read in new data:

library(lme4)
library(lmerTest)
library(readr)
library(sjPlot)
library(sjstats)
jf_neg_items <- read_csv("C:/Users/dasil/Dropbox/SCnegimages/Analysis_filesupdated/jf_neg_items.csv")
Parsed with column specification:
cols(
  subject_ID = col_character(),
  Image_number = col_integer(),
  emotion = col_character(),
  condition = col_character(),
  remembered = col_integer(),
  jf = col_integer(),
  variable = col_character(),
  valence = col_double()
)
jf_neg_items <- within(jf_neg_items, {
  Image_number <- factor(Image_number)
  subject_ID <- factor(subject_ID)
  variable <- as.factor(variable) 
  emotion <- as.factor(emotion) 
  condition <- as.factor(condition) 
  })
negVall<-c(1,-.5,-.5)
contrasts(jf_neg_items$emotion) <- cbind(negVall)
socvnsoc<-c(-.5,.5)
contrasts(jf_neg_items$condition) <- cbind(socvnsoc)

read in old data:

recall_lmer_longform <- read_delim("C:/Users/dasil/Dropbox/SCnegimages/Analysis_filesupdated/recall_lmer_longform.txt", "\t", escape_double = FALSE, trim_ws = TRUE)
Parsed with column specification:
cols(
  subID = col_integer(),
  JF = col_integer(),
  variable = col_character(),
  value = col_integer(),
  sociality = col_character(),
  valence = col_character()
)
recall_lmer_longform <- within(recall_lmer_longform, {
  SubID <- factor(subID)
  variable <- as.factor(variable) 
  sociality <- as.factor(sociality) 
  valence <- as.factor(valence) 
  })
negVall.old<-c(1,-.5,-.5)
contrasts(recall_lmer_longform$valence) <- cbind(negVall.old)
socvnsoc.old<-c(-.5,.5)
contrasts(recall_lmer_longform$sociality) <- cbind(socvnsoc.old)

model old data and note differences between gaussian and binomial models:

m.old<-lmer(value~sociality*valence*scale(JF)+(1|subID),data=recall_lmer_longform) ###orignal model
summary(m.old)
Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: value ~ sociality * valence * scale(JF) + (1 | subID)
   Data: recall_lmer_longform

REML criterion at convergence: 1391.6

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-2.36257 -0.70489 -0.01487  0.65663  2.53505 

Random effects:
 Groups   Name        Variance Std.Dev.
 subID    (Intercept) 0.3196   0.5654  
 Residual             1.4033   1.1846  
Number of obs: 414, groups:  subID, 69

Fixed effects:
                                                     Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)                                          2.417874   0.089566  67.000000  26.996  < 2e-16 ***
socialitysocvnsoc.old                                0.140097   0.116440 335.000000   1.203  0.22976    
valencenegVall.old                                   0.835749   0.082336 335.000000  10.151  < 2e-16 ***
valence                                              0.481652   0.100840 335.000000   4.776 2.67e-06 ***
scale(JF)                                           -0.165847   0.089674  67.000000  -1.849  0.06881 .  
socialitysocvnsoc.old:valencenegVall.old             0.280193   0.164671 335.000000   1.702  0.08977 .  
socialitysocvnsoc.old:valence                       -0.348429   0.201680 335.000000  -1.728  0.08498 .  
socialitysocvnsoc.old:scale(JF)                     -0.004539   0.116581 335.000000  -0.039  0.96897    
valencenegVall.old:scale(JF)                        -0.230182   0.082435 335.000000  -2.792  0.00553 ** 
valence:scale(JF)                                   -0.116918   0.100962 335.000000  -1.158  0.24767    
socialitysocvnsoc.old:valencenegVall.old:scale(JF)  -0.235839   0.164870 335.000000  -1.430  0.15352    
socialitysocvnsoc.old:valence:scale(JF)             -0.067110   0.201924 335.000000  -0.332  0.73983    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
            (Intr) sclty. vlncV. valenc sc(JF) sc.:V. sclt.: s.:(JF vV.:(J v:(JF) s.:V.:
scltyscvns. 0.000                                                                       
vlncngVll.l 0.000  0.000                                                                
valence     0.000  0.000  0.000                                                         
scale(JF)   0.000  0.000  0.000  0.000                                                  
scltysc.:V. 0.000  0.000  0.000  0.000  0.000                                           
scltyscvn.: 0.000  0.000  0.000  0.000  0.000  0.000                                    
sclty.:(JF) 0.000  0.000  0.000  0.000  0.000  0.000  0.000                             
vlncV.:(JF) 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000                      
vlnc:sc(JF) 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000               
sc.:V.:(JF) 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000        
sclt.::(JF) 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
hist(recall_lmer_longform$value)

recall_lmer_longform$weight<-rep(8,414) ###create weights in denominator
recall_lmer_longform$prop<-recall_lmer_longform$value/recall_lmer_longform$weight #create proportion correct
m.old.g<-glmer(prop~sociality*valence*scale(JF)+(1|subID),weights=weight,family=binomial,data=recall_lmer_longform)#### from .007 to .03
summary(m.old.g)
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
 Family: binomial  ( logit )
Formula: prop ~ sociality * valence * scale(JF) + (1 | subID)
   Data: recall_lmer_longform
Weights: weight

     AIC      BIC   logLik deviance df.resid 
  1376.4   1428.8   -675.2   1350.4      401 

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-2.05701 -0.65750 -0.01028  0.59786  2.56132 

Random effects:
 Groups Name        Variance Std.Dev.
 subID  (Intercept) 0.103    0.3209  
Number of obs: 414, groups:  subID, 69

Fixed effects:
                                                   Estimate Std. Error z value Pr(>|z|)    
(Intercept)                                        -0.89054    0.05552 -16.039  < 2e-16 ***
socialitysocvnsoc.old                               0.08664    0.07891   1.098   0.2722    
valencenegVall.old                                  0.49923    0.05354   9.324  < 2e-16 ***
valence                                             0.33071    0.07112   4.650 3.31e-06 ***
scale(JF)                                          -0.09065    0.05541  -1.636   0.1018    
socialitysocvnsoc.old:valencenegVall.old            0.13489    0.10690   1.262   0.2070    
socialitysocvnsoc.old:valence                      -0.24088    0.14219  -1.694   0.0902 .  
socialitysocvnsoc.old:scale(JF)                     0.01323    0.07913   0.167   0.8672    
valencenegVall.old:scale(JF)                       -0.11965    0.05353  -2.235   0.0254 *  
valence:scale(JF)                                  -0.07344    0.07142  -1.028   0.3038    
socialitysocvnsoc.old:valencenegVall.old:scale(JF) -0.13381    0.10699  -1.251   0.2110    
socialitysocvnsoc.old:valence:scale(JF)            -0.06328    0.14282  -0.443   0.6577    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
            (Intr) sclty. vlncV. valenc sc(JF) sc.:V. sclt.: s.:(JF vV.:(J v:(JF) s.:V.:
scltyscvns. -0.012                                                                      
vlncngVll.l -0.092  0.003                                                               
valence     -0.071  0.036  0.072                                                        
scale(JF)    0.010 -0.011  0.005  0.011                                                 
scltysc.:V.  0.001 -0.122 -0.014 -0.026  0.007                                          
scltyscvn.:  0.027 -0.096 -0.027 -0.017  0.011  0.071                                   
sclty.:(JF) -0.011  0.015  0.010  0.015 -0.005  0.008  0.016                            
vlncV.:(JF)  0.007  0.010  0.021 -0.013 -0.092 -0.010 -0.011 -0.001                     
vlnc:sc(JF)  0.012  0.015 -0.013  0.009 -0.077 -0.011 -0.021  0.028  0.080              
sc.:V.:(JF)  0.008  0.008 -0.010 -0.011 -0.001  0.022 -0.012 -0.127 -0.007 -0.021       
sclt.::(JF)  0.011  0.016 -0.011 -0.021  0.020 -0.012  0.009 -0.107 -0.021 -0.005  0.079

analyze with item level effects:

m.0<-glmer(remembered~condition*emotion*scale(jf)+(1|subject_ID),family=binomial,data=jf_neg_items) ### should be same as old glm model if RA's did things correctly...looks like there is one error
summary(m.0)
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
 Family: binomial  ( logit )
Formula: remembered ~ condition * emotion * scale(jf) + (1 | subject_ID)
   Data: jf_neg_items

     AIC      BIC   logLik deviance df.resid 
  3940.9   4020.3  -1957.4   3914.9     3299 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-1.3380 -0.6654 -0.5238  1.1222  2.5394 

Random effects:
 Groups     Name        Variance Std.Dev.
 subject_ID (Intercept) 0.102    0.3194  
Number of obs: 3312, groups:  subject_ID, 69

Fixed effects:
                                            Estimate Std. Error z value Pr(>|z|)    
(Intercept)                                -0.885986   0.055563 -15.946  < 2e-16 ***
conditionsocvnsoc                           0.093665   0.078853   1.188    0.235    
emotionnegVall                              0.494639   0.053518   9.243  < 2e-16 ***
emotion                                     0.333892   0.071052   4.699 2.61e-06 ***
scale(jf)                                  -0.087140   0.055192  -1.579    0.114    
conditionsocvnsoc:emotionnegVall            0.121382   0.106858   1.136    0.256    
conditionsocvnsoc:emotion                  -0.221898   0.142057  -1.562    0.118    
conditionsocvnsoc:scale(jf)                 0.009905   0.078960   0.125    0.900    
emotionnegVall:scale(jf)                   -0.120594   0.053426  -2.257    0.024 *  
emotion:scale(jf)                          -0.067743   0.071259  -0.951    0.342    
conditionsocvnsoc:emotionnegVall:scale(jf) -0.106549   0.106784  -0.998    0.318    
conditionsocvnsoc:emotion:scale(jf)        -0.032815   0.142493  -0.230    0.818    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
            (Intr) cndtns emtnnV emotin scl(j) cndt:V cndtn: cnd:() emV:() emt:() c:V:()
cndtnscvnsc -0.013                                                                      
emotinngVll -0.091  0.004                                                               
emotion     -0.071  0.034  0.073                                                        
scale(jf)    0.009 -0.009  0.006  0.011                                                 
cndtnscvn:V  0.002 -0.121 -0.016 -0.025  0.005                                          
cndtnscvns:  0.025 -0.097 -0.026 -0.019  0.007  0.071                                   
cndtnscv:() -0.009  0.014  0.007  0.009 -0.008  0.009  0.016                            
emtnngVl:()  0.008  0.007  0.021 -0.012 -0.092 -0.009 -0.007  0.002                     
emtn:scl(j)  0.012  0.009 -0.012  0.007 -0.077 -0.007 -0.015  0.029  0.080              
cndtns:V:()  0.005  0.009 -0.009 -0.007  0.001  0.022 -0.012 -0.127 -0.010 -0.022       
cndtnsc::()  0.007  0.016 -0.007 -0.015  0.021 -0.012  0.007 -0.107 -0.022 -0.011  0.079
m.0_1<-glmer(remembered~condition*emotion*scale(jf)+(1|subject_ID)+(1|Image_number),family=binomial,data=jf_neg_items)
summary(m.0_1)
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
 Family: binomial  ( logit )
Formula: remembered ~ condition * emotion * scale(jf) + (1 | subject_ID) +      (1 | Image_number)
   Data: jf_neg_items

     AIC      BIC   logLik deviance df.resid 
  3840.6   3926.1  -1906.3   3812.6     3298 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-1.9479 -0.6450 -0.4804  0.9186  3.4715 

Random effects:
 Groups       Name        Variance Std.Dev.
 subject_ID   (Intercept) 0.1218   0.3490  
 Image_number (Intercept) 0.2826   0.5316  
Number of obs: 3312, groups:  subject_ID, 69; Image_number, 48

Fixed effects:
                                            Estimate Std. Error z value Pr(>|z|)    
(Intercept)                                -0.935572   0.097054  -9.640  < 2e-16 ***
conditionsocvnsoc                           0.056794   0.174015   0.326   0.7441    
emotionnegVall                              0.524167   0.121959   4.298 1.72e-05 ***
emotion                                     0.328165   0.152030   2.159   0.0309 *  
scale(jf)                                  -0.093306   0.058388  -1.598   0.1100    
conditionsocvnsoc:emotionnegVall            0.173807   0.243798   0.713   0.4759    
conditionsocvnsoc:emotion                  -0.239105   0.304037  -0.786   0.4316    
conditionsocvnsoc:scale(jf)                 0.007557   0.080829   0.093   0.9255    
emotionnegVall:scale(jf)                   -0.129594   0.054965  -2.358   0.0184 *  
emotion:scale(jf)                          -0.071803   0.072646  -0.988   0.3230    
conditionsocvnsoc:emotionnegVall:scale(jf) -0.112950   0.109845  -1.028   0.3038    
conditionsocvnsoc:emotion:scale(jf)        -0.036999   0.145260  -0.255   0.7989    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
            (Intr) cndtns emtnnV emotin scl(j) cndt:V cndtn: cnd:() emV:() emt:() c:V:()
cndtnscvnsc  0.005                                                                      
emotinngVll -0.027 -0.005                                                               
emotion     -0.017  0.009  0.013                                                        
scale(jf)    0.006 -0.003  0.002  0.005                                                 
cndtnscvn:V -0.005 -0.027  0.002 -0.006  0.002                                          
cndtnscvns:  0.008 -0.018 -0.006  0.006  0.003  0.013                                   
cndtnscv:() -0.005  0.007  0.003  0.005  0.005  0.004  0.008                            
emtnngVl:()  0.006  0.003  0.009 -0.006 -0.079 -0.004 -0.003 -0.009                     
emtn:scl(j)  0.007  0.005 -0.006  0.003 -0.062 -0.003 -0.007  0.033  0.066              
cndtns:V:()  0.003  0.005 -0.004 -0.003 -0.006  0.010 -0.006 -0.113  0.002 -0.024       
cndtnsc::()  0.004  0.008 -0.003 -0.007  0.023 -0.005  0.003 -0.089 -0.024  0.012  0.066
anova(m.0,m.0_1) ###102.26 reduction in model deviance w/ inclusion of item effects
Data: jf_neg_items
Models:
m.0: remembered ~ condition * emotion * scale(jf) + (1 | subject_ID)
m.0_1: remembered ~ condition * emotion * scale(jf) + (1 | subject_ID) + 
m.0_1:     (1 | Image_number)
      Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
m.0   13 3940.9 4020.3 -1957.5   3914.9                             
m.0_1 14 3840.6 3926.1 -1906.3   3812.6 102.26      1  < 2.2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
sjp.glmer(m.0_1,type ="re",sort.est = "sort.all",facet.grid=FALSE)

read in recognition data:

jf_neg_items_recog <- read_csv("C:/Users/dasil/Dropbox/SCnegimages/Analysis_filesupdated/jf_neg_items_recog.csv")
Parsed with column specification:
cols(
  Subject = col_integer(),
  Trial = col_integer(),
  CorrectAnswer = col_character(),
  ImageDisplay1.RESP = col_character(),
  ImageDisplay1.RT = col_integer(),
  Stim = col_character(),
  confidence2.RESP = col_character(),
  confidence2.RT = col_integer(),
  jf = col_integer(),
  Image = col_character(),
  response = col_integer(),
  emotion = col_character(),
  condition = col_character()
)
jf_neg_items_recog <- within(jf_neg_items_recog, {
  Subject <- factor(Subject)
  Stim <- factor(Stim)
  Image <- as.factor(Image) 
  emotion <- as.factor(emotion) 
  condition <- as.factor(condition) 
  })
jf_neg_items_recog$recip.rt.image<-1/(jf_neg_items_recog$ImageDisplay1.RT)
jf_neg_items_recog$recip.rt.image.flipped<--1*(jf_neg_items_recog$recip.rt.image)
jf_neg_items_recog$rt.recipe.cat<-ifelse(jf_neg_items_recog$recip.rt.image.flipped>=-.000682827,"slow","fast")
jf_neg_items_recog$conf<-ifelse(jf_neg_items_recog$confidence2.RESP=="z",1,0)
jf_neg_items_recog$jf_cat<-ifelse(jf_neg_items_recog$jf>=119,"highse","lowse")
jf_neg_items_recog$log.rt.image<-log(jf_neg_items_recog$ImageDisplay1.RT)
negVall<-c(1,-.5,-.5)  ######negative vs neutral as seen in the second orthogonal con
contrasts(jf_neg_items_recog$emotion) <- cbind(negVall)
socvnsoc<-c(-.5,.5)
contrasts(jf_neg_items_recog$condition) <- cbind(socvnsoc)

analyze recog data without and with random item level intercepts:

m.1.recog<-glmer(response~scale(jf)*emotion*condition*+(1|Subject),data = jf_neg_items_recog,family=binomial,control=glmerControl(optimizer="bobyqa"))
summary(m.1.recog)
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
 Family: binomial  ( logit )
Formula: response ~ scale(jf) * emotion * condition * +(1 | Subject)
   Data: jf_neg_items_recog
Control: glmerControl(optimizer = "bobyqa")

     AIC      BIC   logLik deviance df.resid 
  4315.8   4404.2  -2144.9   4289.8     6611 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-6.5026  0.2158  0.2904  0.3762  0.7449 

Random effects:
 Groups  Name        Variance Std.Dev.
 Subject (Intercept) 0.5125   0.7159  
Number of obs: 6624, groups:  Subject, 69

Fixed effects:
                                           Estimate Std. Error z value Pr(>|z|)    
(Intercept)                                 2.34044    0.09895  23.654  < 2e-16 ***
scale(jf)                                  -0.01436    0.09709  -0.148 0.882423    
emotionnegVall                              0.16817    0.06012   2.797 0.005154 ** 
emotion                                     0.16480    0.06900   2.388 0.016929 *  
conditionsocvnsoc                          -0.13435    0.08239  -1.631 0.102969    
scale(jf):emotionnegVall                   -0.07977    0.06050  -1.319 0.187324    
scale(jf):emotion                          -0.03269    0.06794  -0.481 0.630428    
scale(jf):conditionsocvnsoc                -0.07311    0.08208  -0.891 0.373050    
emotionnegVall:conditionsocvnsoc            0.44846    0.12025   3.729 0.000192 ***
emotion:conditionsocvnsoc                  -0.16134    0.13800  -1.169 0.242347    
scale(jf):emotionnegVall:conditionsocvnsoc -0.09417    0.12095  -0.779 0.436222    
scale(jf):emotion:conditionsocvnsoc        -0.14773    0.13592  -1.087 0.277088    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
            (Intr) scl(j) emtnnV emotin cndtns sc():V scl(jf):m scl(jf):c emtnV: emtn:c s():V:
scale(jf)    0.010                                                                            
emotinngVll  0.040 -0.025                                                                     
emotion      0.032 -0.004 -0.049                                                              
cndtnscvnsc -0.016 -0.017  0.122 -0.043                                                       
scl(jf):mtV -0.024  0.051 -0.081  0.007 -0.042                                                
scl(jf):mtn -0.004  0.033  0.007 -0.001 -0.027 -0.050                                         
scl(jf):cnd -0.017 -0.006 -0.042 -0.026 -0.044  0.139 -0.025                                  
emtnngVll:c  0.055 -0.017  0.054  0.029  0.089 -0.064  0.018    -0.059                        
emtn:cndtns -0.019 -0.012  0.029 -0.130  0.072  0.018 -0.009    -0.010    -0.049              
scl(jf):mV: -0.016  0.060 -0.064  0.018 -0.059  0.086  0.018     0.117    -0.081  0.006       
scl(jf):mt: -0.012 -0.012  0.018 -0.009 -0.010  0.018 -0.122     0.076     0.007 -0.001 -0.050
m.1.recog_1<-glmer(response~scale(jf)*emotion*condition*+(1|Subject)+(1|Stim),data = jf_neg_items_recog,family=binomial,control=glmerControl(optimizer="bobyqa"))
summary(m.1.recog_1)
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
 Family: binomial  ( logit )
Formula: response ~ scale(jf) * emotion * condition * +(1 | Subject) +      (1 | Stim)
   Data: jf_neg_items_recog
Control: glmerControl(optimizer = "bobyqa")

     AIC      BIC   logLik deviance df.resid 
  4207.2   4302.4  -2089.6   4179.2     6610 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-7.2104  0.1850  0.2661  0.3639  1.1046 

Random effects:
 Groups  Name        Variance Std.Dev.
 Stim    (Intercept) 0.4233   0.6506  
 Subject (Intercept) 0.5622   0.7498  
Number of obs: 6624, groups:  Stim, 96; Subject, 69

Fixed effects:
                                           Estimate Std. Error z value Pr(>|z|)    
(Intercept)                                 2.50290    0.12442  20.117   <2e-16 ***
scale(jf)                                  -0.01520    0.10080  -0.151   0.8801    
emotionnegVall                              0.18100    0.11371   1.592   0.1115    
emotion                                     0.15733    0.13653   1.152   0.2492    
conditionsocvnsoc                          -0.15515    0.15928  -0.974   0.3300    
scale(jf):emotionnegVall                   -0.08286    0.06085  -1.362   0.1733    
scale(jf):emotion                          -0.03360    0.06853  -0.490   0.6240    
scale(jf):conditionsocvnsoc                -0.07484    0.08266  -0.905   0.3653    
emotionnegVall:conditionsocvnsoc            0.44081    0.22742   1.938   0.0526 .  
emotion:conditionsocvnsoc                  -0.18283    0.27305  -0.670   0.5031    
scale(jf):emotionnegVall:conditionsocvnsoc -0.09474    0.12165  -0.779   0.4361    
scale(jf):emotion:conditionsocvnsoc        -0.15365    0.13710  -1.121   0.2624    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
            (Intr) scl(j) emtnnV emotin cndtns sc():V scl(jf):m scl(jf):c emtnV: emtn:c s():V:
scale(jf)    0.007                                                                            
emotinngVll  0.021 -0.013                                                                     
emotion      0.012 -0.002 -0.012                                                              
cndtnscvnsc -0.013 -0.009  0.033 -0.013                                                       
scl(jf):mtV -0.020  0.047 -0.042  0.003 -0.021                                                
scl(jf):mtn -0.003  0.030  0.004  0.000 -0.014 -0.046                                         
scl(jf):cnd -0.014 -0.006 -0.021 -0.013 -0.022  0.127 -0.027                                  
emtnngVll:c  0.024 -0.008  0.011  0.009  0.027 -0.033  0.010    -0.031                        
emtn:cndtns -0.009 -0.006  0.009 -0.037  0.018  0.009 -0.005    -0.005    -0.012              
scl(jf):mV: -0.012  0.054 -0.033  0.009 -0.030  0.077  0.019     0.113    -0.042  0.003       
scl(jf):mt: -0.011 -0.012  0.010 -0.005 -0.005  0.019 -0.113     0.069     0.003  0.000 -0.046
anova(m.1.recog,m.1.recog_1) #item intercepts reduce deviance by over 110
Data: jf_neg_items_recog
Models:
m.1.recog: response ~ scale(jf) * emotion * condition * +(1 | Subject)
m.1.recog_1: response ~ scale(jf) * emotion * condition * +(1 | Subject) + 
m.1.recog_1:     (1 | Stim)
            Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
m.1.recog   13 4315.8 4404.2 -2144.9   4289.8                             
m.1.recog_1 14 4207.2 4302.4 -2089.6   4179.2 110.59      1  < 2.2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Now, add in RT as a fixed effect to identify identify individual participants for whom (a) faster responses are more accurate, (b) less accurate, or (c) there is no difference

m.1.recog_2<-glmer(response~scale(jf)*emotion*condition*scale(recip.rt.image.flipped)+(1|Subject)+(1|Stim),data = jf_neg_items_recog,family=binomial,control=glmerControl(optimizer="bobyqa"))
summary(m.1.recog_2)
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
 Family: binomial  ( logit )
Formula: response ~ scale(jf) * emotion * condition * scale(recip.rt.image.flipped) +      (1 | Subject) + (1 | Stim)
   Data: jf_neg_items_recog
Control: glmerControl(optimizer = "bobyqa")

     AIC      BIC   logLik deviance df.resid 
  4061.5   4238.3  -2004.8   4009.5     6598 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-6.8187  0.1506  0.2390  0.3565  1.7984 

Random effects:
 Groups  Name        Variance Std.Dev.
 Stim    (Intercept) 0.5278   0.7265  
 Subject (Intercept) 0.6811   0.8253  
Number of obs: 6624, groups:  Stim, 96; Subject, 69

Fixed effects:
                                                                          Estimate Std. Error z value Pr(>|z|)    
(Intercept)                                                               2.677536   0.138315  19.358   <2e-16 ***
scale(jf)                                                                -0.030506   0.112285  -0.272   0.7859    
emotionnegVall                                                            0.316123   0.130237   2.427   0.0152 *  
emotion                                                                   0.129782   0.150545   0.862   0.3886    
conditionsocvnsoc                                                         0.059192   0.179138   0.330   0.7411    
scale(recip.rt.image.flipped)                                            -0.685021   0.055557 -12.330   <2e-16 ***
scale(jf):emotionnegVall                                                 -0.181273   0.076406  -2.372   0.0177 *  
scale(jf):emotion                                                        -0.016076   0.072627  -0.221   0.8248    
scale(jf):conditionsocvnsoc                                              -0.150252   0.096656  -1.555   0.1201    
emotionnegVall:conditionsocvnsoc                                          0.559581   0.260383   2.149   0.0316 *  
emotion:conditionsocvnsoc                                                -0.204422   0.301094  -0.679   0.4972    
scale(jf):scale(recip.rt.image.flipped)                                   0.101063   0.052495   1.925   0.0542 .  
emotionnegVall:scale(recip.rt.image.flipped)                             -0.140145   0.074434  -1.883   0.0597 .  
emotion:scale(recip.rt.image.flipped)                                     0.076784   0.077325   0.993   0.3207    
conditionsocvnsoc:scale(recip.rt.image.flipped)                          -0.190571   0.097768  -1.949   0.0513 .  
scale(jf):emotionnegVall:conditionsocvnsoc                               -0.209048   0.152123  -1.374   0.1694    
scale(jf):emotion:conditionsocvnsoc                                      -0.223285   0.145342  -1.536   0.1245    
scale(jf):emotionnegVall:scale(recip.rt.image.flipped)                    0.154832   0.073002   2.121   0.0339 *  
scale(jf):emotion:scale(recip.rt.image.flipped)                           0.002479   0.073316   0.034   0.9730    
scale(jf):conditionsocvnsoc:scale(recip.rt.image.flipped)                 0.059212   0.094441   0.627   0.5307    
emotionnegVall:conditionsocvnsoc:scale(recip.rt.image.flipped)           -0.143862   0.148667  -0.968   0.3332    
emotion:conditionsocvnsoc:scale(recip.rt.image.flipped)                   0.054087   0.154822   0.349   0.7268    
scale(jf):emotionnegVall:conditionsocvnsoc:scale(recip.rt.image.flipped)  0.082134   0.145373   0.565   0.5721    
scale(jf):emotion:conditionsocvnsoc:scale(recip.rt.image.flipped)         0.140436   0.146656   0.958   0.3383    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation matrix not shown by default, as p = 24 > 12.
Use print(x, correlation=TRUE)  or
     vcov(x)     if you need it
anova(m.1.recog_1,m.1.recog_2) #adding so many dfs, but huge reduction in deviance
Data: jf_neg_items_recog
Models:
m.1.recog_1: response ~ scale(jf) * emotion * condition * +(1 | Subject) + 
m.1.recog_1:     (1 | Stim)
m.1.recog_2: response ~ scale(jf) * emotion * condition * scale(recip.rt.image.flipped) + 
m.1.recog_2:     (1 | Subject) + (1 | Stim)
            Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
m.1.recog_1 14 4207.2 4302.4 -2089.6   4179.2                             
m.1.recog_2 26 4061.5 4238.3 -2004.8   4009.5 169.72     12  < 2.2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
m.1.recog_3<-glmer(response~scale(jf)*emotion*condition*scale(recip.rt.image.flipped)+(1+scale(recip.rt.image.flipped)|Subject)+(1|Stim),data = jf_neg_items_recog,family=binomial,control=glmerControl(optimizer="bobyqa"))
summary(m.1.recog_3)
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
 Family: binomial  ( logit )
Formula: response ~ scale(jf) * emotion * condition * scale(recip.rt.image.flipped) +  
    (1 + scale(recip.rt.image.flipped) | Subject) + (1 | Stim)
   Data: jf_neg_items_recog
Control: glmerControl(optimizer = "bobyqa")

     AIC      BIC   logLik deviance df.resid 
  4057.6   4247.9  -2000.8   4001.6     6596 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-7.1517  0.1448  0.2355  0.3595  1.7526 

Random effects:
 Groups  Name                          Variance Std.Dev. Corr 
 Stim    (Intercept)                   0.53003  0.7280        
 Subject (Intercept)                   0.76963  0.8773        
         scale(recip.rt.image.flipped) 0.07543  0.2747   -0.47
Number of obs: 6624, groups:  Stim, 96; Subject, 69

Fixed effects:
                                                                          Estimate Std. Error z value Pr(>|z|)    
(Intercept)                                                               2.741602   0.146217  18.750   <2e-16 ***
scale(jf)                                                                -0.025094   0.119457  -0.210   0.8336    
emotionnegVall                                                            0.316560   0.130162   2.432   0.0150 *  
emotion                                                                   0.131123   0.150671   0.870   0.3842    
conditionsocvnsoc                                                         0.057913   0.179139   0.323   0.7465    
scale(recip.rt.image.flipped)                                            -0.762957   0.074647 -10.221   <2e-16 ***
scale(jf):emotionnegVall                                                 -0.176205   0.075743  -2.326   0.0200 *  
scale(jf):emotion                                                        -0.025448   0.072540  -0.351   0.7257    
scale(jf):conditionsocvnsoc                                              -0.148985   0.096000  -1.552   0.1207    
emotionnegVall:conditionsocvnsoc                                          0.560536   0.260211   2.154   0.0312 *  
emotion:conditionsocvnsoc                                                -0.203952   0.301343  -0.677   0.4985    
scale(jf):scale(recip.rt.image.flipped)                                   0.094880   0.064946   1.461   0.1440    
emotionnegVall:scale(recip.rt.image.flipped)                             -0.136700   0.073584  -1.858   0.0632 .  
emotion:scale(recip.rt.image.flipped)                                     0.071875   0.076428   0.940   0.3470    
conditionsocvnsoc:scale(recip.rt.image.flipped)                          -0.178759   0.096787  -1.847   0.0648 .  
scale(jf):emotionnegVall:conditionsocvnsoc                               -0.203077   0.150625  -1.348   0.1776    
scale(jf):emotion:conditionsocvnsoc                                      -0.217173   0.145096  -1.497   0.1345    
scale(jf):emotionnegVall:scale(recip.rt.image.flipped)                    0.146750   0.072098   2.035   0.0418 *  
scale(jf):emotion:scale(recip.rt.image.flipped)                           0.000338   0.072454   0.005   0.9963    
scale(jf):conditionsocvnsoc:scale(recip.rt.image.flipped)                 0.056669   0.093175   0.608   0.5431    
emotionnegVall:conditionsocvnsoc:scale(recip.rt.image.flipped)           -0.136478   0.146824  -0.930   0.3526    
emotion:conditionsocvnsoc:scale(recip.rt.image.flipped)                   0.063416   0.152989   0.415   0.6785    
scale(jf):emotionnegVall:conditionsocvnsoc:scale(recip.rt.image.flipped)  0.075843   0.143168   0.530   0.5963    
scale(jf):emotion:conditionsocvnsoc:scale(recip.rt.image.flipped)         0.134822   0.144799   0.931   0.3518    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation matrix not shown by default, as p = 24 > 12.
Use print(x, correlation=TRUE)  or
     vcov(x)     if you need it
anova(m.1.recog_2,m.1.recog_3)##modest reduction
Data: jf_neg_items_recog
Models:
m.1.recog_2: response ~ scale(jf) * emotion * condition * scale(recip.rt.image.flipped) + 
m.1.recog_2:     (1 | Subject) + (1 | Stim)
m.1.recog_3: response ~ scale(jf) * emotion * condition * scale(recip.rt.image.flipped) + 
m.1.recog_3:     (1 + scale(recip.rt.image.flipped) | Subject) + (1 | Stim)
            Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)  
m.1.recog_2 26 4061.5 4238.3 -2004.8   4009.5                           
m.1.recog_3 28 4057.6 4247.9 -2000.8   4001.6 7.9346      2    0.01892 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
sjp.glmer(m.1.recog_3,type ="re",sort.est = "sort.all",facet.grid=FALSE)

model confidence as a function of rt to the image itself:

m1.conf<-glmer(conf~scale(jf)*scale(recip.rt.image.flipped)*emotion*condition+(1+scale(recip.rt.image.flipped)|Subject)+(1|Stim),data = jf_neg_items_recog,family=binomial,control=glmerControl(optimizer="bobyqa"))
summary(m1.conf)
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
 Family: binomial  ( logit )
Formula: conf ~ scale(jf) * scale(recip.rt.image.flipped) * emotion *  
    condition + (1 + scale(recip.rt.image.flipped) | Subject) +      (1 | Stim)
   Data: jf_neg_items_recog
Control: glmerControl(optimizer = "bobyqa")

     AIC      BIC   logLik deviance df.resid 
  4684.5   4874.8  -2314.2   4628.5     6596 

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-10.9574   0.0432   0.1826   0.4179   2.4970 

Random effects:
 Groups  Name                          Variance Std.Dev. Corr 
 Stim    (Intercept)                   0.5136   0.7166        
 Subject (Intercept)                   1.5835   1.2584        
         scale(recip.rt.image.flipped) 0.4886   0.6990   -0.91
Number of obs: 6624, groups:  Stim, 96; Subject, 69

Fixed effects:
                                                                          Estimate Std. Error z value Pr(>|z|)    
(Intercept)                                                               2.770406   0.187490  14.776  < 2e-16 ***
scale(jf)                                                                -0.007109   0.167122  -0.043  0.96607    
scale(recip.rt.image.flipped)                                            -1.833194   0.114360 -16.030  < 2e-16 ***
emotionnegVall                                                            0.377194   0.127196   2.965  0.00302 ** 
emotion                                                                   0.200796   0.149962   1.339  0.18058    
conditionsocvnsoc                                                         0.077416   0.176573   0.438  0.66107    
scale(jf):scale(recip.rt.image.flipped)                                   0.086138   0.107575   0.801  0.42329    
scale(jf):emotionnegVall                                                 -0.060759   0.072389  -0.839  0.40127    
scale(jf):emotion                                                         0.104711   0.078845   1.328  0.18416    
scale(recip.rt.image.flipped):emotionnegVall                              0.048624   0.073296   0.663  0.50708    
scale(recip.rt.image.flipped):emotion                                     0.001852   0.083512   0.022  0.98230    
scale(jf):conditionsocvnsoc                                               0.030057   0.097010   0.310  0.75669    
scale(recip.rt.image.flipped):conditionsocvnsoc                           0.063682   0.100396   0.634  0.52588    
emotionnegVall:conditionsocvnsoc                                         -0.023623   0.254047  -0.093  0.92591    
emotion:conditionsocvnsoc                                                -0.465821   0.300018  -1.553  0.12051    
scale(jf):scale(recip.rt.image.flipped):emotionnegVall                    0.069558   0.070587   0.985  0.32442    
scale(jf):scale(recip.rt.image.flipped):emotion                           0.133468   0.079841   1.672  0.09459 .  
scale(jf):scale(recip.rt.image.flipped):conditionsocvnsoc                 0.031797   0.096353   0.330  0.74140    
scale(jf):emotionnegVall:conditionsocvnsoc                                0.337590   0.145683   2.317  0.02049 *  
scale(jf):emotion:conditionsocvnsoc                                       0.137436   0.158208   0.869  0.38501    
scale(recip.rt.image.flipped):emotionnegVall:conditionsocvnsoc           -0.093510   0.146628  -0.638  0.52365    
scale(recip.rt.image.flipped):emotion:conditionsocvnsoc                   0.025894   0.167615   0.154  0.87723    
scale(jf):scale(recip.rt.image.flipped):emotionnegVall:conditionsocvnsoc -0.453716   0.142311  -3.188  0.00143 ** 
scale(jf):scale(recip.rt.image.flipped):emotion:conditionsocvnsoc        -0.340306   0.160427  -2.121  0.03390 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation matrix not shown by default, as p = 24 > 12.
Use print(x, correlation=TRUE)  or
     vcov(x)     if you need it
LS0tDQp0aXRsZTogImpmX21lbV9pdGVtcyINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCnJlYWQgaW4gbmV3IGRhdGE6DQpgYGB7cn0NCg0KbGlicmFyeShsbWU0KQ0KbGlicmFyeShsbWVyVGVzdCkNCmxpYnJhcnkocmVhZHIpDQpsaWJyYXJ5KHNqUGxvdCkNCmxpYnJhcnkoc2pzdGF0cykNCg0KamZfbmVnX2l0ZW1zIDwtIHJlYWRfY3N2KCJDOi9Vc2Vycy9kYXNpbC9Ecm9wYm94L1NDbmVnaW1hZ2VzL0FuYWx5c2lzX2ZpbGVzdXBkYXRlZC9qZl9uZWdfaXRlbXMuY3N2IikNCg0KamZfbmVnX2l0ZW1zIDwtIHdpdGhpbihqZl9uZWdfaXRlbXMsIHsNCiAgSW1hZ2VfbnVtYmVyIDwtIGZhY3RvcihJbWFnZV9udW1iZXIpDQogIHN1YmplY3RfSUQgPC0gZmFjdG9yKHN1YmplY3RfSUQpDQogIHZhcmlhYmxlIDwtIGFzLmZhY3Rvcih2YXJpYWJsZSkgDQogIGVtb3Rpb24gPC0gYXMuZmFjdG9yKGVtb3Rpb24pIA0KICBjb25kaXRpb24gPC0gYXMuZmFjdG9yKGNvbmRpdGlvbikgDQoNCiAgfSkNCg0KDQpuZWdWYWxsPC1jKDEsLS41LC0uNSkNCmNvbnRyYXN0cyhqZl9uZWdfaXRlbXMkZW1vdGlvbikgPC0gY2JpbmQobmVnVmFsbCkNCg0Kc29jdm5zb2M8LWMoLS41LC41KQ0KY29udHJhc3RzKGpmX25lZ19pdGVtcyRjb25kaXRpb24pIDwtIGNiaW5kKHNvY3Zuc29jKQ0KDQpgYGANCg0KcmVhZCBpbiBvbGQgZGF0YToNCmBgYHtyfQ0KcmVjYWxsX2xtZXJfbG9uZ2Zvcm0gPC0gcmVhZF9kZWxpbSgiQzovVXNlcnMvZGFzaWwvRHJvcGJveC9TQ25lZ2ltYWdlcy9BbmFseXNpc19maWxlc3VwZGF0ZWQvcmVjYWxsX2xtZXJfbG9uZ2Zvcm0udHh0IiwgIlx0IiwgZXNjYXBlX2RvdWJsZSA9IEZBTFNFLCB0cmltX3dzID0gVFJVRSkNCg0KDQpyZWNhbGxfbG1lcl9sb25nZm9ybSA8LSB3aXRoaW4ocmVjYWxsX2xtZXJfbG9uZ2Zvcm0sIHsNCiAgU3ViSUQgPC0gZmFjdG9yKHN1YklEKQ0KICB2YXJpYWJsZSA8LSBhcy5mYWN0b3IodmFyaWFibGUpIA0KICBzb2NpYWxpdHkgPC0gYXMuZmFjdG9yKHNvY2lhbGl0eSkgDQogIHZhbGVuY2UgPC0gYXMuZmFjdG9yKHZhbGVuY2UpIA0KDQogIH0pDQoNCg0KDQpuZWdWYWxsLm9sZDwtYygxLC0uNSwtLjUpDQpjb250cmFzdHMocmVjYWxsX2xtZXJfbG9uZ2Zvcm0kdmFsZW5jZSkgPC0gY2JpbmQobmVnVmFsbC5vbGQpDQoNCnNvY3Zuc29jLm9sZDwtYygtLjUsLjUpDQpjb250cmFzdHMocmVjYWxsX2xtZXJfbG9uZ2Zvcm0kc29jaWFsaXR5KSA8LSBjYmluZChzb2N2bnNvYy5vbGQpDQoNCmBgYA0KDQptb2RlbCBvbGQgZGF0YSBhbmQgbm90ZSBkaWZmZXJlbmNlcyBiZXR3ZWVuIGdhdXNzaWFuIGFuZCBiaW5vbWlhbCBtb2RlbHM6DQpgYGB7cn0NCg0KDQptLm9sZDwtbG1lcih2YWx1ZX5zb2NpYWxpdHkqdmFsZW5jZSpzY2FsZShKRikrKDF8c3ViSUQpLGRhdGE9cmVjYWxsX2xtZXJfbG9uZ2Zvcm0pICMjI29yaWduYWwgbW9kZWwNCnN1bW1hcnkobS5vbGQpDQoNCmhpc3QocmVjYWxsX2xtZXJfbG9uZ2Zvcm0kdmFsdWUpDQoNCnJlY2FsbF9sbWVyX2xvbmdmb3JtJHdlaWdodDwtcmVwKDgsNDE0KSAjIyNjcmVhdGUgd2VpZ2h0cyBpbiBkZW5vbWluYXRvcg0KcmVjYWxsX2xtZXJfbG9uZ2Zvcm0kcHJvcDwtcmVjYWxsX2xtZXJfbG9uZ2Zvcm0kdmFsdWUvcmVjYWxsX2xtZXJfbG9uZ2Zvcm0kd2VpZ2h0ICNjcmVhdGUgcHJvcG9ydGlvbiBjb3JyZWN0DQoNCm0ub2xkLmc8LWdsbWVyKHByb3B+c29jaWFsaXR5KnZhbGVuY2Uqc2NhbGUoSkYpKygxfHN1YklEKSx3ZWlnaHRzPXdlaWdodCxmYW1pbHk9Ymlub21pYWwsZGF0YT1yZWNhbGxfbG1lcl9sb25nZm9ybSkjIyMjIGZyb20gLjAwNyB0byAuMDMNCnN1bW1hcnkobS5vbGQuZykNCmBgYA0KDQphbmFseXplIHdpdGggaXRlbSBsZXZlbCBlZmZlY3RzOg0KYGBge3IgZmlnLmhlaWdodCA9IDEyLCBmaWcud2lkdGg9NX0NCg0KbS4wPC1nbG1lcihyZW1lbWJlcmVkfmNvbmRpdGlvbiplbW90aW9uKnNjYWxlKGpmKSsoMXxzdWJqZWN0X0lEKSxmYW1pbHk9Ymlub21pYWwsZGF0YT1qZl9uZWdfaXRlbXMpICMjIyBzaG91bGQgYmUgc2FtZSBhcyBvbGQgZ2xtIG1vZGVsIGlmIFJBJ3MgZGlkIHRoaW5ncyBjb3JyZWN0bHkuLi5sb29rcyBsaWtlIHRoZXJlIGlzIG9uZSBlcnJvcg0Kc3VtbWFyeShtLjApDQoNCm0uMF8xPC1nbG1lcihyZW1lbWJlcmVkfmNvbmRpdGlvbiplbW90aW9uKnNjYWxlKGpmKSsoMXxzdWJqZWN0X0lEKSsoMXxJbWFnZV9udW1iZXIpLGZhbWlseT1iaW5vbWlhbCxkYXRhPWpmX25lZ19pdGVtcykNCnN1bW1hcnkobS4wXzEpDQoNCmFub3ZhKG0uMCxtLjBfMSkgIyMjMTAyLjI2IHJlZHVjdGlvbiBpbiBtb2RlbCBkZXZpYW5jZSB3LyBpbmNsdXNpb24gb2YgaXRlbSBlZmZlY3RzDQoNCg0Kc2pwLmdsbWVyKG0uMF8xLHR5cGUgPSJyZSIsc29ydC5lc3QgPSAic29ydC5hbGwiLGZhY2V0LmdyaWQ9RkFMU0UpDQoNCg0KYGBgDQoNCg0KcmVhZCBpbiByZWNvZ25pdGlvbiBkYXRhOg0KYGBge3J9DQoNCmpmX25lZ19pdGVtc19yZWNvZyA8LSByZWFkX2NzdigiQzovVXNlcnMvZGFzaWwvRHJvcGJveC9TQ25lZ2ltYWdlcy9BbmFseXNpc19maWxlc3VwZGF0ZWQvamZfbmVnX2l0ZW1zX3JlY29nLmNzdiIpDQoNCmpmX25lZ19pdGVtc19yZWNvZyA8LSB3aXRoaW4oamZfbmVnX2l0ZW1zX3JlY29nLCB7DQogIFN1YmplY3QgPC0gZmFjdG9yKFN1YmplY3QpDQogIFN0aW0gPC0gZmFjdG9yKFN0aW0pDQogIEltYWdlIDwtIGFzLmZhY3RvcihJbWFnZSkgDQogIGVtb3Rpb24gPC0gYXMuZmFjdG9yKGVtb3Rpb24pIA0KICBjb25kaXRpb24gPC0gYXMuZmFjdG9yKGNvbmRpdGlvbikgDQoNCiAgfSkNCg0KamZfbmVnX2l0ZW1zX3JlY29nJHJlY2lwLnJ0LmltYWdlPC0xLyhqZl9uZWdfaXRlbXNfcmVjb2ckSW1hZ2VEaXNwbGF5MS5SVCkNCmpmX25lZ19pdGVtc19yZWNvZyRyZWNpcC5ydC5pbWFnZS5mbGlwcGVkPC0tMSooamZfbmVnX2l0ZW1zX3JlY29nJHJlY2lwLnJ0LmltYWdlKQ0KamZfbmVnX2l0ZW1zX3JlY29nJHJ0LnJlY2lwZS5jYXQ8LWlmZWxzZShqZl9uZWdfaXRlbXNfcmVjb2ckcmVjaXAucnQuaW1hZ2UuZmxpcHBlZD49LS4wMDA2ODI4MjcsInNsb3ciLCJmYXN0IikNCmpmX25lZ19pdGVtc19yZWNvZyRjb25mPC1pZmVsc2UoamZfbmVnX2l0ZW1zX3JlY29nJGNvbmZpZGVuY2UyLlJFU1A9PSJ6IiwxLDApDQpqZl9uZWdfaXRlbXNfcmVjb2ckamZfY2F0PC1pZmVsc2UoamZfbmVnX2l0ZW1zX3JlY29nJGpmPj0xMTksImhpZ2hzZSIsImxvd3NlIikNCmpmX25lZ19pdGVtc19yZWNvZyRsb2cucnQuaW1hZ2U8LWxvZyhqZl9uZWdfaXRlbXNfcmVjb2ckSW1hZ2VEaXNwbGF5MS5SVCkNCg0KDQpuZWdWYWxsPC1jKDEsLS41LC0uNSkgICMjIyMjI25lZ2F0aXZlIHZzIG5ldXRyYWwgYXMgc2VlbiBpbiB0aGUgc2Vjb25kIG9ydGhvZ29uYWwgY29uDQpjb250cmFzdHMoamZfbmVnX2l0ZW1zX3JlY29nJGVtb3Rpb24pIDwtIGNiaW5kKG5lZ1ZhbGwpDQoNCnNvY3Zuc29jPC1jKC0uNSwuNSkNCmNvbnRyYXN0cyhqZl9uZWdfaXRlbXNfcmVjb2ckY29uZGl0aW9uKSA8LSBjYmluZChzb2N2bnNvYykNCg0KYGBgDQoNCg0KYW5hbHl6ZSByZWNvZyBkYXRhIHdpdGhvdXQgYW5kIHdpdGggcmFuZG9tIGl0ZW0gbGV2ZWwgaW50ZXJjZXB0czoNCmBgYHtyfQ0KbS4xLnJlY29nPC1nbG1lcihyZXNwb25zZX5zY2FsZShqZikqZW1vdGlvbipjb25kaXRpb24qKygxfFN1YmplY3QpLGRhdGEgPSBqZl9uZWdfaXRlbXNfcmVjb2csZmFtaWx5PWJpbm9taWFsLGNvbnRyb2w9Z2xtZXJDb250cm9sKG9wdGltaXplcj0iYm9ieXFhIikpDQpzdW1tYXJ5KG0uMS5yZWNvZykNCg0KbS4xLnJlY29nXzE8LWdsbWVyKHJlc3BvbnNlfnNjYWxlKGpmKSplbW90aW9uKmNvbmRpdGlvbiorKDF8U3ViamVjdCkrKDF8U3RpbSksZGF0YSA9IGpmX25lZ19pdGVtc19yZWNvZyxmYW1pbHk9Ymlub21pYWwsY29udHJvbD1nbG1lckNvbnRyb2wob3B0aW1pemVyPSJib2J5cWEiKSkNCnN1bW1hcnkobS4xLnJlY29nXzEpDQoNCg0KYW5vdmEobS4xLnJlY29nLG0uMS5yZWNvZ18xKSAjaXRlbSBpbnRlcmNlcHRzIHJlZHVjZSBkZXZpYW5jZSBieSBvdmVyIDExMA0KDQoNCmBgYA0KDQpOb3csIGFkZCBpbiBSVCBhcyBhIGZpeGVkIGVmZmVjdCB0byBpZGVudGlmeSBpZGVudGlmeSBpbmRpdmlkdWFsIHBhcnRpY2lwYW50cyBmb3Igd2hvbSAoYSkgZmFzdGVyIHJlc3BvbnNlcyBhcmUgbW9yZSBhY2N1cmF0ZSwgKGIpIGxlc3MgYWNjdXJhdGUsIG9yIChjKSB0aGVyZSBpcyBubyBkaWZmZXJlbmNlIA0KYGBge3IgZmlnLmhlaWdodCA9IDEyLCBmaWcud2lkdGg9NX0NCm0uMS5yZWNvZ18yPC1nbG1lcihyZXNwb25zZX5zY2FsZShqZikqZW1vdGlvbipjb25kaXRpb24qc2NhbGUocmVjaXAucnQuaW1hZ2UuZmxpcHBlZCkrKDF8U3ViamVjdCkrKDF8U3RpbSksZGF0YSA9IGpmX25lZ19pdGVtc19yZWNvZyxmYW1pbHk9Ymlub21pYWwsY29udHJvbD1nbG1lckNvbnRyb2wob3B0aW1pemVyPSJib2J5cWEiKSkNCnN1bW1hcnkobS4xLnJlY29nXzIpDQoNCmFub3ZhKG0uMS5yZWNvZ18xLG0uMS5yZWNvZ18yKSAjYWRkaW5nIHNvIG1hbnkgZGZzLCBidXQgaHVnZSByZWR1Y3Rpb24gaW4gZGV2aWFuY2UNCg0KbS4xLnJlY29nXzM8LWdsbWVyKHJlc3BvbnNlfnNjYWxlKGpmKSplbW90aW9uKmNvbmRpdGlvbipzY2FsZShyZWNpcC5ydC5pbWFnZS5mbGlwcGVkKSsoMStzY2FsZShyZWNpcC5ydC5pbWFnZS5mbGlwcGVkKXxTdWJqZWN0KSsoMXxTdGltKSxkYXRhID0gamZfbmVnX2l0ZW1zX3JlY29nLGZhbWlseT1iaW5vbWlhbCxjb250cm9sPWdsbWVyQ29udHJvbChvcHRpbWl6ZXI9ImJvYnlxYSIpKQ0Kc3VtbWFyeShtLjEucmVjb2dfMykNCg0KYW5vdmEobS4xLnJlY29nXzIsbS4xLnJlY29nXzMpIyNtb2Rlc3QgcmVkdWN0aW9uDQpzanAuZ2xtZXIobS4xLnJlY29nXzMsdHlwZSA9InJlIixzb3J0LmVzdCA9ICJzb3J0LmFsbCIsZmFjZXQuZ3JpZD1GQUxTRSkNCg0KYGBgDQoNCg0KbW9kZWwgY29uZmlkZW5jZSBhcyBhIGZ1bmN0aW9uIG9mIHJ0IHRvIHRoZSBpbWFnZSBpdHNlbGY6DQpgYGB7cn0NCg0KbTEuY29uZjwtZ2xtZXIoY29uZn5zY2FsZShqZikqc2NhbGUocmVjaXAucnQuaW1hZ2UuZmxpcHBlZCkqZW1vdGlvbipjb25kaXRpb24rKDErc2NhbGUocmVjaXAucnQuaW1hZ2UuZmxpcHBlZCl8U3ViamVjdCkrKDF8U3RpbSksZGF0YSA9IGpmX25lZ19pdGVtc19yZWNvZyxmYW1pbHk9Ymlub21pYWwsY29udHJvbD1nbG1lckNvbnRyb2wob3B0aW1pemVyPSJib2J5cWEiKSkNCnN1bW1hcnkobTEuY29uZikNCg0KDQpgYGANCg0K