x = c(5.6,6.3,7,7.7,8.4)
y = c(8.8,12.4,14.8,18.2,20.8)
lm(y~x)
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## -14.800 4.257
\(y = -14.800 + 4.257*x\)
\(f_x = 24-6y^2\)
\(f_y = -12xy-24y^2\)
\(f_{xy} = -12y\)
\(f_{xx} = 0\)
\(f_{yy} = -12x-48y\)
\(f_x = 24 - 6y^2 = 0\) ==> y = [2,-2]
\(f_y = -12xy - 24y^2 = 0\) => (-4,2) & (4,-2)
\(f(-4,2) = -12(8)-24(-4)^2\)
equat = function(x,y){
z = 24*x - 6*x*y^2 - 8*y^3
return(c(x,y,z))
}
print(rbind(equat(-4,2),equat(4,-2)))
## [,1] [,2] [,3]
## [1,] -4 2 -64
## [2,] 4 -2 64
\(D = D(x,y) = f_{xx}f_{yy}-f_{xy}^2\)
\(-(-12y)^2 = -144y^2\) ==> \(D(X,Y)<-576\)
Identify house and name
\(R(x) = (81-21x+17y)*x\)
\(R(y) = (40+11x-23y)*y\)
Combine
\(R(x,y)= R(x)+R(y)\)
\(R(x,y)= 28xy-23y^2-21x^2+40y+81x\)
rev_rev = function(x,y){
rev = 28*x*y-23*y^2-21*x^2+40*y+81*x
return(rev)
}
rev = rev_rev(2.3,4.1)
Expected Revenue is 116.62
Firm committed to produce 96 from X & Y which means
\(x+y=96\)
\(y=96-x\)
\(x=96-y\)
\(C(x,96-x)= x^2+(96-x)^2+7x+25(96-x)+700\)
\(C(x,96-x)=x^2-50x+4636\)
\(C'(x)=2/3x-50=0\)
x=75
\(21 = 96-75\)
Denver should output 21 units where as Los Angeles should output 75 Units in order to minimize the total weekly cost.
\(\int_2^4\int_2^4(e^{8x+3y})dx dy\)
\(\int_2^4(1/8)(e^{16}-1)e^{3y+16} dy\)
\((e^{16}-1)/24 e^{3y+16}+C\)
\((e^{44}-e^{28})/24 -(e^{38}-e^{22})/24\)
\((1/24)(e^{22}-e^{28}-e^{38}+e^{44})\)