Deans Dilemma Case Study R Markdown Document

The following R Markdown document consists of analysis pertaining “Dean’s Dilemma Case Study.”

The scope of analysing this case is to bring an great efficacy in the both selection procedure and Placements of the students.

Firstly Entering the Data in to R,by creating a data frame “JainU_Data”

JainU_Data <- read.csv(paste("Data-Deans Dilemma.csv",sep = ""))
View(JainU_Data)
library(psych)
describe(JainU_Data)
##                     vars   n      mean        sd    median   trimmed
## SlNo                   1 391    196.00    113.02    196.00    196.00
## Gender*                2 391      1.68      0.47      2.00      1.72
## Gender.B               3 391      0.32      0.47      0.00      0.28
## Percent_SSC            4 391     64.65     10.96     64.50     64.76
## Board_SSC*             5 391      2.23      0.87      3.00      2.28
## Board_CBSE             6 391      0.29      0.45      0.00      0.24
## Board_ICSE             7 391      0.20      0.40      0.00      0.12
## Percent_HSC            8 391     63.80     11.42     63.00     63.34
## Board_HSC*             9 391      2.39      0.85      3.00      2.48
## Stream_HSC*           10 391      2.34      0.56      2.00      2.36
## Percent_Degree        11 391     62.98      8.92     63.00     62.91
## Course_Degree*        12 391      3.85      1.61      4.00      3.81
## Degree_Engg           13 391      0.09      0.29      0.00      0.00
## Experience_Yrs        14 391      0.48      0.67      0.00      0.36
## Entrance_Test*        15 391      5.85      1.35      6.00      6.08
## S.TEST                16 391      0.83      0.38      1.00      0.91
## Percentile_ET         17 391     54.93     31.17     62.00     56.87
## S.TEST.SCORE          18 391     54.93     31.17     62.00     56.87
## Percent_MBA           19 391     61.67      5.85     61.01     61.45
## Specialization_MBA*   20 391      1.47      0.56      1.00      1.42
## Marks_Communication   21 391     60.54      8.82     58.00     59.68
## Marks_Projectwork     22 391     68.36      7.15     69.00     68.60
## Marks_BOCA            23 391     64.38      9.58     63.00     64.08
## Placement*            24 391      1.80      0.40      2.00      1.87
## Placement_B           25 391      0.80      0.40      1.00      0.87
## Salary                26 391 219078.26 138311.65 240000.00 217011.50
##                          mad   min       max     range  skew kurtosis
## SlNo                  145.29  1.00    391.00    390.00  0.00    -1.21
## Gender*                 0.00  1.00      2.00      1.00 -0.75    -1.45
## Gender.B                0.00  0.00      1.00      1.00  0.75    -1.45
## Percent_SSC            12.60 37.00     87.20     50.20 -0.06    -0.72
## Board_SSC*              0.00  1.00      3.00      2.00 -0.45    -1.53
## Board_CBSE              0.00  0.00      1.00      1.00  0.93    -1.14
## Board_ICSE              0.00  0.00      1.00      1.00  1.52     0.31
## Percent_HSC            13.34 40.00     94.70     54.70  0.29    -0.67
## Board_HSC*              0.00  1.00      3.00      2.00 -0.83    -1.13
## Stream_HSC*             0.00  1.00      3.00      2.00 -0.12    -0.72
## Percent_Degree          8.90 35.00     89.00     54.00  0.05     0.24
## Course_Degree*          1.48  1.00      7.00      6.00  0.00    -1.08
## Degree_Engg             0.00  0.00      1.00      1.00  2.76     5.63
## Experience_Yrs          0.00  0.00      3.00      3.00  1.27     1.17
## Entrance_Test*          0.00  1.00      9.00      8.00 -2.52     7.04
## S.TEST                  0.00  0.00      1.00      1.00 -1.74     1.02
## Percentile_ET          25.20  0.00     98.69     98.69 -0.74    -0.69
## S.TEST.SCORE           25.20  0.00     98.69     98.69 -0.74    -0.69
## Percent_MBA             6.39 50.83     77.89     27.06  0.34    -0.52
## Specialization_MBA*     0.00  1.00      3.00      2.00  0.70    -0.56
## Marks_Communication     8.90 50.00     88.00     38.00  0.74    -0.25
## Marks_Projectwork       7.41 50.00     87.00     37.00 -0.26    -0.27
## Marks_BOCA             11.86 50.00     96.00     46.00  0.29    -0.85
## Placement*              0.00  1.00      2.00      1.00 -1.48     0.19
## Placement_B             0.00  0.00      1.00      1.00 -1.48     0.19
## Salary              88956.00  0.00 940000.00 940000.00  0.24     1.74
##                          se
## SlNo                   5.72
## Gender*                0.02
## Gender.B               0.02
## Percent_SSC            0.55
## Board_SSC*             0.04
## Board_CBSE             0.02
## Board_ICSE             0.02
## Percent_HSC            0.58
## Board_HSC*             0.04
## Stream_HSC*            0.03
## Percent_Degree         0.45
## Course_Degree*         0.08
## Degree_Engg            0.01
## Experience_Yrs         0.03
## Entrance_Test*         0.07
## S.TEST                 0.02
## Percentile_ET          1.58
## S.TEST.SCORE           1.58
## Percent_MBA            0.30
## Specialization_MBA*    0.03
## Marks_Communication    0.45
## Marks_Projectwork      0.36
## Marks_BOCA             0.48
## Placement*             0.02
## Placement_B            0.02
## Salary              6994.72

Median salary of All Students

median(JainU_Data$Salary)
## [1] 240000

Percentage of Students who where placed

Percent_Placed <- xtabs(~Placement,data=JainU_Data)
prop.table(Percent_Placed)*100
## Placement
## Not Placed     Placed 
##    20.2046    79.7954

Creating Dataframe, which contains subset_data of those students who were successfully placed

Placed <- JainU_Data[which(JainU_Data$Placement=='Placed'&JainU_Data$Placement_B=='1' ),]
View(Placed)

Median Salary of Students who were Placed.

median(Placed$Salary)
## [1] 260000

Creating Table which depicts the Mean Salary of Males & Female Students, who were Placed.

aggregate(Placed$Salary,list(Gender=Placed$Gender),mean)
##   Gender        x
## 1      F 253068.0
## 2      M 284241.9

Histogram to depict the MBA Perfomance of Students.

hist(Placed$Percent_MBA,main = "MBA Perfomance of Placed Students",xlab="Percentage in MBA(%)",ylab="Frequency(No. of Counts)",xlim = c(50,80),ylim=c(0,50),breaks = 3,col ="yellow")

Creating Dataframe, which contains subset_data of those students who were not placed

Not_Placed <-JainU_Data[which(JainU_Data$Placement=='Not Placed'),]
View(Not_Placed)                   

Comparing Histograms of Placed & Not_Placed Students

par(mfrow=c(1,2))
hist(Placed$Percent_MBA,main = "MBA Perfomance of Placed",xlab="Percentage in MBA(%)",ylab="Frequency(No. of Counts)",xlim = c(50,80),ylim=c(0,150),breaks = 3,col ="yellow")
hist(Not_Placed$Percent_MBA,main = "MBA Perfomance of Not Placed",xlab="Percentage in MBA(%)",ylab="Frequency(No. of Counts)",xlim = c(50,80),ylim=c(0,40),breaks =3 ,col ="yellow")

Drawing two boxplots, one below the other, comparing the distribution of salaries of males and females

boxplot(Placed$Salary~Placed$Gender,horizontal=TRUE,main="Comparison of salaries of Males and Females",xlab="salary",ylab="Gender",col=c("Yellow","green"),yaxt='n')
axis(side=2,at=c(1,2), labels =c('Females','Males'))

Create a dataframe “placedET”“, representing students who were placed after the MBA and who also gave some MBA entrance test before admission into the MBA program.

placedET <- JainU_Data[which(JainU_Data$Placement=='Placed' & JainU_Data$S.TEST=='1'),] 
View(placedET)

Scatter Plot Matrix for 3 variables – {Salary, Percent_MBA, Percentile_ET} using the dataframe placedET.

library(car)
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
scatterplotMatrix(~ Salary+Percent_MBA+Percentile_ET, data=placedET)