Background

Carbon dioxide (CO2) is a colorless, odorless and non-poisonous gas from the combustion of carbon and in the respiration of living organisms and is considered a greenhouse gas. Emission means the release of a greenhouse gas and their by-products into the atmosphere over a specific area and period of time. The greenhouse effect is a natural function of Earth’s atmosphere and allows for a livable world. However, the increased burning of CO2 and other greenhouse gases, such as methane and water vapor, is increasing the greenhouse effect and causing the Earth to warm up very rapidly. The CO2 emissions of 10 countries from 1950 to 2012, China, the United States, India, Russia, Japan, Germany, Iran, South Korea, Indonesia and Canada are shown but this project focuses on the CO2 emissions of China and the United States. This project is not based on sampling, but on prediction.

How do Greenhouse Gases Warm Earth?

How do Greenhouse Gases Warm Earth?

Hypothesis

Based on the historical trends, China will emit more than the United States.

Results

Raw Data

The data below shows the CO2 emissions per year of 10 countries from 1950 to 2012.

co2 <- read.csv("indicator7_2013_all (2).csv")
co2
##    Year China United.States India Russia Japan Germany Iran South.Korea
## 1  1950    21           675    18     NA    27     138    0           1
## 2  1951    28           696    19     NA    33     156    2           1
## 3  1952    35           676    20     NA    35     165    1           1
## 4  1953    36           693    20     NA    39     168    1           1
## 5  1954    43           661    21     NA    37     177    0           1
## 6  1955    51           724    23     NA    37     195    1           2
## 7  1956    58           758    23     NA    42     206    3           2
## 8  1957    69           753    26     NA    49     209    4           2
## 9  1958   142           731    27     NA    47     203    4           2
## 10 1959   195           754    29     NA    50     203    4           3
## 11 1960   211           772    32     NA    60     218    7           3
## 12 1961   149           770    34     NA    74     223    6           4
## 13 1962   119           800    38     NA    76     236    6           5
## 14 1963   118           836    41     NA    85     253    6           6
## 15 1964   118           874    40     NA    94     259    7           6
## 16 1965   128           911    44     NA   101     257    8           7
## 17 1966   141           956    45     NA   109     254    8           8
## 18 1967   117           992    45     NA   128     250    9           9
## 19 1968   127          1028    49     NA   147     263   11          10
## 20 1969   156          1080    50     NA   171     281   11          11
## 21 1970   209          1164    51     NA   202     274   15          14
## 22 1971   236          1174    54     NA   209     276   16          15
## 23 1972   251          1231    57     NA   224     277   16          16
## 24 1973   260          1286    59     NA   260     290   20          19
## 25 1974   266          1241    61     NA   254     284   24          19
## 26 1975   308          1191    66     NA   242     268   25          21
## 27 1976   319          1247    69     NA   250     292   27          24
## 28 1977   349          1281    83     NA   263     282   30          27
## 29 1978   389          1321    84     NA   258     289   29          29
## 30 1979   397          1323    87     NA   268     299   35          34
## 31 1980   388          1276    92     NA   260     294   27          34
## 32 1981   384          1225    99     NA   253     281   26          36
## 33 1982   417          1163   105     NA   245     272   29          36
## 34 1983   439          1172   113     NA   243     271   33          38
## 35 1984   478          1208   117     NA   259     277   36          42
## 36 1985   517          1212   128     NA   253     281   39          46
## 37 1986   542          1213   137     NA   254     281   36          46
## 38 1987   578          1266   146     NA   252     277   39          49
## 39 1988   618          1321   158     NA   277     276   44          56
## 40 1989   629          1338   172     NA   285     272   50          60
## 41 1990   642          1319   179     NA   287     271   50          63
## 42 1991   670          1316   192     NA   288     249   54          67
## 43 1992   693          1318   206    570   294     238   54          71
## 44 1993   735          1396   214    526   290     235   58          81
## 45 1994   777          1411   227    462   308     231   64          87
## 46 1995   841          1414   242    445   311     231   66          95
## 47 1996   878          1442   262    438   316     238   67         102
## 48 1997   877          1485   273    419   315     230   65         109
## 49 1998   834          1473   280    409   305     228   76          93
## 50 1999   827          1494   299    412   316     219   95         102
## 51 2000   847          1545   310    417   322     221   92         115
## 52 2001   861          1514   313    416   317     228   98         116
## 53 2002   909          1527   318    414   322     222  100         119
## 54 2003  1117          1535   332    427   328     223  102         119
## 55 2004  1310          1564   350    425   334     221  111         124
## 56 2005  1434          1573   365    427   328     216  122         119
## 57 2006  1581          1549   388    441   326     216  125         121
## 58 2007  1667          1574   416    438   332     210  133         128
## 59 2008  1729          1528   466    454   321     209  143         132
## 60 2009  1875          1434   511    417   293     196  149         132
## 61 2010  2066          1490   534    434   313     205  152         145
## 62 2011  2252          1458   552    451   314     197  155         155
## 63 2012  2395          1403   596    449   336     200  159         157
##    Indonesia Canada
## 1          3     42
## 2          3     44
## 3          3     43
## 4          4     43
## 5          4     44
## 6          6     45
## 7          6     50
## 8          6     48
## 9          6     48
## 10         6     49
## 11         6     51
## 12         7     51
## 13         6     54
## 14         6     55
## 15         6     63
## 16         7     67
## 17         6     68
## 18         7     75
## 19         7     81
## 20         9     82
## 21         9     91
## 22        10     94
## 23        10    102
## 24        12    102
## 25        12    104
## 26        13    106
## 27        14    107
## 28        17    107
## 29        19    109
## 30        20    114
## 31        22    115
## 32        23    111
## 33        25    107
## 34        25    106
## 35        27    109
## 36        30    107
## 37        30    103
## 38        30    109
## 39        32    115
## 40        32    117
## 41        36    120
## 42        44    120
## 43        50    126
## 44        54    128
## 45        55    121
## 46        56    123
## 47        63    125
## 48        70    129
## 49        52    138
## 50        62    138
## 51        67    143
## 52        74    141
## 53        76    139
## 54        79    148
## 55        86    148
## 56        87    151
## 57        88    147
## 58        96    150
## 59       106    146
## 60       116    138
## 61       130    142
## 62       144    145
## 63       146    144

Graph 1: 10 Countries

This graph shows the CO2 emissions of each of the ten countries from 1950 to 2012.

library(reshape)
co2m <- melt(co2, id="Year")
library(ggplot2)
ggplot(data=co2m, mapping=aes(x=Year, y=value, color=variable)) + geom_line() + labs(y="Emissions (Million Tons of Carbon)")
## Warning: Removed 42 rows containing missing values (geom_path).

Graph 2: United States and China

This graph shows the CO2 emissions of the United States and China from 1950 to 2012.

library(ggplot2)
ggplot(data=co2, mapping=aes(x=as.numeric(Year))) + geom_line(mapping=aes(y=as.numeric(China)), color="red") + geom_line(mapping=aes(y=as.numeric(United.States)), color="orange") + labs(y="Emissions (Million Tons of Carbon)", x ="Year") 

Testing

To test the hypothesis, a line of regression was used for the United States and China.

Regression for China

co2$Year
##  [1] 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
## [15] 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
## [29] 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
## [43] 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
## [57] 2006 2007 2008 2009 2010 2011 2012
co2$China
##  [1]   21   28   35   36   43   51   58   69  142  195  211  149  119  118
## [15]  118  128  141  117  127  156  209  236  251  260  266  308  319  349
## [29]  389  397  388  384  417  439  478  517  542  578  618  629  642  670
## [43]  693  735  777  841  878  877  834  827  847  861  909 1117 1310 1434
## [57] 1581 1667 1729 1875 2066 2252 2395
M <- lm(co2$China ~ co2$Year)
M
## 
## Call:
## lm(formula = co2$China ~ co2$Year)
## 
## Coefficients:
## (Intercept)     co2$Year  
##   -55965.78        28.55

Regression for the United States

co2$Year
##  [1] 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
## [15] 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
## [29] 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
## [43] 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
## [57] 2006 2007 2008 2009 2010 2011 2012
co2$United.States
##  [1]  675  696  676  693  661  724  758  753  731  754  772  770  800  836
## [15]  874  911  956  992 1028 1080 1164 1174 1231 1286 1241 1191 1247 1281
## [29] 1321 1323 1276 1225 1163 1172 1208 1212 1213 1266 1321 1338 1319 1316
## [43] 1318 1396 1411 1414 1442 1485 1473 1494 1545 1514 1527 1535 1564 1573
## [57] 1549 1574 1528 1434 1490 1458 1403
M <- lm(co2$United.States ~ co2$Year)
M
## 
## Call:
## lm(formula = co2$United.States ~ co2$Year)
## 
## Coefficients:
## (Intercept)     co2$Year  
##   -28605.34        15.04

Conclusion

A regression was used to determine the projection of CO2 emission by China and the United States. According to the data, if the trend continues China will increase by approximately 30 Million Tons of Carbon per year and the United States will increase by approximately 15 Million Tons of Carbon per year. The data also shows that China is increasing faster. In conclusion, it is projected that China will emit more CO2 than the United States (based on the data). The data does not take into account per capita emission of CO2. The predictions do not take into account politics.

Sources