Read data

Titanic <- read.csv(file="Titanic Data.csv", header=TRUE, sep=",")
View(Titanic)
library(psych)
describe(Titanic)
##           vars   n  mean    sd median trimmed   mad min    max  range
## Survived     1 889  0.38  0.49   0.00    0.35  0.00 0.0   1.00   1.00
## Pclass       2 889  2.31  0.83   3.00    2.39  0.00 1.0   3.00   2.00
## Sex*         3 889  1.65  0.48   2.00    1.69  0.00 1.0   2.00   1.00
## Age          4 889 29.65 12.97  29.70   29.22  9.34 0.4  80.00  79.60
## SibSp        5 889  0.52  1.10   0.00    0.27  0.00 0.0   8.00   8.00
## Parch        6 889  0.38  0.81   0.00    0.19  0.00 0.0   6.00   6.00
## Fare         7 889 32.10 49.70  14.45   21.28 10.24 0.0 512.33 512.33
## Embarked*    8 889  2.54  0.79   3.00    2.67  0.00 1.0   3.00   2.00
##            skew kurtosis   se
## Survived   0.48    -1.77 0.02
## Pclass    -0.63    -1.27 0.03
## Sex*      -0.62    -1.61 0.02
## Age        0.43     0.96 0.43
## SibSp      3.68    17.69 0.04
## Parch      2.74     9.66 0.03
## Fare       4.79    33.23 1.67
## Embarked* -1.26    -0.23 0.03
describe(Titanic$Survived)
##    vars   n mean   sd median trimmed mad min max range skew kurtosis   se
## X1    1 889 0.38 0.49      0    0.35   0   0   1     1 0.48    -1.77 0.02
dim(Titanic)
## [1] 889   8
library(vcd)
## Loading required package: grid
mytable <- with(Titanic, table(Survived))
mytable # frequencies
## Survived
##   0   1 
## 549 340
prop.table(mytable)*100 #percentages
## Survived
##        0        1 
## 61.75478 38.24522
mytable <- xtabs(~ Survived+Pclass, data=Titanic)
mytable # frequencies
##         Pclass
## Survived   1   2   3
##        0  80  97 372
##        1 134  87 119
prop.table(mytable) # cell proportions
##         Pclass
## Survived          1          2          3
##        0 0.08998875 0.10911136 0.41844769
##        1 0.15073116 0.09786277 0.13385827
mytable
##         Pclass
## Survived   1   2   3
##        0  80  97 372
##        1 134  87 119
mytable <- xtabs(~ Sex+Pclass, data=Titanic)
mytable # frequencies
##         Pclass
## Sex        1   2   3
##   female  92  76 144
##   male   122 108 347
prop.table(mytable) # cell proportions
##         Pclass
## Sex               1          2          3
##   female 0.10348706 0.08548931 0.16197975
##   male   0.13723285 0.12148481 0.39032621
mytable
##         Pclass
## Sex        1   2   3
##   female  92  76 144
##   male   122 108 347
mytable <- xtabs(~ Survived+Sex, data=Titanic)
mytable
##         Sex
## Survived female male
##        0     81  468
##        1    231  109
mytable # frequencies
##         Sex
## Survived female male
##        0     81  468
##        1    231  109
prop.table(mytable) # cell proportions
##         Sex
## Survived     female       male
##        0 0.09111361 0.52643420
##        1 0.25984252 0.12260967
mytable
##         Sex
## Survived female male
##        0     81  468
##        1    231  109
mytable <- xtabs(~ Sex+Pclass+Survived, data=Titanic)
mytable
## , , Survived = 0
## 
##         Pclass
## Sex        1   2   3
##   female   3   6  72
##   male    77  91 300
## 
## , , Survived = 1
## 
##         Pclass
## Sex        1   2   3
##   female  89  70  72
##   male    45  17  47
ftable(mytable)
##               Survived   0   1
## Sex    Pclass                 
## female 1                 3  89
##        2                 6  70
##        3                72  72
## male   1                77  45
##        2                91  17
##        3               300  47
mytable
## , , Survived = 0
## 
##         Pclass
## Sex        1   2   3
##   female   3   6  72
##   male    77  91 300
## 
## , , Survived = 1
## 
##         Pclass
## Sex        1   2   3
##   female  89  70  72
##   male    45  17  47
mytable <- xtabs(~ Survived+Sex, data=Titanic)
chisq.test(mytable)
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  mytable
## X-squared = 258.43, df = 1, p-value < 2.2e-16