## 2538 5.588073e-03    0
## 2543 1.410461e-02    0
## 2548 3.430532e-01    0
## 2549 3.430532e-01    0
## 2551 1.010071e-01    0
## 2552 1.010071e-01    0
## 2555 1.010071e-01    0
## 2556 1.010071e-01    0
## 2557 1.010071e-01    0
## 2558 1.010071e-01    0
## 2559 1.010071e-01    0
## 2560 1.010071e-01    0
## 2561 1.010071e-01    0
## 2562 1.010071e-01    0
## 2565 3.530154e-01    0
## 2566 3.530154e-01    0
## 2570 3.530154e-01    0
## 2575 3.530154e-01    0
## 2579 3.530154e-01    0
## 2581 3.530154e-01    0
## 2585 3.530154e-01    0
## 2588 3.530154e-01    0
## 2590 3.530154e-01    0
## 2594 3.530154e-01    0
## 2596 7.869274e-01    0
## 2597 9.471889e-01    0
## 2599 8.538752e-01    0
## 2600 1.985752e-01    0
## 2602 1.250695e-01    0
## 2603 9.715512e-01    0
## 2607 2.067623e-02    0
## 2610 5.651257e-01    0
## 2612 5.651257e-01    0
## 2613 2.111042e-01    0
## 2614 5.222498e-02    0
## 2619 3.053817e-02    0
## 2620 2.419078e-01    0
## 2624 2.124561e-01    0
## 2625 7.224433e-01    0
## 2626 8.444680e-01    0
## 2628 9.922509e-01    0
## 2630 2.124561e-01    0
## 2631 2.124561e-01    0
## 2632 2.593968e-02    0
## 2633 2.124561e-01    0
## 2636 2.124561e-01    0
## 2637 5.262730e-02    0
## 2639 9.625317e-01    1
## 2647 7.260082e-01    1
## 2648 7.260082e-01    1
## 2653 7.260082e-01    1
## 2655 7.260082e-01    1
## 2656 7.260082e-01    1
## 2657 5.323126e-01    1
## 2660 5.323126e-01    1
## 2661 5.323126e-01    1
## 2664 5.323126e-01    1
## 2665 5.323126e-01    1
## 2667 5.323126e-01    1
## 2674 7.260082e-01    1
## 2675 7.260082e-01    1
## 2679 7.260082e-01    1
## 2681 7.260082e-01    1
## 2685 7.260082e-01    1
## 2688 3.530154e-01    1
## 2689 3.530154e-01    1
## 2692 3.530154e-01    1
## 2693 3.530154e-01    1
## 2694 3.530154e-01    1
## 2696 3.530154e-01    1
## 2697 3.530154e-01    1
## 2698 3.530154e-01    1
## 2699 3.530154e-01    1
## 2700 3.530154e-01    1
## 2701 3.530154e-01    1
## 2704 3.530154e-01    1
## 2707 3.530154e-01    1
## 2708 3.530154e-01    1
## 2711 3.530154e-01    1
## 2712 3.530154e-01    1
## 2714 3.530154e-01    1
## 2716 3.530154e-01    1
## 2719 9.471889e-01    1
## 2721 9.471889e-01    1
## 2722 9.471889e-01    1
## 2725 5.461310e-01    1
## 2726 5.461310e-01    1
## 2727 8.538752e-01    1
## 2728 9.382638e-01    1
## 2729 1.289955e-01    1
## 2730 1.289955e-01    1
## 2731 1.289955e-01    1
## 2732 9.382638e-01    1
## 2737 9.132063e-01    1
## 2740 5.671150e-01    1
## 2748 9.549568e-02    0
## 2749 3.389376e-01    0
## 2752 1.031465e-02    0
## 2756 1.363370e-01    0
## 2757 1.363370e-01    0
## 2770 2.015751e-02    0
## 2771 2.015751e-02    0
## 2775 2.015751e-02    0
## 2778 2.015751e-02    0
## 2780 2.015751e-02    0
## 2784 8.577979e-04    0
## 2785 2.656717e-03    0
## 2790 2.062058e-01    0
## 2796 3.337287e-02    0
## 2798 3.337287e-02    0
## 2800 1.868377e-03    0
## 2802 1.868377e-03    0
## 2803 1.868377e-03    0
## 2805 1.868377e-03    0
## 2807 3.156857e-02    0
## 2808 3.389376e-01    0
## 2811 1.031465e-02    0
## 2812 3.389376e-01    0
## 2816 8.859210e-01    0
## 2817 8.859210e-01    0
## 2818 5.011684e-01    0
## 2824 6.769774e-01    0
## 2826 9.105354e-01    0
## 2827 9.105354e-01    0
## 2829 5.011684e-01    0
## 2830 1.714195e-01    0
## 2833 5.851092e-01    0
## 2835 5.851092e-01    0
## 2838 1.222029e-01    0
## 2840 2.686683e-01    0
## 2842 4.609900e-01    0
## 2844 7.399545e-01    0
## 2847 8.558171e-01    0
## 2849 8.690893e-01    0
## 2851 8.577979e-04    0
## 2860 9.863914e-01    0
## 2861 9.863914e-01    0
## 2862 9.863914e-01    0
## 2865 9.863914e-01    0
## 2866 9.863914e-01    0
## 2868 9.863914e-01    0
## 2873 3.756989e-01    0
## 2880 7.450586e-01    0
## 2881 2.127395e-01    0
## 2883 5.847100e-02    0
## 2885 5.847100e-02    0
## 2887 8.643684e-01    0
## 2891 2.500236e-02    0
## 2893 2.062058e-01    0
## 2894 2.062058e-01    0
## 2895 5.252742e-03    0
## 2897 5.252742e-03    0
## 2903 2.062058e-01    0
## 2905 5.077590e-02    0
## 2909 5.252742e-03    0
## 2910 5.252742e-03    0
## 2912 2.684160e-01    0
## 2916 7.757644e-02    0
## 2919 2.899829e-01    0
## 2922 7.757644e-02    0
## 2924 7.757644e-02    0
## 2925 7.757644e-02    0
## 2927 7.053608e-02    0
## 2931 8.862048e-01    0
## 2932 6.159217e-01    0
## 2933 6.159217e-01    0
## 2934 1.366683e-01    0
## 2938 5.265618e-01    0
## 2939 1.863466e-01    0
## 2941 4.817469e-02    1
## 2944 4.817469e-02    1
## 2947 9.973893e-01    1
## 2952 8.859210e-01    1
## 2953 8.859210e-01    1
## 2954 1.363370e-01    1
## 2957 9.973893e-01    1
## 2962 9.741690e-01    1
## 2965 9.741690e-01    1
## 2966 4.339436e-01    1
## 2968 8.859210e-01    1
## 2971 9.105354e-01    1
## 2977 9.105354e-01    1
## 2980 9.105354e-01    1
## 2984 6.769774e-01    1
## 2985 6.769774e-01    1
## 2986 9.105354e-01    1
## 2987 9.105354e-01    1
## 2988 9.105354e-01    1
## 2996 8.965214e-01    1
## 2999 6.408106e-01    1
## 3002 6.408106e-01    1
## 3004 8.558171e-01    1
## 3007 9.699157e-01    1
## 3008 9.699157e-01    1
## 3009 9.699157e-01    1
## 3010 9.699157e-01    1
## 3011 9.699157e-01    1
## 3012 9.699157e-01    1
## 3013 9.699157e-01    1
## 3014 9.699157e-01    1
## 3015 6.750893e-01    1
## 3016 2.146749e-01    1
## 3019 8.996092e-01    1
## 3020 6.485373e-01    1
## 3021 9.891040e-01    1
## 3026 9.863914e-01    1
## 3027 9.863914e-01    1
## 3029 9.863914e-01    1
## 3031 9.863914e-01    1
## 3034 9.863914e-01    1
## 3038 9.863914e-01    1
## 3039 9.863914e-01    1
## 3040 9.863914e-01    1
## 3043 9.863914e-01    1
## 3045 9.863914e-01    1
## 3046 9.863914e-01    1
## 3048 9.863914e-01    1
## 3049 9.863914e-01    1
## 3053 9.863914e-01    1
## 3056 4.139452e-01    1
## 3058 4.139452e-01    1
## 3059 4.139452e-01    1
## 3060 4.139452e-01    1
## 3069 9.863914e-01    1
## 3071 9.863914e-01    1
## 3072 9.863914e-01    1
## 3074 9.863914e-01    1
## 3075 9.863914e-01    1
## 3079 9.863914e-01    1
## 3081 9.863914e-01    1
## 3086 9.863914e-01    1
## 3094 9.863914e-01    1
## 3095 9.863914e-01    1
## 3103 9.863914e-01    1
## 3104 9.863914e-01    1
## 3105 9.863914e-01    1
## 3109 9.863914e-01    1
## 3112 9.863914e-01    1
## 3113 9.863914e-01    1
## 3115 9.863914e-01    1
## 3116 9.863914e-01    1
## 3118 9.863914e-01    1
## 3119 9.863914e-01    1
## 3120 9.863914e-01    1
## 3123 9.863914e-01    1
## 3124 9.863914e-01    1
## 3126 9.863914e-01    1
## 3128 9.863914e-01    1
## 3133 9.863914e-01    1
## 3141 9.863914e-01    1
## 3143 9.863914e-01    1
## 3146 9.863914e-01    1
## 3147 9.863914e-01    1
## 3149 9.863914e-01    1
## 3152 9.863914e-01    1
## 3157 9.863914e-01    1
## 3159 9.863914e-01    1
## 3162 9.863914e-01    1
## 3165 9.863914e-01    1
## 3168 9.863914e-01    1
## 3172 9.863914e-01    1
## 3173 9.863914e-01    1
## 3174 9.863914e-01    1
## 3176 9.863914e-01    1
## 3178 9.863914e-01    1
## 3187 4.139452e-01    1
## 3191 4.139452e-01    1
## 3195 7.450586e-01    1
## 3198 9.673256e-01    1
## 3199 9.673256e-01    1
## 3201 9.673256e-01    1
## 3203 9.673256e-01    1
## 3204 9.673256e-01    1
## 3207 9.673256e-01    1
## 3212 8.643684e-01    1
## 3214 7.879882e-01    1
## 3216 9.411394e-01    1
## 3218 3.108700e-02    1
## 3219 6.121608e-01    1
## 3222 3.049423e-01    1
## 3227 4.600292e-01    1
## 3229 8.053460e-01    1
## 3230 8.053460e-01    1
## 3244 6.524664e-03    0
## 3246 6.524664e-03    0
## 3247 6.524664e-03    0
## 3249 6.524664e-03    0
## 3250 6.524664e-03    0
## 3251 6.524664e-03    0
## 3252 6.237975e-02    0
## 3256 6.237975e-02    0
## 3257 6.237975e-02    0
## 3258 6.237975e-02    0
## 3259 6.237975e-02    0
## 3261 6.237975e-02    0
## 3263 2.441924e-01    0
## 3265 2.441924e-01    0
## 3267 2.441924e-01    0
## 3270 2.441924e-01    0
## 3271 2.441924e-01    0
## 3274 6.237975e-02    0
## 3277 6.237975e-02    0
## 3278 6.237975e-02    0
## 3289 6.237975e-02    0
## 3291 6.237975e-02    0
## 3294 6.237975e-02    0
## 3297 6.237975e-02    0
## 3302 6.237975e-02    0
## 3305 6.237975e-02    0
## 3306 6.237975e-02    0
## 3307 6.237975e-02    0
## 3308 6.237975e-02    0
## 3310 6.237975e-02    0
## 3312 6.237975e-02    0
## 3313 6.237975e-02    0
## 3315 6.237975e-02    0
## 3316 6.237975e-02    0
## 3317 6.237975e-02    0
## 3320 6.237975e-02    0
## 3321 6.237975e-02    0
## 3323 6.700074e-02    0
## 3325 6.692954e-02    0
## 3328 3.324367e-02    0
## 3330 6.692954e-02    0
## 3332 2.441924e-01    1
## 3334 2.441924e-01    1
## 3338 2.441924e-01    1
## 3339 2.441924e-01    1
## 3340 2.441924e-01    1
## 3342 7.793854e-01    1
## 3343 7.793854e-01    1
## 3345 7.793854e-01    1
## 3348 7.793854e-01    1
## 3353 9.468271e-02    1
## 3354 2.564101e-01    0
## 3358 1.736770e-07    0
## 3365 1.736770e-07    0
## 3366 1.736770e-07    0
## 3368 4.452413e-03    0
## 3370 6.629876e-02    0
## 3373 6.629876e-02    0
## 3374 6.629876e-02    0
## 3375 4.452413e-03    0
## 3377 9.540993e-02    0
## 3378 1.268142e-02    0
## 3379 1.268142e-02    0
## 3380 1.268142e-02    0
## 3383 1.268142e-02    0
## 3384 1.268142e-02    0
## 3386 1.268142e-02    0
## 3387 1.268142e-02    0
## 3388 1.268142e-02    0
## 3389 1.268142e-02    0
## 3390 1.268142e-02    0
## 3392 1.268142e-02    0
## 3395 1.268142e-02    0
## 3397 1.268142e-02    0
## 3401 1.268142e-02    0
## 3404 1.268142e-02    0
## 3408 1.268142e-02    0
## 3413 1.268142e-02    0
## 3418 1.268142e-02    0
## 3420 1.268142e-02    0
## 3423 1.268142e-02    0
## 3424 1.268142e-02    0
## 3427 1.268142e-02    0
## 3428 1.268142e-02    0
## 3432 3.872076e-01    0
## 3436 3.872076e-01    0
## 3442 3.872076e-01    0
## 3449 3.872076e-01    0
## 3451 3.872076e-01    0
## 3453 3.872076e-01    0
## 3454 3.872076e-01    0
## 3455 3.872076e-01    0
## 3456 3.872076e-01    0
## 3457 3.872076e-01    0
## 3460 3.872076e-01    0
## 3461 3.872076e-01    0
## 3463 3.872076e-01    0
## 3471 3.872076e-01    0
## 3474 3.872076e-01    0
## 3479 3.872076e-01    0
## 3480 3.872076e-01    0
## 3481 3.872076e-01    0
## 3484 3.872076e-01    0
## 3492 1.151340e-01    0
## 3496 1.151340e-01    0
## 3499 1.151340e-01    0
## 3501 1.151340e-01    0
## 3503 1.151340e-01    0
## 3505 1.151340e-01    0
## 3506 1.151340e-01    0
## 3508 1.151340e-01    0
## 3509 1.151340e-01    0
## 3511 1.151340e-01    0
## 3514 1.151340e-01    0
## 3515 1.151340e-01    0
## 3518 1.151340e-01    0
## 3519 1.151340e-01    0
## 3521 1.151340e-01    0
## 3522 1.151340e-01    0
## 3523 1.151340e-01    0
## 3529 1.151340e-01    0
## 3533 1.151340e-01    0
## 3540 3.872076e-01    0
## 3542 3.872076e-01    0
## 3543 3.872076e-01    0
## 3544 3.872076e-01    0
## 3545 3.872076e-01    0
## 3546 3.872076e-01    0
## 3547 3.872076e-01    0
## 3548 3.872076e-01    0
## 3551 3.872076e-01    0
## 3555 3.872076e-01    0
## 3558 3.872076e-01    0
## 3560 3.872076e-01    0
## 3561 3.872076e-01    0
## 3562 3.872076e-01    0
## 3563 3.872076e-01    0
## 3564 3.872076e-01    0
## 3568 3.872076e-01    0
## 3575 3.872076e-01    0
## 3578 3.872076e-01    0
## 3579 3.872076e-01    0
## 3581 3.872076e-01    0
## 3583 3.872076e-01    0
## 3587 3.872076e-01    0
## 3588 3.872076e-01    0
## 3591 3.872076e-01    0
## 3600 1.151340e-01    0
## 3603 1.151340e-01    0
## 3604 1.151340e-01    0
## 3606 1.151340e-01    0
## 3607 1.151340e-01    0
## 3608 1.151340e-01    0
## 3613 1.151340e-01    0
## 3614 1.151340e-01    0
## 3619 1.151340e-01    0
## 3620 1.151340e-01    0
## 3624 1.151340e-01    0
## 3625 1.151340e-01    0
## 3626 1.151340e-01    0
## 3634 1.151340e-01    0
## 3636 1.151340e-01    0
## 3638 1.151340e-01    0
## 3643 1.151340e-01    0
## 3644 1.151340e-01    0
## 3645 1.151340e-01    0
## 3647 1.151340e-01    0
## 3649 3.872076e-01    0
## 3656 3.872076e-01    0
## 3662 3.872076e-01    0
## 3664 3.872076e-01    0
## 3675 3.872076e-01    0
## 3681 3.872076e-01    0
## 3682 3.872076e-01    0
## 3683 3.872076e-01    0
## 3686 3.872076e-01    0
## 3689 3.872076e-01    0
## 3691 3.872076e-01    0
## 3692 3.872076e-01    0
## 3699 3.872076e-01    0
## 3700 3.872076e-01    0
## 3704 2.096407e-02    0
## 3708 2.591534e-01    0
## 3712 2.591534e-01    0
## 3713 4.183696e-01    1
## 3721 7.774390e-01    1
## 3724 7.774390e-01    1
## 3728 3.872076e-01    1
## 3731 3.872076e-01    1
## 3735 3.872076e-01    1
## 3736 3.872076e-01    1
## 3737 3.872076e-01    1
## 3738 3.872076e-01    1
## 3739 3.872076e-01    1
## 3740 3.872076e-01    1
## 3751 3.872076e-01    1
## 3753 3.872076e-01    1
## 3755 3.872076e-01    1
## 3756 3.872076e-01    1
## 3757 3.872076e-01    1
## 3758 3.872076e-01    1
## 3760 3.872076e-01    1
## 3765 3.872076e-01    1
## 3775 3.872076e-01    1
## 3776 3.872076e-01    1
## 3778 3.872076e-01    1
## 3779 3.872076e-01    1
## 3780 8.648826e-01    1
## 3781 8.648826e-01    1
## 3782 8.648826e-01    1
## 3784 8.648826e-01    1
## 3790 8.648826e-01    1
## 3791 8.648826e-01    1
## 3797 8.648826e-01    1
## 3799 8.648826e-01    1
## 3801 8.648826e-01    1
## 3804 8.648826e-01    1
## 3805 8.648826e-01    1
## 3806 8.648826e-01    1
## 3809 8.648826e-01    1
## 3810 8.648826e-01    1
## 3813 8.648826e-01    1
## 3821 8.648826e-01    1
## 3822 8.648826e-01    1
## 3825 8.648826e-01    1
## 3826 8.648826e-01    1
## 3827 8.648826e-01    1
## 3828 8.648826e-01    1
## 3835 5.686085e-01    1
## 3839 5.686085e-01    1
## 3840 5.686085e-01    1
## 3841 5.686085e-01    1
## 3842 5.686085e-01    1
## 3845 5.686085e-01    1
## 3847 5.686085e-01    1
## 3852 5.686085e-01    1
## 3853 5.686085e-01    1
## 3855 5.686085e-01    1
## 3857 5.686085e-01    1
## 3858 5.686085e-01    1
## 3860 5.686085e-01    1
## 3861 5.686085e-01    1
## 3862 5.686085e-01    1
## 3868 5.686085e-01    1
## 3870 5.686085e-01    1
## 3872 5.686085e-01    1
## 3873 5.686085e-01    1
## 3881 5.686085e-01    1
## 3883 5.686085e-01    1
## 3886 5.686085e-01    1
## 3888 8.648826e-01    1
## 3891 8.648826e-01    1
## 3892 8.648826e-01    1
## 3894 8.648826e-01    1
## 3896 8.648826e-01    1
## 3897 8.648826e-01    1
## 3899 8.648826e-01    1
## 3901 8.648826e-01    1
## 3903 8.648826e-01    1
## 3906 8.648826e-01    1
## 3908 8.648826e-01    1
## 3909 8.648826e-01    1
## 3912 8.648826e-01    1
## 3915 8.648826e-01    1
## 3916 8.648826e-01    1
## 3921 8.648826e-01    1
## 3922 8.648826e-01    1
## 3923 8.648826e-01    1
## 3933 8.648826e-01    1
## 3934 8.648826e-01    1
## 3936 8.648826e-01    1
## 3938 8.648826e-01    1
## 3940 8.648826e-01    1
bb1=bb[order(ptest,decreasing=TRUE),]
bb1
##             ptest ynew
## 2085 9.992379e-01    1
## 2086 9.992379e-01    1
## 2087 9.992379e-01    1
## 2092 9.992379e-01    1
## 2947 9.973893e-01    1
## 2957 9.973893e-01    1
## 1602 9.929340e-01    1
## 2628 9.922509e-01    0
## 1972 9.921059e-01    1
## 1975 9.921059e-01    1
## 1976 9.921059e-01    1
## 3021 9.891040e-01    1
## 2393 9.885339e-01    1
## 2395 9.885339e-01    1
## 2396 9.885339e-01    1
## 1991 9.873438e-01    1
## 1994 9.873438e-01    1
## 2860 9.863914e-01    0
## 2861 9.863914e-01    0
## 2862 9.863914e-01    0
## 2865 9.863914e-01    0
## 2866 9.863914e-01    0
## 2868 9.863914e-01    0
## 3026 9.863914e-01    1
## 3027 9.863914e-01    1
## 3029 9.863914e-01    1
## 3031 9.863914e-01    1
## 3034 9.863914e-01    1
## 3038 9.863914e-01    1
## 3039 9.863914e-01    1
## 3040 9.863914e-01    1
## 3043 9.863914e-01    1
## 3045 9.863914e-01    1
## 3046 9.863914e-01    1
## 3048 9.863914e-01    1
## 3049 9.863914e-01    1
## 3053 9.863914e-01    1
## 3069 9.863914e-01    1
## 3071 9.863914e-01    1
## 3072 9.863914e-01    1
## 3074 9.863914e-01    1
## 3075 9.863914e-01    1
## 3079 9.863914e-01    1
## 3081 9.863914e-01    1
## 3086 9.863914e-01    1
## 3094 9.863914e-01    1
## 3095 9.863914e-01    1
## 3103 9.863914e-01    1
## 3104 9.863914e-01    1
## 3105 9.863914e-01    1
## 3109 9.863914e-01    1
## 3112 9.863914e-01    1
## 3113 9.863914e-01    1
## 3115 9.863914e-01    1
## 3116 9.863914e-01    1
## 3118 9.863914e-01    1
## 3119 9.863914e-01    1
## 3120 9.863914e-01    1
## 3123 9.863914e-01    1
## 3124 9.863914e-01    1
## 3126 9.863914e-01    1
## 3128 9.863914e-01    1
## 3133 9.863914e-01    1
## 3141 9.863914e-01    1
## 3143 9.863914e-01    1
## 3146 9.863914e-01    1
## 3147 9.863914e-01    1
## 3149 9.863914e-01    1
## 3152 9.863914e-01    1
## 3157 9.863914e-01    1
## 3159 9.863914e-01    1
## 3162 9.863914e-01    1
## 3165 9.863914e-01    1
## 3168 9.863914e-01    1
## 3172 9.863914e-01    1
## 3173 9.863914e-01    1
## 3174 9.863914e-01    1
## 3176 9.863914e-01    1
## 3178 9.863914e-01    1
## 2046 9.761314e-01    1
## 2962 9.741690e-01    1
## 2965 9.741690e-01    1
## 2603 9.715512e-01    0
## 3007 9.699157e-01    1
## 3008 9.699157e-01    1
## 3009 9.699157e-01    1
## 3010 9.699157e-01    1
## 3011 9.699157e-01    1
## 3012 9.699157e-01    1
## 3013 9.699157e-01    1
## 3014 9.699157e-01    1
## 3198 9.673256e-01    1
## 3199 9.673256e-01    1
## 3201 9.673256e-01    1
## 3203 9.673256e-01    1
## 3204 9.673256e-01    1
## 3207 9.673256e-01    1
## 1544 9.665959e-01    0
## 2639 9.625317e-01    1
## 1952 9.550217e-01    1
## 1954 9.550217e-01    1
## 2423 9.549393e-01    0
## 2441 9.549393e-01    1
## 2442 9.549393e-01    1
## 2445 9.549393e-01    1
## 2449 9.549393e-01    1
## 2237 9.496805e-01    1
## 2241 9.496805e-01    1
## 2247 9.496805e-01    1
## 2248 9.496805e-01    1
## 2250 9.496805e-01    1
## 2254 9.496805e-01    1
## 2259 9.496805e-01    1
## 2260 9.496805e-01    1
## 2266 9.496805e-01    1
## 2271 9.496805e-01    1
## 2272 9.496805e-01    1
## 2277 9.496805e-01    1
## 2279 9.496805e-01    1
## 2280 9.496805e-01    1
## 2286 9.496805e-01    1
## 2290 9.496805e-01    1
## 2294 9.496805e-01    1
## 2296 9.496805e-01    1
## 2302 9.496805e-01    1
## 2315 9.496805e-01    1
## 2317 9.496805e-01    1
## 2318 9.496805e-01    1
## 2319 9.496805e-01    1
## 2322 9.496805e-01    1
## 2324 9.496805e-01    1
## 2325 9.496805e-01    1
## 2330 9.496805e-01    1
## 2332 9.496805e-01    1
## 2337 9.496805e-01    1
## 2338 9.496805e-01    1
## 2341 9.496805e-01    1
## 2342 9.496805e-01    1
## 2343 9.496805e-01    1
## 2597 9.471889e-01    0
## 2719 9.471889e-01    1
## 2721 9.471889e-01    1
## 2722 9.471889e-01    1
## 2011 9.425151e-01    1
## 3216 9.411394e-01    1
## 2036 9.405582e-01    1
## 2728 9.382638e-01    1
## 2732 9.382638e-01    1
## 1490 9.327588e-01    0
## 2020 9.298336e-01    1
## 2021 9.298336e-01    1
## 2024 9.298336e-01    1
## 2025 9.298336e-01    1
## 2026 9.298336e-01    1
## 2027 9.298336e-01    1
## 1811 9.269867e-01    0
## 1812 9.269867e-01    0
## 1814 9.269867e-01    0
## 2068 9.269867e-01    1
## 2070 9.269867e-01    1
## 2071 9.269867e-01    1
## 1941 9.174498e-01    0
## 2112 9.149505e-01    1
## 2113 9.149505e-01    1
## 2116 9.149505e-01    1
## 2117 9.149505e-01    1
## 2118 9.149505e-01    1
## 2737 9.132063e-01    1
## 1868 9.112422e-01    0
## 2190 9.112422e-01    1
## 2826 9.105354e-01    0
## 2827 9.105354e-01    0
## 2971 9.105354e-01    1
## 2977 9.105354e-01    1
## 2980 9.105354e-01    1
## 2986 9.105354e-01    1
## 2987 9.105354e-01    1
## 2988 9.105354e-01    1
## 1917 9.055603e-01    0
## 2365 9.055603e-01    1
## 2367 9.055603e-01    1
## 2368 9.055603e-01    1
## 2370 9.055603e-01    1
## 2371 9.055603e-01    1
## 2372 9.055603e-01    1
## 2212 9.017604e-01    1
## 2135 9.009390e-01    1
## 2139 9.009390e-01    1
## 2140 9.009390e-01    1
## 2141 9.009390e-01    1
## 2143 9.009390e-01    1
## 2144 9.009390e-01    1
## 2148 9.009390e-01    1
## 2150 9.009390e-01    1
## 2156 9.009390e-01    1
## 2160 9.009390e-01    1
## 1862 9.005175e-01    0
## 1877 8.999361e-01    0
## 3019 8.996092e-01    1
## 2996 8.965214e-01    1
## 2125 8.947811e-01    1
## 2130 8.947811e-01    1
## 2134 8.947811e-01    1
## 1501 8.922621e-01    0
## 1575 8.922621e-01    1
## 1577 8.922621e-01    1
## 1578 8.922621e-01    1
## 1580 8.922621e-01    1
## 1581 8.922621e-01    1
## 1827 8.889616e-01    0
## 1828 8.889616e-01    0
## 1831 8.889616e-01    0
## 2097 8.889616e-01    1
## 2103 8.889616e-01    1
## 2104 8.889616e-01    1
## 2109 8.889616e-01    1
## 2931 8.862048e-01    0
## 2816 8.859210e-01    0
## 2817 8.859210e-01    0
## 2952 8.859210e-01    1
## 2953 8.859210e-01    1
## 2968 8.859210e-01    1
## 2407 8.840511e-01    0
## 2408 8.840511e-01    0
## 2415 8.840511e-01    0
## 2416 8.840511e-01    0
## 2431 8.840511e-01    1
## 2433 8.840511e-01    1
## 2434 8.840511e-01    1
## 2437 8.840511e-01    1
## 2176 8.729883e-01    1
## 2177 8.729883e-01    1
## 2178 8.729883e-01    1
## 2849 8.690893e-01    0
## 3780 8.648826e-01    1
## 3781 8.648826e-01    1
## 3782 8.648826e-01    1
## 3784 8.648826e-01    1
## 3790 8.648826e-01    1
## 3791 8.648826e-01    1
## 3797 8.648826e-01    1
## 3799 8.648826e-01    1
## 3801 8.648826e-01    1
## 3804 8.648826e-01    1
## 3805 8.648826e-01    1
## 3806 8.648826e-01    1
## 3809 8.648826e-01    1
## 3810 8.648826e-01    1
## 3813 8.648826e-01    1
## 3821 8.648826e-01    1
## 3822 8.648826e-01    1
## 3825 8.648826e-01    1
## 3826 8.648826e-01    1
## 3827 8.648826e-01    1
## 3828 8.648826e-01    1
## 3888 8.648826e-01    1
## 3891 8.648826e-01    1
## 3892 8.648826e-01    1
## 3894 8.648826e-01    1
## 3896 8.648826e-01    1
## 3897 8.648826e-01    1
## 3899 8.648826e-01    1
## 3901 8.648826e-01    1
## 3903 8.648826e-01    1
## 3906 8.648826e-01    1
## 3908 8.648826e-01    1
## 3909 8.648826e-01    1
## 3912 8.648826e-01    1
## 3915 8.648826e-01    1
## 3916 8.648826e-01    1
## 3921 8.648826e-01    1
## 3922 8.648826e-01    1
## 3923 8.648826e-01    1
## 3933 8.648826e-01    1
## 3934 8.648826e-01    1
## 3936 8.648826e-01    1
## 3938 8.648826e-01    1
## 3940 8.648826e-01    1
## 2887 8.643684e-01    0
## 3212 8.643684e-01    1
## 2847 8.558171e-01    0
## 3004 8.558171e-01    1
## 2599 8.538752e-01    0
## 2727 8.538752e-01    1
## 2626 8.444680e-01    0
## 2040 8.402812e-01    1
## 2041 8.402812e-01    1
## 2042 8.402812e-01    1
## 2043 8.402812e-01    1
## 1981 8.314069e-01    1
## 1983 8.314069e-01    1
## 1984 8.314069e-01    1
## 1548 8.194535e-01    1
## 1550 8.194535e-01    1
## 1551 8.194535e-01    1
## 1969 8.150824e-01    1
## 1953 8.138586e-01    1
## 2443 8.135679e-01    1
## 3229 8.053460e-01    1
## 3230 8.053460e-01    1
## 1957 7.986857e-01    1
## 1958 7.986857e-01    1
## 1960 7.986857e-01    1
## 1961 7.986857e-01    1
## 1962 7.986857e-01    1
## 3214 7.879882e-01    1
## 2596 7.869274e-01    0
## 1825 7.806360e-01    0
## 3342 7.793854e-01    1
## 3343 7.793854e-01    1
## 3345 7.793854e-01    1
## 3348 7.793854e-01    1
## 3721 7.774390e-01    1
## 3724 7.774390e-01    1
## 2003 7.714921e-01    1
## 2004 7.714921e-01    1
## 2880 7.450586e-01    0
## 3195 7.450586e-01    1
## 2844 7.399545e-01    0
## 2647 7.260082e-01    1
## 2648 7.260082e-01    1
## 2653 7.260082e-01    1
## 2655 7.260082e-01    1
## 2656 7.260082e-01    1
## 2674 7.260082e-01    1
## 2675 7.260082e-01    1
## 2679 7.260082e-01    1
## 2681 7.260082e-01    1
## 2685 7.260082e-01    1
## 1804 7.233267e-01    0
## 1805 7.233267e-01    0
## 1810 7.233267e-01    0
## 2078 7.233267e-01    1
## 2079 7.233267e-01    1
## 2625 7.224433e-01    0
## 1672 6.975486e-01    0
## 1889 6.975486e-01    0
## 1890 6.975486e-01    0
## 2217 6.975486e-01    1
## 2218 6.975486e-01    1
## 2221 6.975486e-01    1
## 2225 6.975486e-01    1
## 2226 6.975486e-01    1
## 2229 6.975486e-01    1
## 2232 6.975486e-01    1
## 2233 6.975486e-01    1
## 2235 6.975486e-01    1
## 1735 6.787727e-01    0
## 1740 6.787727e-01    0
## 1603 6.770043e-01    0
## 2824 6.769774e-01    0
## 2984 6.769774e-01    1
## 2985 6.769774e-01    1
## 3015 6.750893e-01    1
## 2162 6.519060e-01    1
## 2164 6.519060e-01    1
## 2166 6.519060e-01    1
## 2168 6.519060e-01    1
## 2172 6.519060e-01    1
## 2345 6.507226e-01    1
## 2348 6.507226e-01    1
## 2350 6.507226e-01    1
## 2353 6.507226e-01    1
## 2355 6.507226e-01    1
## 2356 6.507226e-01    1
## 2359 6.507226e-01    1
## 2360 6.507226e-01    1
## 2361 6.507226e-01    1
## 2362 6.507226e-01    1
## 1514 6.498290e-01    0
## 3020 6.485373e-01    1
## 2999 6.408106e-01    1
## 3002 6.408106e-01    1
## 1558 6.303655e-01    1
## 5    6.280620e-01    0
## 20   6.280620e-01    1
## 2932 6.159217e-01    0
## 2933 6.159217e-01    0
## 3219 6.121608e-01    1
## 1947 6.073218e-01    0
## 2390 6.073218e-01    1
## 2083 6.043585e-01    1
## 2833 5.851092e-01    0
## 2835 5.851092e-01    0
## 3835 5.686085e-01    1
## 3839 5.686085e-01    1
## 3840 5.686085e-01    1
## 3841 5.686085e-01    1
## 3842 5.686085e-01    1
## 3845 5.686085e-01    1
## 3847 5.686085e-01    1
## 3852 5.686085e-01    1
## 3853 5.686085e-01    1
## 3855 5.686085e-01    1
## 3857 5.686085e-01    1
## 3858 5.686085e-01    1
## 3860 5.686085e-01    1
## 3861 5.686085e-01    1
## 3862 5.686085e-01    1
## 3868 5.686085e-01    1
## 3870 5.686085e-01    1
## 3872 5.686085e-01    1
## 3873 5.686085e-01    1
## 3881 5.686085e-01    1
## 3883 5.686085e-01    1
## 3886 5.686085e-01    1
## 2740 5.671150e-01    1
## 2019 5.667543e-01    1
## 2022 5.667543e-01    1
## 2610 5.651257e-01    0
## 2612 5.651257e-01    0
## 1790 5.562069e-01    0
## 1793 5.562069e-01    0
## 1795 5.562069e-01    0
## 2061 5.562069e-01    1
## 2063 5.562069e-01    1
## 2066 5.562069e-01    1
## 2067 5.562069e-01    1
## 1760 5.501943e-01    0
## 1763 5.501943e-01    0
## 1764 5.501943e-01    0
## 1768 5.501943e-01    0
## 2725 5.461310e-01    1
## 2726 5.461310e-01    1
## 2657 5.323126e-01    1
## 2660 5.323126e-01    1
## 2661 5.323126e-01    1
## 2664 5.323126e-01    1
## 2665 5.323126e-01    1
## 2667 5.323126e-01    1
## 2938 5.265618e-01    0
## 1985 5.038392e-01    1
## 1986 5.038392e-01    1
## 1871 5.033453e-01    0
## 2195 5.033453e-01    1
## 2199 5.033453e-01    1
## 2818 5.011684e-01    0
## 2829 5.011684e-01    0
## 2208 4.870440e-01    1
## 2210 4.870440e-01    1
## 2211 4.870440e-01    1
## 1845 4.730726e-01    0
## 1846 4.730726e-01    0
## 1848 4.730726e-01    0
## 1850 4.730726e-01    0
## 1851 4.730726e-01    0
## 1852 4.730726e-01    0
## 1863 4.718977e-01    0
## 1515 4.707948e-01    0
## 1880 4.702849e-01    0
## 1882 4.702849e-01    0
## 2205 4.702849e-01    1
## 2378 4.695379e-01    1
## 2842 4.609900e-01    0
## 3227 4.600292e-01    1
## 2131 4.563665e-01    1
## 2133 4.563665e-01    1
## 1597 4.545828e-01    1
## 1556 4.498055e-01    1
## 1559 4.498055e-01    1
## 1560 4.498055e-01    1
## 1562 4.498055e-01    1
## 1572 4.498055e-01    1
## 2101 4.414356e-01    1
## 2105 4.414356e-01    1
## 2106 4.414356e-01    1
## 2966 4.339436e-01    1
## 2421 4.294365e-01    0
## 2422 4.294365e-01    0
## 1931 4.280198e-01    0
## 1824 4.228957e-01    0
## 3713 4.183696e-01    1
## 3056 4.139452e-01    1
## 3058 4.139452e-01    1
## 3059 4.139452e-01    1
## 3060 4.139452e-01    1
## 3187 4.139452e-01    1
## 3191 4.139452e-01    1
## 1598 3.896474e-01    1
## 3432 3.872076e-01    0
## 3436 3.872076e-01    0
## 3442 3.872076e-01    0
## 3449 3.872076e-01    0
## 3451 3.872076e-01    0
## 3453 3.872076e-01    0
## 3454 3.872076e-01    0
## 3455 3.872076e-01    0
## 3456 3.872076e-01    0
## 3457 3.872076e-01    0
## 3460 3.872076e-01    0
## 3461 3.872076e-01    0
## 3463 3.872076e-01    0
## 3471 3.872076e-01    0
## 3474 3.872076e-01    0
## 3479 3.872076e-01    0
## 3480 3.872076e-01    0
## 3481 3.872076e-01    0
## 3484 3.872076e-01    0
## 3540 3.872076e-01    0
## 3542 3.872076e-01    0
## 3543 3.872076e-01    0
## 3544 3.872076e-01    0
## 3545 3.872076e-01    0
## 3546 3.872076e-01    0
## 3547 3.872076e-01    0
## 3548 3.872076e-01    0
## 3551 3.872076e-01    0
## 3555 3.872076e-01    0
## 3558 3.872076e-01    0
## 3560 3.872076e-01    0
## 3561 3.872076e-01    0
## 3562 3.872076e-01    0
## 3563 3.872076e-01    0
## 3564 3.872076e-01    0
## 3568 3.872076e-01    0
## 3575 3.872076e-01    0
## 3578 3.872076e-01    0
## 3579 3.872076e-01    0
## 3581 3.872076e-01    0
## 3583 3.872076e-01    0
## 3587 3.872076e-01    0
## 3588 3.872076e-01    0
## 3591 3.872076e-01    0
## 3649 3.872076e-01    0
## 3656 3.872076e-01    0
## 3662 3.872076e-01    0
## 3664 3.872076e-01    0
## 3675 3.872076e-01    0
## 3681 3.872076e-01    0
## 3682 3.872076e-01    0
## 3683 3.872076e-01    0
## 3686 3.872076e-01    0
## 3689 3.872076e-01    0
## 3691 3.872076e-01    0
## 3692 3.872076e-01    0
## 3699 3.872076e-01    0
## 3700 3.872076e-01    0
## 3728 3.872076e-01    1
## 3731 3.872076e-01    1
## 3735 3.872076e-01    1
## 3736 3.872076e-01    1
## 3737 3.872076e-01    1
## 3738 3.872076e-01    1
## 3739 3.872076e-01    1
## 3740 3.872076e-01    1
## 3751 3.872076e-01    1
## 3753 3.872076e-01    1
## 3755 3.872076e-01    1
## 3756 3.872076e-01    1
## 3757 3.872076e-01    1
## 3758 3.872076e-01    1
## 3760 3.872076e-01    1
## 3765 3.872076e-01    1
## 3775 3.872076e-01    1
## 3776 3.872076e-01    1
## 3778 3.872076e-01    1
## 3779 3.872076e-01    1
## 2873 3.756989e-01    0
## 2565 3.530154e-01    0
## 2566 3.530154e-01    0
## 2570 3.530154e-01    0
## 2575 3.530154e-01    0
## 2579 3.530154e-01    0
## 2581 3.530154e-01    0
## 2585 3.530154e-01    0
## 2588 3.530154e-01    0
## 2590 3.530154e-01    0
## 2594 3.530154e-01    0
## 2688 3.530154e-01    1
## 2689 3.530154e-01    1
## 2692 3.530154e-01    1
## 2693 3.530154e-01    1
## 2694 3.530154e-01    1
## 2696 3.530154e-01    1
## 2697 3.530154e-01    1
## 2698 3.530154e-01    1
## 2699 3.530154e-01    1
## 2700 3.530154e-01    1
## 2701 3.530154e-01    1
## 2704 3.530154e-01    1
## 2707 3.530154e-01    1
## 2708 3.530154e-01    1
## 2711 3.530154e-01    1
## 2712 3.530154e-01    1
## 2714 3.530154e-01    1
## 2716 3.530154e-01    1
## 1634 3.513839e-01    0
## 22   3.478541e-01    1
## 24   3.478541e-01    1
## 25   3.478541e-01    1
## 26   3.478541e-01    1
## 2548 3.430532e-01    0
## 2549 3.430532e-01    0
## 2749 3.389376e-01    0
## 2808 3.389376e-01    0
## 2812 3.389376e-01    0
## 3222 3.049423e-01    1
## 1736 3.031935e-01    0
## 1967 3.031935e-01    1
## 1948 3.014852e-01    1
## 1949 3.014852e-01    1
## 2424 3.010815e-01    0
## 2919 2.899829e-01    0
## 1733 2.814228e-01    0
## 1892 2.772674e-01    0
## 1893 2.772674e-01    0
## 1894 2.772674e-01    0
## 1899 2.772674e-01    0
## 1900 2.772674e-01    0
## 1903 2.772674e-01    0
## 1906 2.772674e-01    0
## 1907 2.772674e-01    0
## 1908 2.772674e-01    0
## 2840 2.686683e-01    0
## 2912 2.684160e-01    0
## 3708 2.591534e-01    0
## 3712 2.591534e-01    0
## 3354 2.564101e-01    0
## 1744 2.499723e-01    0
## 1748 2.499723e-01    0
## 1751 2.499723e-01    0
## 1753 2.499723e-01    0
## 1754 2.499723e-01    0
## 1999 2.499723e-01    1
## 2001 2.499723e-01    1
## 3263 2.441924e-01    0
## 3265 2.441924e-01    0
## 3267 2.441924e-01    0
## 3270 2.441924e-01    0
## 3271 2.441924e-01    0
## 3332 2.441924e-01    1
## 3334 2.441924e-01    1
## 3338 2.441924e-01    1
## 3339 2.441924e-01    1
## 3340 2.441924e-01    1
## 2620 2.419078e-01    0
## 1920 2.411548e-01    0
## 1633 2.392830e-01    0
## 1819 2.392830e-01    0
## 1822 2.392830e-01    0
## 3016 2.146749e-01    1
## 2881 2.127395e-01    0
## 2624 2.124561e-01    0
## 2630 2.124561e-01    0
## 2631 2.124561e-01    0
## 2633 2.124561e-01    0
## 2636 2.124561e-01    0
## 2613 2.111042e-01    0
## 2790 2.062058e-01    0
## 2893 2.062058e-01    0
## 2894 2.062058e-01    0
## 2903 2.062058e-01    0
## 1797 2.051370e-01    0
## 1799 2.051370e-01    0
## 1801 2.051370e-01    0
## 1758 2.011989e-01    0
## 2030 2.011989e-01    1
## 2600 1.985752e-01    0
## 2939 1.863466e-01    0
## 1834 1.808034e-01    0
## 1835 1.808034e-01    0
## 1837 1.808034e-01    0
## 2489 1.761922e-01    0
## 2200 1.726599e-01    1
## 2201 1.726599e-01    1
## 2202 1.726599e-01    1
## 1968 1.725905e-01    1
## 1970 1.725905e-01    1
## 1915 1.724971e-01    0
## 1916 1.724971e-01    0
## 2830 1.714195e-01    0
## 1864 1.554078e-01    0
## 1875 1.545600e-01    0
## 1879 1.545600e-01    0
## 2207 1.545600e-01    1
## 1934 1.541686e-01    0
## 1936 1.541686e-01    0
## 2128 1.473859e-01    1
## 1591 1.464844e-01    1
## 1782 1.461616e-01    0
## 1647 1.399613e-01    0
## 1649 1.399613e-01    0
## 1512 1.397601e-01    0
## 1482 1.396232e-01    0
## 2934 1.366683e-01    0
## 2756 1.363370e-01    0
## 2757 1.363370e-01    0
## 2954 1.363370e-01    1
## 2414 1.341882e-01    0
## 2428 1.341882e-01    1
## 1929 1.335176e-01    0
## 2387 1.324524e-01    1
## 2388 1.324524e-01    1
## 2391 1.324524e-01    1
## 1918 1.322052e-01    0
## 2729 1.289955e-01    1
## 2730 1.289955e-01    1
## 2731 1.289955e-01    1
## 2488 1.250695e-01    0
## 2602 1.250695e-01    0
## 2838 1.222029e-01    0
## 1599 1.161846e-01    1
## 3492 1.151340e-01    0
## 3496 1.151340e-01    0
## 3499 1.151340e-01    0
## 3501 1.151340e-01    0
## 3503 1.151340e-01    0
## 3505 1.151340e-01    0
## 3506 1.151340e-01    0
## 3508 1.151340e-01    0
## 3509 1.151340e-01    0
## 3511 1.151340e-01    0
## 3514 1.151340e-01    0
## 3515 1.151340e-01    0
## 3518 1.151340e-01    0
## 3519 1.151340e-01    0
## 3521 1.151340e-01    0
## 3522 1.151340e-01    0
## 3523 1.151340e-01    0
## 3529 1.151340e-01    0
## 3533 1.151340e-01    0
## 3600 1.151340e-01    0
## 3603 1.151340e-01    0
## 3604 1.151340e-01    0
## 3606 1.151340e-01    0
## 3607 1.151340e-01    0
## 3608 1.151340e-01    0
## 3613 1.151340e-01    0
## 3614 1.151340e-01    0
## 3619 1.151340e-01    0
## 3620 1.151340e-01    0
## 3624 1.151340e-01    0
## 3625 1.151340e-01    0
## 3626 1.151340e-01    0
## 3634 1.151340e-01    0
## 3636 1.151340e-01    0
## 3638 1.151340e-01    0
## 3643 1.151340e-01    0
## 3644 1.151340e-01    0
## 3645 1.151340e-01    0
## 3647 1.151340e-01    0
## 1531 1.148121e-01    0
## 1532 1.148121e-01    0
## 1533 1.148121e-01    0
## 1538 1.148121e-01    0
## 1539 1.148121e-01    0
## 1502 1.084589e-01    0
## 2551 1.010071e-01    0
## 2552 1.010071e-01    0
## 2555 1.010071e-01    0
## 2556 1.010071e-01    0
## 2557 1.010071e-01    0
## 2558 1.010071e-01    0
## 2559 1.010071e-01    0
## 2560 1.010071e-01    0
## 2561 1.010071e-01    0
## 2562 1.010071e-01    0
## 1774 9.661042e-02    0
## 1775 9.661042e-02    0
## 1781 9.661042e-02    0
## 1650 9.568160e-02    0
## 2123 9.568160e-02    1
## 2748 9.549568e-02    0
## 3377 9.540993e-02    0
## 3353 9.468271e-02    1
## 1885 8.569647e-02    0
## 31   8.446742e-02    0
## 1492 8.446742e-02    0
## 2916 7.757644e-02    0
## 2922 7.757644e-02    0
## 2924 7.757644e-02    0
## 2925 7.757644e-02    0
## 2129 7.652723e-02    1
## 1570 7.225701e-02    1
## 2927 7.053608e-02    0
## 1703 6.878846e-02    0
## 3323 6.700074e-02    0
## 3325 6.692954e-02    0
## 3330 6.692954e-02    0
## 3370 6.629876e-02    0
## 3373 6.629876e-02    0
## 3374 6.629876e-02    0
## 2005 6.422193e-02    1
## 2006 6.422193e-02    1
## 3252 6.237975e-02    0
## 3256 6.237975e-02    0
## 3257 6.237975e-02    0
## 3258 6.237975e-02    0
## 3259 6.237975e-02    0
## 3261 6.237975e-02    0
## 3274 6.237975e-02    0
## 3277 6.237975e-02    0
## 3278 6.237975e-02    0
## 3289 6.237975e-02    0
## 3291 6.237975e-02    0
## 3294 6.237975e-02    0
## 3297 6.237975e-02    0
## 3302 6.237975e-02    0
## 3305 6.237975e-02    0
## 3306 6.237975e-02    0
## 3307 6.237975e-02    0
## 3308 6.237975e-02    0
## 3310 6.237975e-02    0
## 3312 6.237975e-02    0
## 3313 6.237975e-02    0
## 3315 6.237975e-02    0
## 3316 6.237975e-02    0
## 3317 6.237975e-02    0
## 3320 6.237975e-02    0
## 3321 6.237975e-02    0
## 2883 5.847100e-02    0
## 2885 5.847100e-02    0
## 2637 5.262730e-02    0
## 2614 5.222498e-02    0
## 2905 5.077590e-02    0
## 2941 4.817469e-02    1
## 2944 4.817469e-02    1
## 1858 4.308969e-02    0
## 2490 4.218314e-02    0
## 2196 4.120309e-02    1
## 1938 4.028760e-02    0
## 1698 3.845305e-02    0
## 1725 3.439820e-02    0
## 2796 3.337287e-02    0
## 2798 3.337287e-02    0
## 3328 3.324367e-02    0
## 1682 3.281284e-02    0
## 1479 3.233621e-02    0
## 1522 3.233621e-02    0
## 1525 3.233621e-02    0
## 2807 3.156857e-02    0
## 3218 3.108700e-02    1
## 2619 3.053817e-02    0
## 1922 3.041672e-02    0
## 2498 2.593968e-02    0
## 2632 2.593968e-02    0
## 1755 2.590259e-02    0
## 1756 2.590259e-02    0
## 2891 2.500236e-02    0
## 1783 2.484337e-02    0
## 1784 2.484337e-02    0
## 1786 2.484337e-02    0
## 2047 2.484337e-02    1
## 2048 2.484337e-02    1
## 2053 2.484337e-02    1
## 2485 2.387546e-02    0
## 1721 2.181475e-02    0
## 1722 2.181475e-02    0
## 1654 2.132271e-02    0
## 1838 2.132271e-02    0
## 1840 2.132271e-02    0
## 3704 2.096407e-02    0
## 2607 2.067623e-02    0
## 2770 2.015751e-02    0
## 2771 2.015751e-02    0
## 2775 2.015751e-02    0
## 2778 2.015751e-02    0
## 2780 2.015751e-02    0
## 1666 1.893504e-02    0
## 1933 1.767469e-02    0
## 1622 1.661746e-02    0
## 1623 1.661746e-02    0
## 1625 1.661746e-02    0
## 2385 1.484753e-02    1
## 1635 1.467702e-02    0
## 1637 1.467702e-02    0
## 1638 1.467702e-02    0
## 1640 1.467702e-02    0
## 1641 1.467702e-02    0
## 2543 1.410461e-02    0
## 3378 1.268142e-02    0
## 3379 1.268142e-02    0
## 3380 1.268142e-02    0
## 3383 1.268142e-02    0
## 3384 1.268142e-02    0
## 3386 1.268142e-02    0
## 3387 1.268142e-02    0
## 3388 1.268142e-02    0
## 3389 1.268142e-02    0
## 3390 1.268142e-02    0
## 3392 1.268142e-02    0
## 3395 1.268142e-02    0
## 3397 1.268142e-02    0
## 3401 1.268142e-02    0
## 3404 1.268142e-02    0
## 3408 1.268142e-02    0
## 3413 1.268142e-02    0
## 3418 1.268142e-02    0
## 3420 1.268142e-02    0
## 3423 1.268142e-02    0
## 3424 1.268142e-02    0
## 3427 1.268142e-02    0
## 3428 1.268142e-02    0
## 1477 1.186653e-02    0
## 1507 1.186653e-02    0
## 2457 1.096957e-02    0
## 2458 1.096957e-02    0
## 2459 1.096957e-02    0
## 2461 1.096957e-02    0
## 2466 1.096957e-02    0
## 2481 1.096957e-02    0
## 2482 1.096957e-02    0
## 2484 1.096957e-02    0
## 7    1.072628e-02    0
## 8    1.072628e-02    0
## 16   1.072628e-02    0
## 1772 1.044654e-02    0
## 2752 1.031465e-02    0
## 2811 1.031465e-02    0
## 1605 8.697151e-03    0
## 3244 6.524664e-03    0
## 3246 6.524664e-03    0
## 3247 6.524664e-03    0
## 3249 6.524664e-03    0
## 3250 6.524664e-03    0
## 3251 6.524664e-03    0
## 2494 6.444663e-03    0
## 2499 5.588073e-03    0
## 2503 5.588073e-03    0
## 2505 5.588073e-03    0
## 2507 5.588073e-03    0
## 2510 5.588073e-03    0
## 2512 5.588073e-03    0
## 2513 5.588073e-03    0
## 2523 5.588073e-03    0
## 2527 5.588073e-03    0
## 2528 5.588073e-03    0
## 2531 5.588073e-03    0
## 2532 5.588073e-03    0
## 2536 5.588073e-03    0
## 2538 5.588073e-03    0
## 2895 5.252742e-03    0
## 2897 5.252742e-03    0
## 2909 5.252742e-03    0
## 2910 5.252742e-03    0
## 1626 5.218666e-03    0
## 1627 5.218666e-03    0
## 1628 5.218666e-03    0
## 1631 5.218666e-03    0
## 34   5.077236e-03    0
## 37   5.077236e-03    0
## 40   5.077236e-03    0
## 41   5.077236e-03    0
## 42   5.077236e-03    0
## 43   5.077236e-03    0
## 50   5.077236e-03    0
## 52   5.077236e-03    0
## 53   5.077236e-03    0
## 54   5.077236e-03    0
## 62   5.077236e-03    0
## 64   5.077236e-03    0
## 70   5.077236e-03    0
## 72   5.077236e-03    0
## 86   5.077236e-03    0
## 88   5.077236e-03    0
## 89   5.077236e-03    0
## 94   5.077236e-03    0
## 96   5.077236e-03    0
## 101  5.077236e-03    0
## 105  5.077236e-03    0
## 106  5.077236e-03    0
## 107  5.077236e-03    0
## 110  5.077236e-03    0
## 111  5.077236e-03    0
## 116  5.077236e-03    0
## 118  5.077236e-03    0
## 119  5.077236e-03    0
## 122  5.077236e-03    0
## 129  5.077236e-03    0
## 130  5.077236e-03    0
## 135  5.077236e-03    0
## 139  5.077236e-03    0
## 140  5.077236e-03    0
## 141  5.077236e-03    0
## 142  5.077236e-03    0
## 156  5.077236e-03    0
## 159  5.077236e-03    0
## 160  5.077236e-03    0
## 161  5.077236e-03    0
## 163  5.077236e-03    0
## 166  5.077236e-03    0
## 167  5.077236e-03    0
## 168  5.077236e-03    0
## 173  5.077236e-03    0
## 176  5.077236e-03    0
## 184  5.077236e-03    0
## 186  5.077236e-03    0
## 189  5.077236e-03    0
## 194  5.077236e-03    0
## 195  5.077236e-03    0
## 200  5.077236e-03    0
## 205  5.077236e-03    0
## 206  5.077236e-03    0
## 210  5.077236e-03    0
## 211  5.077236e-03    0
## 213  5.077236e-03    0
## 218  5.077236e-03    0
## 219  5.077236e-03    0
## 224  5.077236e-03    0
## 225  5.077236e-03    0
## 227  5.077236e-03    0
## 229  5.077236e-03    0
## 233  5.077236e-03    0
## 235  5.077236e-03    0
## 237  5.077236e-03    0
## 238  5.077236e-03    0
## 239  5.077236e-03    0
## 240  5.077236e-03    0
## 241  5.077236e-03    0
## 242  5.077236e-03    0
## 243  5.077236e-03    0
## 244  5.077236e-03    0
## 245  5.077236e-03    0
## 249  5.077236e-03    0
## 252  5.077236e-03    0
## 256  5.077236e-03    0
## 257  5.077236e-03    0
## 259  5.077236e-03    0
## 261  5.077236e-03    0
## 262  5.077236e-03    0
## 264  5.077236e-03    0
## 266  5.077236e-03    0
## 267  5.077236e-03    0
## 268  5.077236e-03    0
## 270  5.077236e-03    0
## 272  5.077236e-03    0
## 275  5.077236e-03    0
## 282  5.077236e-03    0
## 283  5.077236e-03    0
## 284  5.077236e-03    0
## 286  5.077236e-03    0
## 290  5.077236e-03    0
## 292  5.077236e-03    0
## 293  5.077236e-03    0
## 295  5.077236e-03    0
## 298  5.077236e-03    0
## 299  5.077236e-03    0
## 301  5.077236e-03    0
## 303  5.077236e-03    0
## 305  5.077236e-03    0
## 306  5.077236e-03    0
## 312  5.077236e-03    0
## 314  5.077236e-03    0
## 315  5.077236e-03    0
## 316  5.077236e-03    0
## 319  5.077236e-03    0
## 322  5.077236e-03    0
## 328  5.077236e-03    0
## 329  5.077236e-03    0
## 333  5.077236e-03    0
## 336  5.077236e-03    0
## 337  5.077236e-03    0
## 339  5.077236e-03    0
## 340  5.077236e-03    0
## 341  5.077236e-03    0
## 342  5.077236e-03    0
## 343  5.077236e-03    0
## 346  5.077236e-03    0
## 347  5.077236e-03    0
## 350  5.077236e-03    0
## 353  5.077236e-03    0
## 354  5.077236e-03    0
## 356  5.077236e-03    0
## 358  5.077236e-03    0
## 359  5.077236e-03    0
## 362  5.077236e-03    0
## 365  5.077236e-03    0
## 367  5.077236e-03    0
## 368  5.077236e-03    0
## 371  5.077236e-03    0
## 373  5.077236e-03    0
## 381  5.077236e-03    0
## 385  5.077236e-03    0
## 387  5.077236e-03    0
## 391  5.077236e-03    0
## 398  5.077236e-03    0
## 399  5.077236e-03    0
## 403  5.077236e-03    0
## 404  5.077236e-03    0
## 406  5.077236e-03    0
## 407  5.077236e-03    0
## 414  5.077236e-03    0
## 417  5.077236e-03    0
## 418  5.077236e-03    0
## 419  5.077236e-03    0
## 420  5.077236e-03    0
## 421  5.077236e-03    0
## 424  5.077236e-03    0
## 426  5.077236e-03    0
## 428  5.077236e-03    0
## 430  5.077236e-03    0
## 431  5.077236e-03    0
## 433  5.077236e-03    0
## 435  5.077236e-03    0
## 438  5.077236e-03    0
## 440  5.077236e-03    0
## 443  5.077236e-03    0
## 445  5.077236e-03    0
## 447  5.077236e-03    0
## 448  5.077236e-03    0
## 449  5.077236e-03    0
## 454  5.077236e-03    0
## 459  5.077236e-03    0
## 460  5.077236e-03    0
## 467  5.077236e-03    0
## 471  5.077236e-03    0
## 472  5.077236e-03    0
## 473  5.077236e-03    0
## 477  5.077236e-03    0
## 478  5.077236e-03    0
## 483  5.077236e-03    0
## 485  5.077236e-03    0
## 486  5.077236e-03    0
## 487  5.077236e-03    0
## 490  5.077236e-03    0
## 491  5.077236e-03    0
## 496  5.077236e-03    0
## 501  5.077236e-03    0
## 506  5.077236e-03    0
## 510  5.077236e-03    0
## 512  5.077236e-03    0
## 515  5.077236e-03    0
## 516  5.077236e-03    0
## 523  5.077236e-03    0
## 528  5.077236e-03    0
## 529  5.077236e-03    0
## 535  5.077236e-03    0
## 538  5.077236e-03    0
## 541  5.077236e-03    0
## 542  5.077236e-03    0
## 543  5.077236e-03    0
## 544  5.077236e-03    0
## 545  5.077236e-03    0
## 546  5.077236e-03    0
## 550  5.077236e-03    0
## 556  5.077236e-03    0
## 558  5.077236e-03    0
## 559  5.077236e-03    0
## 560  5.077236e-03    0
## 563  5.077236e-03    0
## 565  5.077236e-03    0
## 567  5.077236e-03    0
## 568  5.077236e-03    0
## 570  5.077236e-03    0
## 573  5.077236e-03    0
## 574  5.077236e-03    0
## 576  5.077236e-03    0
## 578  5.077236e-03    0
## 581  5.077236e-03    0
## 582  5.077236e-03    0
## 583  5.077236e-03    0
## 586  5.077236e-03    0
## 587  5.077236e-03    0
## 589  5.077236e-03    0
## 592  5.077236e-03    0
## 598  5.077236e-03    0
## 601  5.077236e-03    0
## 602  5.077236e-03    0
## 604  5.077236e-03    0
## 609  5.077236e-03    0
## 611  5.077236e-03    0
## 612  5.077236e-03    0
## 614  5.077236e-03    0
## 618  5.077236e-03    0
## 621  5.077236e-03    0
## 622  5.077236e-03    0
## 623  5.077236e-03    0
## 625  5.077236e-03    0
## 627  5.077236e-03    0
## 628  5.077236e-03    0
## 630  5.077236e-03    0
## 635  5.077236e-03    0
## 636  5.077236e-03    0
## 639  5.077236e-03    0
## 640  5.077236e-03    0
## 643  5.077236e-03    0
## 645  5.077236e-03    0
## 647  5.077236e-03    0
## 648  5.077236e-03    0
## 649  5.077236e-03    0
## 650  5.077236e-03    0
## 651  5.077236e-03    0
## 654  5.077236e-03    0
## 656  5.077236e-03    0
## 657  5.077236e-03    0
## 662  5.077236e-03    0
## 664  5.077236e-03    0
## 665  5.077236e-03    0
## 666  5.077236e-03    0
## 667  5.077236e-03    0
## 668  5.077236e-03    0
## 671  5.077236e-03    0
## 672  5.077236e-03    0
## 673  5.077236e-03    0
## 674  5.077236e-03    0
## 677  5.077236e-03    0
## 680  5.077236e-03    0
## 683  5.077236e-03    0
## 687  5.077236e-03    0
## 690  5.077236e-03    0
## 692  5.077236e-03    0
## 693  5.077236e-03    0
## 699  5.077236e-03    0
## 700  5.077236e-03    0
## 702  5.077236e-03    0
## 703  5.077236e-03    0
## 704  5.077236e-03    0
## 706  5.077236e-03    0
## 710  5.077236e-03    0
## 711  5.077236e-03    0
## 712  5.077236e-03    0
## 717  5.077236e-03    0
## 719  5.077236e-03    0
## 724  5.077236e-03    0
## 725  5.077236e-03    0
## 726  5.077236e-03    0
## 727  5.077236e-03    0
## 729  5.077236e-03    0
## 733  5.077236e-03    0
## 738  5.077236e-03    0
## 739  5.077236e-03    0
## 740  5.077236e-03    0
## 742  5.077236e-03    0
## 746  5.077236e-03    0
## 747  5.077236e-03    0
## 748  5.077236e-03    0
## 750  5.077236e-03    0
## 752  5.077236e-03    0
## 753  5.077236e-03    0
## 754  5.077236e-03    0
## 755  5.077236e-03    0
## 759  5.077236e-03    0
## 760  5.077236e-03    0
## 762  5.077236e-03    0
## 763  5.077236e-03    0
## 768  5.077236e-03    0
## 774  5.077236e-03    0
## 781  5.077236e-03    0
## 783  5.077236e-03    0
## 784  5.077236e-03    0
## 792  5.077236e-03    0
## 794  5.077236e-03    0
## 795  5.077236e-03    0
## 799  5.077236e-03    0
## 804  5.077236e-03    0
## 805  5.077236e-03    0
## 810  5.077236e-03    0
## 812  5.077236e-03    0
## 818  5.077236e-03    0
## 821  5.077236e-03    0
## 826  5.077236e-03    0
## 828  5.077236e-03    0
## 829  5.077236e-03    0
## 837  5.077236e-03    0
## 839  5.077236e-03    0
## 841  5.077236e-03    0
## 843  5.077236e-03    0
## 854  5.077236e-03    0
## 857  5.077236e-03    0
## 858  5.077236e-03    0
## 860  5.077236e-03    0
## 861  5.077236e-03    0
## 862  5.077236e-03    0
## 863  5.077236e-03    0
## 865  5.077236e-03    0
## 866  5.077236e-03    0
## 867  5.077236e-03    0
## 869  5.077236e-03    0
## 870  5.077236e-03    0
## 871  5.077236e-03    0
## 872  5.077236e-03    0
## 875  5.077236e-03    0
## 877  5.077236e-03    0
## 880  5.077236e-03    0
## 884  5.077236e-03    0
## 886  5.077236e-03    0
## 888  5.077236e-03    0
## 889  5.077236e-03    0
## 891  5.077236e-03    0
## 892  5.077236e-03    0
## 896  5.077236e-03    0
## 897  5.077236e-03    0
## 898  5.077236e-03    0
## 899  5.077236e-03    0
## 902  5.077236e-03    0
## 905  5.077236e-03    0
## 906  5.077236e-03    0
## 907  5.077236e-03    0
## 911  5.077236e-03    0
## 913  5.077236e-03    0
## 916  5.077236e-03    0
## 919  5.077236e-03    0
## 921  5.077236e-03    0
## 923  5.077236e-03    0
## 925  5.077236e-03    0
## 927  5.077236e-03    0
## 929  5.077236e-03    0
## 932  5.077236e-03    0
## 935  5.077236e-03    0
## 936  5.077236e-03    0
## 946  5.077236e-03    0
## 947  5.077236e-03    0
## 950  5.077236e-03    0
## 956  5.077236e-03    0
## 958  5.077236e-03    0
## 962  5.077236e-03    0
## 969  5.077236e-03    0
## 970  5.077236e-03    0
## 972  5.077236e-03    0
## 975  5.077236e-03    0
## 977  5.077236e-03    0
## 979  5.077236e-03    0
## 980  5.077236e-03    0
## 981  5.077236e-03    0
## 982  5.077236e-03    0
## 984  5.077236e-03    0
## 987  5.077236e-03    0
## 992  5.077236e-03    0
## 993  5.077236e-03    0
## 996  5.077236e-03    0
## 997  5.077236e-03    0
## 998  5.077236e-03    0
## 1000 5.077236e-03    0
## 1001 5.077236e-03    0
## 1004 5.077236e-03    0
## 1005 5.077236e-03    0
## 1007 5.077236e-03    0
## 1012 5.077236e-03    0
## 1014 5.077236e-03    0
## 1015 5.077236e-03    0
## 1017 5.077236e-03    0
## 1019 5.077236e-03    0
## 1029 5.077236e-03    0
## 1030 5.077236e-03    0
## 1031 5.077236e-03    0
## 1034 5.077236e-03    0
## 1035 5.077236e-03    0
## 1039 5.077236e-03    0
## 1040 5.077236e-03    0
## 1044 5.077236e-03    0
## 1048 5.077236e-03    0
## 1053 5.077236e-03    0
## 1056 5.077236e-03    0
## 1057 5.077236e-03    0
## 1059 5.077236e-03    0
## 1065 5.077236e-03    0
## 1074 5.077236e-03    0
## 1075 5.077236e-03    0
## 1082 5.077236e-03    0
## 1084 5.077236e-03    0
## 1085 5.077236e-03    0
## 1088 5.077236e-03    0
## 1089 5.077236e-03    0
## 1090 5.077236e-03    0
## 1094 5.077236e-03    0
## 1095 5.077236e-03    0
## 1099 5.077236e-03    0
## 1102 5.077236e-03    0
## 1103 5.077236e-03    0
## 1104 5.077236e-03    0
## 1105 5.077236e-03    0
## 1107 5.077236e-03    0
## 1108 5.077236e-03    0
## 1109 5.077236e-03    0
## 1111 5.077236e-03    0
## 1113 5.077236e-03    0
## 1115 5.077236e-03    0
## 1119 5.077236e-03    0
## 1121 5.077236e-03    0
## 1122 5.077236e-03    0
## 1123 5.077236e-03    0
## 1124 5.077236e-03    0
## 1126 5.077236e-03    0
## 1133 5.077236e-03    0
## 1134 5.077236e-03    0
## 1136 5.077236e-03    0
## 1137 5.077236e-03    0
## 1139 5.077236e-03    0
## 1140 5.077236e-03    0
## 1141 5.077236e-03    0
## 1144 5.077236e-03    0
## 1146 5.077236e-03    0
## 1147 5.077236e-03    0
## 1148 5.077236e-03    0
## 1149 5.077236e-03    0
## 1150 5.077236e-03    0
## 1151 5.077236e-03    0
## 1152 5.077236e-03    0
## 1153 5.077236e-03    0
## 1154 5.077236e-03    0
## 1155 5.077236e-03    0
## 1159 5.077236e-03    0
## 1161 5.077236e-03    0
## 1163 5.077236e-03    0
## 1164 5.077236e-03    0
## 1166 5.077236e-03    0
## 1167 5.077236e-03    0
## 1168 5.077236e-03    0
## 1171 5.077236e-03    0
## 1172 5.077236e-03    0
## 1173 5.077236e-03    0
## 1175 5.077236e-03    0
## 1176 5.077236e-03    0
## 1179 5.077236e-03    0
## 1182 5.077236e-03    0
## 1185 5.077236e-03    0
## 1189 5.077236e-03    0
## 1190 5.077236e-03    0
## 1194 5.077236e-03    0
## 1196 5.077236e-03    0
## 1198 5.077236e-03    0
## 1200 5.077236e-03    0
## 1201 5.077236e-03    0
## 1204 5.077236e-03    0
## 1205 5.077236e-03    0
## 1208 5.077236e-03    0
## 1212 5.077236e-03    0
## 1214 5.077236e-03    0
## 1220 5.077236e-03    0
## 1224 5.077236e-03    0
## 1226 5.077236e-03    0
## 1230 5.077236e-03    0
## 1231 5.077236e-03    0
## 1234 5.077236e-03    0
## 1235 5.077236e-03    0
## 1237 5.077236e-03    0
## 1238 5.077236e-03    0
## 1240 5.077236e-03    0
## 1245 5.077236e-03    0
## 1246 5.077236e-03    0
## 1251 5.077236e-03    0
## 1252 5.077236e-03    0
## 1255 5.077236e-03    0
## 1258 5.077236e-03    0
## 1260 5.077236e-03    0
## 1261 5.077236e-03    0
## 1263 5.077236e-03    0
## 1264 5.077236e-03    0
## 1267 5.077236e-03    0
## 1270 5.077236e-03    0
## 1271 5.077236e-03    0
## 1273 5.077236e-03    0
## 1278 5.077236e-03    0
## 1282 5.077236e-03    0
## 1288 5.077236e-03    0
## 1290 5.077236e-03    0
## 1294 5.077236e-03    0
## 1297 5.077236e-03    0
## 1298 5.077236e-03    0
## 1299 5.077236e-03    0
## 1305 5.077236e-03    0
## 1310 5.077236e-03    0
## 1312 5.077236e-03    0
## 1313 5.077236e-03    0
## 1315 5.077236e-03    0
## 1316 5.077236e-03    0
## 1319 5.077236e-03    0
## 1322 5.077236e-03    0
## 1323 5.077236e-03    0
## 1325 5.077236e-03    0
## 1327 5.077236e-03    0
## 1333 5.077236e-03    0
## 1338 5.077236e-03    0
## 1340 5.077236e-03    0
## 1341 5.077236e-03    0
## 1342 5.077236e-03    0
## 1345 5.077236e-03    0
## 1346 5.077236e-03    0
## 1347 5.077236e-03    0
## 1348 5.077236e-03    0
## 1352 5.077236e-03    0
## 1358 5.077236e-03    0
## 1359 5.077236e-03    0
## 1360 5.077236e-03    0
## 1362 5.077236e-03    0
## 1365 5.077236e-03    0
## 1366 5.077236e-03    0
## 1368 5.077236e-03    0
## 1374 5.077236e-03    0
## 1375 5.077236e-03    0
## 1376 5.077236e-03    0
## 1377 5.077236e-03    0
## 1385 5.077236e-03    0
## 1386 5.077236e-03    0
## 1389 5.077236e-03    0
## 1390 5.077236e-03    0
## 1391 5.077236e-03    0
## 1393 5.077236e-03    0
## 1398 5.077236e-03    0
## 1399 5.077236e-03    0
## 1400 5.077236e-03    0
## 1405 5.077236e-03    0
## 1406 5.077236e-03    0
## 1407 5.077236e-03    0
## 1408 5.077236e-03    0
## 1410 5.077236e-03    0
## 1411 5.077236e-03    0
## 1413 5.077236e-03    0
## 1414 5.077236e-03    0
## 1419 5.077236e-03    0
## 1422 5.077236e-03    0
## 1424 5.077236e-03    0
## 1428 5.077236e-03    0
## 1431 5.077236e-03    0
## 1439 5.077236e-03    0
## 1441 5.077236e-03    0
## 1444 5.077236e-03    0
## 1445 5.077236e-03    0
## 1447 5.077236e-03    0
## 1448 5.077236e-03    0
## 1452 5.077236e-03    0
## 1455 5.077236e-03    0
## 1458 5.077236e-03    0
## 1462 5.077236e-03    0
## 1463 5.077236e-03    0
## 1464 5.077236e-03    0
## 1466 5.077236e-03    0
## 1467 5.077236e-03    0
## 1653 4.466369e-03    0
## 3368 4.452413e-03    0
## 3375 4.452413e-03    0
## 2491 4.328694e-03    0
## 1683 4.219454e-03    0
## 1685 4.219454e-03    0
## 1718 4.126851e-03    0
## 1668 3.958599e-03    0
## 1656 3.702404e-03    0
## 1657 3.702404e-03    0
## 1658 3.702404e-03    0
## 1661 3.702404e-03    0
## 1662 3.702404e-03    0
## 1663 3.702404e-03    0
## 1704 3.459108e-03    0
## 1705 3.459108e-03    0
## 1706 3.459108e-03    0
## 1707 3.459108e-03    0
## 1712 3.459108e-03    0
## 1511 3.291638e-03    0
## 2399 3.140544e-03    0
## 2403 3.140544e-03    0
## 2404 3.140544e-03    0
## 1715 3.122487e-03    0
## 1717 3.122487e-03    0
## 1723 3.093862e-03    0
## 1724 3.093862e-03    0
## 1486 2.665067e-03    0
## 1488 2.665067e-03    0
## 2785 2.656717e-03    0
## 1484 2.629595e-03    0
## 1485 2.629595e-03    0
## 1610 2.247463e-03    0
## 1615 2.247463e-03    0
## 1616 2.247463e-03    0
## 1620 2.169132e-03    0
## 2800 1.868377e-03    0
## 2802 1.868377e-03    0
## 2803 1.868377e-03    0
## 2805 1.868377e-03    0
## 1687 1.692841e-03    0
## 1688 1.692841e-03    0
## 1689 1.692841e-03    0
## 1692 1.692841e-03    0
## 1693 1.692841e-03    0
## 1694 1.692841e-03    0
## 1695 1.692841e-03    0
## 1696 1.692841e-03    0
## 1606 1.636630e-03    0
## 1607 1.636630e-03    0
## 12   1.069184e-03    0
## 14   1.069184e-03    0
## 1677 9.520628e-04    0
## 1679 9.520628e-04    0
## 2784 8.577979e-04    0
## 2851 8.577979e-04    0
## 2    2.203520e-04    0
## 3358 1.736770e-07    0
## 3365 1.736770e-07    0
## 3366 1.736770e-07    0
xbar=mean(ynew)
xbar
## [1] 0.3022814
axis=dim(n2)
ax=dim(n2)
ay=dim(n2)
axis[1]=1
ax[1]=xbar
ay[1]=bb1[1,2]
for (i in 2:n2) {
  axis[i]=i
  ax[i]=xbar*i
  ay[i]=ay[i-1]+bb1[i,2]
}

aaa=cbind(bb1[,1],bb1[,2],ay,ax)
aaa[1:20,]
##                  ay        ax
## 2085 0.9992379 1  1 0.3022814
## 2086 0.9992379 1  2 0.6045627
## 2087 0.9992379 1  3 0.9068441
## 2092 0.9992379 1  4 1.2091255
## 2947 0.9973893 1  5 1.5114068
## 2957 0.9973893 1  6 1.8136882
## 1602 0.9929340 1  7 2.1159696
## 2628 0.9922509 0  7 2.4182510
## 1972 0.9921059 1  8 2.7205323
## 1975 0.9921059 1  9 3.0228137
## 1976 0.9921059 1 10 3.3250951
## 3021 0.9891040 1 11 3.6273764
## 2393 0.9885339 1 12 3.9296578
## 2395 0.9885339 1 13 4.2319392
## 2396 0.9885339 1 14 4.5342205
## 1991 0.9873438 1 15 4.8365019
## 1994 0.9873438 1 16 5.1387833
## 2860 0.9863914 0 16 5.4410646
## 2861 0.9863914 0 16 5.7433460
## 2862 0.9863914 0 16 6.0456274
plot(axis,ay,xlab="number of cases",ylab="number of successes",main="Lift: Cum successes sorted by pred val/success prob")
points(axis,ax,type="l")

As we can see our error is right around 10% which I think tells us that our logistic model is also a good predictor. The problem is that both regressions we have run are still fairly simple.

CART Decision Trees

We decided that we wanted to focus in on a CART analysis to go above and beyond our regression analysis. We did similar things in this analysis such as using rating as our dependent variable and using our 14 variable data set again. He is our first tree:

library(tree)
## Warning: package 'tree' was built under R version 3.4.2
length(RRDE2$rating)
## [1] 3943
## Construct the tree
fullrtree <- tree(rating ~., data=RRDE2, mindev=0.1, mincut=1)
fullrtree <- tree(rating ~., data=RRDE2, mincut=1)
fullrtree
## node), split, n, deviance, yval
##       * denotes terminal node
## 
##  1) root 3943 2892.00 0.85520  
##    2) food_rating < 0.5 1797  155.00 0.06233  
##      4) service_rating < 0.5 1713   27.72 0.01284 *
##      5) service_rating > 0.5 84   37.57 1.07100 *
##    3) food_rating > 0.5 2146  661.70 1.51900  
##      6) service_rating < 1.5 1196  329.10 1.23800  
##       12) food_rating < 1.5 653  137.30 1.09300 *
##       13) food_rating > 1.5 543  161.60 1.41300 *
##      7) service_rating > 1.5 950  119.60 1.87300 *
plot(fullrtree, col=8)
text(fullrtree, pretty=1)

As you can see from this tree, the main two predictors of overall rating are food rating and service rating which makes a lot of sense. The sub-ratings are going to be a very good predictor of how well a resturaunt is rated overall. After seeing this we wanted to run decision trees showing how the food rating and service rating were predicted so that they could supplement the overall rating. For these two trees we held rating and the opposite sub-rating out to get a better tree. Here are those two trees with the first one predicting food rating and the second, service rating.

frtree <- tree(food_rating ~.-rating-service_rating, data=RRDE2, mindev=0.1, mincut=1)
frtree <- tree(food_rating ~.-rating-service_rating, data=RRDE2, mincut=1)
frtree
## node), split, n, deviance, yval
##       * denotes terminal node
## 
## 1) root 3943 3085.0 0.8844  
##   2) budget: 0 1980  708.3 0.2768  
##     4) hijos: 1 538  301.8 1.0190  
##       8) birth_year < 1988.5 226  129.4 0.6770 *
##       9) birth_year > 1988.5 312  126.9 1.2660 *
##     5) hijos: 2 1442    0.0 0.0000 *
##   3) budget: 1,2 1963  908.7 1.4970 *
plot(frtree, col=8)
text(frtree, pretty=1)

srtree <- tree(service_rating ~.-rating-food_rating, data=RRDE2, mindev=0.1, mincut=1)
srtree <- tree(service_rating ~.-rating-food_rating, data=RRDE2, mincut=1)
srtree
## node), split, n, deviance, yval
##       * denotes terminal node
## 
##  1) root 3943 2678.00 0.7616  
##    2) hijos: 2 1633  398.80 0.1488  
##      4) budget: 0 1442    0.00 0.0000 *
##      5) budget: 1 191  125.80 1.2720 *
##    3) hijos: 0,1 2310 1232.00 1.1950  
##      6) birth_year < 1965.5 232   91.52 1.6030 *
##      7) birth_year > 1965.5 2078 1098.00 1.1490  
##       14) transport: 1,2 1815  896.90 1.1000 *
##       15) transport: 0 263  165.70 1.4900 *
plot(srtree, col=8)
text(srtree, pretty=1)

These 3 trees together could be helpful to predict overall rating but after doing this we got the idea of running a tree with the rating as our dependent and removing the sub-ratings to get a better prediction. This tree is below:

rtree <- tree(rating ~.-food_rating-service_rating, data=RRDE2, mindev=0.1, mincut=1)
rtree <- tree(rating ~.-food_rating-service_rating, data=RRDE2, mincut=1)
rtree
## node), split, n, deviance, yval
##       * denotes terminal node
## 
##  1) root 3943 2892.00 0.8552  
##    2) hijos: 2 1633  400.90 0.1506  
##      4) budget: 0 1442    0.00 0.0000 *
##      5) budget: 1 191  121.20 1.2880 *
##    3) hijos: 0,1 2310 1108.00 1.3530  
##      6) transport: 1,2 2037  971.30 1.3040  
##       12) birth_year < 1965.5 222   71.32 1.7340 *
##       13) birth_year > 1965.5 1815  853.90 1.2520 *
##      7) transport: 0 273   95.28 1.7180 *
plot(rtree, col=8)
text(rtree, pretty=1)

As you can see this tree used a couple more and obviously different variables than our first tree. From this tree one could conclude that someone with kids (hijos=2), uses public transportation or owns a car (transport= 1, 2), and was born before 1966 will give the highest rating. These conclusions sound similar to what other groups had been seeing as well.

To finish of my analysis I wanted to focus on the largest type of cuisine there was, Mexican. I wanted to run more decision trees and see how they compared to the ones we ran before.

First I condensed the data set down to 900 entries, the ones that were Mexican cuisine. Then I did the same recode as before and ran the first tree using rating as a dependent variable and removing the sub-ratings again.

MFD <- read.csv("~/Business Analytics/Mexican Food Data.csv")

MFD$smoker=recode(MFD$smoker,"'FALSE'=0; 'TRUE'=1")
MFD$drink_level=recode(MFD$drink_level,"'abstemious'=0; 'casual drinker'=1; 'social drinker'=2")
MFD$dress_preference=recode(MFD$dress_preference,"'no preference'=0; 'informal'=1; 'formal'=2; 'elegant'=3")
MFD$ambience=recode(MFD$ambience,"'solitary'=0; 'friends'=1; 'family'=2")
MFD$transport=recode(MFD$transport,"'on foot'=0; 'public'=1; 'car owner'=2")
MFD$marital_status=recode(MFD$marital_status,"'single'=0; 'widowed'=1; 'married'=2")
MFD$hijos=recode(MFD$hijos,"'dependent'=0; 'independent'=1; 'kids'=2")
MFD$activity=recode(MFD$activity,"'unemployed'=0; 'student'=1; 'working-class'=2; 'professional'=3")
MFD$budget=recode(MFD$budget,"'low'=0; 'medium'=1; 'high'=2")
MFD$religion=recode(MFD$religion,"'none'=0; 'Catholic'=1; 'Christian'=1; 'Jewish'=1; 'Mormon'=1")



length(MFD$rating)
## [1] 900
## Construct the tree
rtree <- tree(rating ~.-food_rating-service_rating, data=MFD, mindev=0.1, mincut=1)
rtree <- tree(rating ~.-food_rating-service_rating, data=MFD, mincut=1)
rtree
## node), split, n, deviance, yval
##       * denotes terminal node
## 
##  1) root 900 551.900 1.1890  
##    2) drink_level: 1 306 185.600 0.9314  
##      4) birth_year < 1988.5 86  41.450 0.4767  
##        8) dress_preference: 1 44   7.886 0.1591 *
##        9) dress_preference: 0,2 42  24.480 0.8095  
##         18) birth_year < 1987 27  10.740 0.5185 *
##         19) birth_year > 1987 15   7.333 1.3330 *
##      5) birth_year > 1988.5 220 119.400 1.1090 *
##    3) drink_level: 0,2 594 335.600 1.3220  
##      6) dress_preference: 0 186 116.200 1.1240  
##       12) ambience: 2 103  68.190 0.8350  
##         24) activity: 3 18   1.778 0.1111 *
##         25) activity: 1,2 85  54.990 0.9882  
##           50) transport: 0 11   1.636 0.1818 *
##           51) transport: 1,2 74  45.140 1.1080 *
##       13) ambience: 0,1 83  28.720 1.4820 *
##      7) dress_preference: 1,2,3 408 208.800 1.4120 *
plot(rtree, col=8)
text(rtree, pretty=1)

As you can see this tree is a bit more complicated. There are more branches and it can get confusing. This is a good time to prune the tree. First I want to look at the plot to figure out which alpha value to use.

rcut <- prune.tree(rtree)
rcut
## $size
## [1] 9 8 7 6 5 3 2 1
## 
## $dev
## [1] 431.4380 437.8401 446.0568 455.1477 466.5759 496.4195 521.1430 551.8889
## 
## $k
## [1]      -Inf  6.402116  8.216737  9.090934 11.428162 14.921790 24.723517
## [8] 30.745890
## 
## $method
## [1] "deviance"
## 
## attr(,"class")
## [1] "prune"         "tree.sequence"
plot(rcut)

Looking at the plot above I chose k=5 because that comes after the largest drop off but it gradually goes down from there. Then I made the tree using this alpha.

rcut <- prune.tree(rtree,k=5)
plot(rcut)
text(rcut, pretty=1)

rcut
## node), split, n, deviance, yval
##       * denotes terminal node
## 
##  1) root 900 551.900 1.1890  
##    2) drink_level: 1 306 185.600 0.9314  
##      4) birth_year < 1988.5 86  41.450 0.4767  
##        8) dress_preference: 1 44   7.886 0.1591 *
##        9) dress_preference: 0,2 42  24.480 0.8095  
##         18) birth_year < 1987 27  10.740 0.5185 *
##         19) birth_year > 1987 15   7.333 1.3330 *
##      5) birth_year > 1988.5 220 119.400 1.1090 *
##    3) drink_level: 0,2 594 335.600 1.3220  
##      6) dress_preference: 0 186 116.200 1.1240  
##       12) ambience: 2 103  68.190 0.8350  
##         24) activity: 3 18   1.778 0.1111 *
##         25) activity: 1,2 85  54.990 0.9882  
##           50) transport: 0 11   1.636 0.1818 *
##           51) transport: 1,2 74  45.140 1.1080 *
##       13) ambience: 0,1 83  28.720 1.4820 *
##      7) dress_preference: 1,2,3 408 208.800 1.4120 *

As you can see the tree didn’t actually change but this would still be a good tree to minimize error. For the fun of it to show how the pruning works I will use an alpha of 10.

rcut <- prune.tree(rtree,k=10)
plot(rcut)
text(rcut, pretty=1)

rcut
## node), split, n, deviance, yval
##       * denotes terminal node
## 
##  1) root 900 551.900 1.1890  
##    2) drink_level: 1 306 185.600 0.9314  
##      4) birth_year < 1988.5 86  41.450 0.4767 *
##      5) birth_year > 1988.5 220 119.400 1.1090 *
##    3) drink_level: 0,2 594 335.600 1.3220  
##      6) dress_preference: 0 186 116.200 1.1240  
##       12) ambience: 2 103  68.190 0.8350  
##         24) activity: 3 18   1.778 0.1111 *
##         25) activity: 1,2 85  54.990 0.9882 *
##       13) ambience: 0,1 83  28.720 1.4820 *
##      7) dress_preference: 1,2,3 408 208.800 1.4120 *

These decision trees for the mexican food used many different variables to predict rating so it is tough to tell if our initial assessment of the overall data set was good or not. Age popped up in both trees but drink level effected Mexican resturaunts the most while it didn’t seem to effect the overall data set at all.

To conclude, we had 3 different types of analysis that concluded similar things and I tried to include different ways to double check these as well. I think this data set was a good way to let us showcase and practice the tools we learned this semester.