Carbon dioxide (CO2) is a colorless, odorless and non-poisonous gas from the combustion of carbon and in the respiration of living organisms and is considered a greenhouse gas. Emission means the release of a greenhouse gas and their by-products into the atmosphere over a specific area and period of time. The greenhouse effect is a natural function of Earth’s atmosphere and allows for a livable world. However, the increased burning of CO2 and other greenhouse gases, such as methane and water vapor, is increasing the greenhouse effect and causing the Earth to warm up very rapidly. The CO2 emissions of 10 countries from 1950 to 2012, China, the United States, India, Russia, Japan, Germany, Iran, South Korea, Indonesia and Canada are shown but this project focuses on the CO2 emissions of China and the United States. This project is not based on sampling, but on prediction.
How do Greenhouse Gases Warm Earth?
Hypothesis
Based on the historical trends, China will emit more than the United States.
Raw Data
The data below shows the CO2 emissions per year of 10 countries from 1950 to 2012.
co2 <- read.csv("indicator7_2013_all (2).csv")
co2
## Year China United.States India Russia Japan Germany Iran South.Korea
## 1 1950 21 675 18 NA 27 138 0 1
## 2 1951 28 696 19 NA 33 156 2 1
## 3 1952 35 676 20 NA 35 165 1 1
## 4 1953 36 693 20 NA 39 168 1 1
## 5 1954 43 661 21 NA 37 177 0 1
## 6 1955 51 724 23 NA 37 195 1 2
## 7 1956 58 758 23 NA 42 206 3 2
## 8 1957 69 753 26 NA 49 209 4 2
## 9 1958 142 731 27 NA 47 203 4 2
## 10 1959 195 754 29 NA 50 203 4 3
## 11 1960 211 772 32 NA 60 218 7 3
## 12 1961 149 770 34 NA 74 223 6 4
## 13 1962 119 800 38 NA 76 236 6 5
## 14 1963 118 836 41 NA 85 253 6 6
## 15 1964 118 874 40 NA 94 259 7 6
## 16 1965 128 911 44 NA 101 257 8 7
## 17 1966 141 956 45 NA 109 254 8 8
## 18 1967 117 992 45 NA 128 250 9 9
## 19 1968 127 1028 49 NA 147 263 11 10
## 20 1969 156 1080 50 NA 171 281 11 11
## 21 1970 209 1164 51 NA 202 274 15 14
## 22 1971 236 1174 54 NA 209 276 16 15
## 23 1972 251 1231 57 NA 224 277 16 16
## 24 1973 260 1286 59 NA 260 290 20 19
## 25 1974 266 1241 61 NA 254 284 24 19
## 26 1975 308 1191 66 NA 242 268 25 21
## 27 1976 319 1247 69 NA 250 292 27 24
## 28 1977 349 1281 83 NA 263 282 30 27
## 29 1978 389 1321 84 NA 258 289 29 29
## 30 1979 397 1323 87 NA 268 299 35 34
## 31 1980 388 1276 92 NA 260 294 27 34
## 32 1981 384 1225 99 NA 253 281 26 36
## 33 1982 417 1163 105 NA 245 272 29 36
## 34 1983 439 1172 113 NA 243 271 33 38
## 35 1984 478 1208 117 NA 259 277 36 42
## 36 1985 517 1212 128 NA 253 281 39 46
## 37 1986 542 1213 137 NA 254 281 36 46
## 38 1987 578 1266 146 NA 252 277 39 49
## 39 1988 618 1321 158 NA 277 276 44 56
## 40 1989 629 1338 172 NA 285 272 50 60
## 41 1990 642 1319 179 NA 287 271 50 63
## 42 1991 670 1316 192 NA 288 249 54 67
## 43 1992 693 1318 206 570 294 238 54 71
## 44 1993 735 1396 214 526 290 235 58 81
## 45 1994 777 1411 227 462 308 231 64 87
## 46 1995 841 1414 242 445 311 231 66 95
## 47 1996 878 1442 262 438 316 238 67 102
## 48 1997 877 1485 273 419 315 230 65 109
## 49 1998 834 1473 280 409 305 228 76 93
## 50 1999 827 1494 299 412 316 219 95 102
## 51 2000 847 1545 310 417 322 221 92 115
## 52 2001 861 1514 313 416 317 228 98 116
## 53 2002 909 1527 318 414 322 222 100 119
## 54 2003 1117 1535 332 427 328 223 102 119
## 55 2004 1310 1564 350 425 334 221 111 124
## 56 2005 1434 1573 365 427 328 216 122 119
## 57 2006 1581 1549 388 441 326 216 125 121
## 58 2007 1667 1574 416 438 332 210 133 128
## 59 2008 1729 1528 466 454 321 209 143 132
## 60 2009 1875 1434 511 417 293 196 149 132
## 61 2010 2066 1490 534 434 313 205 152 145
## 62 2011 2252 1458 552 451 314 197 155 155
## 63 2012 2395 1403 596 449 336 200 159 157
## Indonesia Canada
## 1 3 42
## 2 3 44
## 3 3 43
## 4 4 43
## 5 4 44
## 6 6 45
## 7 6 50
## 8 6 48
## 9 6 48
## 10 6 49
## 11 6 51
## 12 7 51
## 13 6 54
## 14 6 55
## 15 6 63
## 16 7 67
## 17 6 68
## 18 7 75
## 19 7 81
## 20 9 82
## 21 9 91
## 22 10 94
## 23 10 102
## 24 12 102
## 25 12 104
## 26 13 106
## 27 14 107
## 28 17 107
## 29 19 109
## 30 20 114
## 31 22 115
## 32 23 111
## 33 25 107
## 34 25 106
## 35 27 109
## 36 30 107
## 37 30 103
## 38 30 109
## 39 32 115
## 40 32 117
## 41 36 120
## 42 44 120
## 43 50 126
## 44 54 128
## 45 55 121
## 46 56 123
## 47 63 125
## 48 70 129
## 49 52 138
## 50 62 138
## 51 67 143
## 52 74 141
## 53 76 139
## 54 79 148
## 55 86 148
## 56 87 151
## 57 88 147
## 58 96 150
## 59 106 146
## 60 116 138
## 61 130 142
## 62 144 145
## 63 146 144
Graph 1: 10 Countries
This graph shows the CO2 emissions of each of the ten countries from 1950 to 2012.
library(reshape)
co2m <- melt(co2, id="Year")
library(ggplot2)
ggplot(data=co2m, mapping=aes(x=Year, y=value, color=variable)) + geom_line() + labs(y="Emissions (Million Tons of Carbon)")
## Warning: Removed 42 rows containing missing values (geom_path).
Graph 2: United States and China
This graph shows the CO2 emissions of the United States and China from 1950 to 2012.
library(ggplot2)
ggplot(data=co2, mapping=aes(x=as.numeric(Year))) + geom_line(mapping=aes(y=as.numeric(China)), color="red") + geom_line(mapping=aes(y=as.numeric(United.States)), color="orange") + labs(y="Emissions (Million Tons of Carbon)", x ="Year")
Testing
To test the hypothesis, a line of regression was used for the United States and China.
Regression for China
co2$Year
## [1] 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
## [15] 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
## [29] 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
## [43] 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
## [57] 2006 2007 2008 2009 2010 2011 2012
co2$China
## [1] 21 28 35 36 43 51 58 69 142 195 211 149 119 118
## [15] 118 128 141 117 127 156 209 236 251 260 266 308 319 349
## [29] 389 397 388 384 417 439 478 517 542 578 618 629 642 670
## [43] 693 735 777 841 878 877 834 827 847 861 909 1117 1310 1434
## [57] 1581 1667 1729 1875 2066 2252 2395
M <- lm(co2$China ~ co2$Year)
M
##
## Call:
## lm(formula = co2$China ~ co2$Year)
##
## Coefficients:
## (Intercept) co2$Year
## -55965.78 28.55
Regression for the United States
co2$Year
## [1] 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
## [15] 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
## [29] 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
## [43] 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
## [57] 2006 2007 2008 2009 2010 2011 2012
co2$United.States
## [1] 675 696 676 693 661 724 758 753 731 754 772 770 800 836
## [15] 874 911 956 992 1028 1080 1164 1174 1231 1286 1241 1191 1247 1281
## [29] 1321 1323 1276 1225 1163 1172 1208 1212 1213 1266 1321 1338 1319 1316
## [43] 1318 1396 1411 1414 1442 1485 1473 1494 1545 1514 1527 1535 1564 1573
## [57] 1549 1574 1528 1434 1490 1458 1403
M <- lm(co2$United.States ~ co2$Year)
M
##
## Call:
## lm(formula = co2$United.States ~ co2$Year)
##
## Coefficients:
## (Intercept) co2$Year
## -28605.34 15.04
A regression was used to determine the projection of CO2 emission by China and the United States. According to the data, if the trend continues China will increase by approximately 30 Million Tons of Carbon per year and the United States will increase by approximately 15 Million Tons of Carbon per year. The data also shows that China is increasing faster. In conclusion, it is projected that China will emit more CO2 than the United States (based on the data). The data does not take into account per capita emission of CO2. The predictions do not take into account politics.