# Create the predictor and response variable.
x <- c(5.6, 6.3, 7, 7.7, 8.4)
y <- c(8.8, 12.4, 14.8, 18.2, 20.8)
relation <- lm(y~x)
summary(relation)
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## 1 2 3 4 5
## -0.24 0.38 -0.20 0.22 -0.16
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -14.8000 1.0365 -14.28 0.000744 ***
## x 4.2571 0.1466 29.04 8.97e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3246 on 3 degrees of freedom
## Multiple R-squared: 0.9965, Adjusted R-squared: 0.9953
## F-statistic: 843.1 on 1 and 3 DF, p-value: 8.971e-05
the linear model is as follow: y = -14.8 + 4.25 x
# Plot the chart.
plot(y,x,col = "blue",main = "Given point",
abline(lm(x~y)),cex = 1.3,pch = 16,xlab = "X axis",ylab = "Y axis")
\(f(x,y)=24x - 6xy^2 -8y^3\)
first order and second order partial derivatives:
\(f_{x}=24 - 6y^2\)
\(f_{y}= - 12xy -24y^2\)
\(f_{xx}= 0\)
\(f_{yy}= - 12x -48y\)
\(f_{xy}= - 12y\)
when \(f_{x} = 0 ,\ f_{y}=0\) Critical points:
\(f_{x}=24 - 6y^2 = 0\)
\(y^2 = 4\)
\(y = 2 \ or -2\)
\(f_{y}= - 12xy -24y^2 = 0\)
\(- xy -2y^2 = 0\)
when $y = 2, x = -2y , x = -4 $
when $y = -2, x = -2y , x = 4 $
So we have critical point (4, -2) and (-4, 2).
Using the Second Derivative Test:
$D = D(a,b) = f_{xx}(a,b) f_{yy}(a,b) - f_{xy}(a,b)^2 $
saddle point: D > 0 is max or D < 0 is min
\(f_{xx}= 0, \ f_{yy}= - 12x -48y, \ f_{xy}= - 12y\)
\(D = (0)*(- 12x -48y)-(- 12y)^2 = -144y^2\)
at (4, -2)
\(D = -576 < 0\)
at (-4, 2)
\(D = -576 < 0\)
we classify (4, -2) and (-4, 2) to be saddle point.
Step 1. Find the revenue function R ( x, y ).
Revenue for House brand: \(R(x) = x*(81 - 21x + 17y)\)
Revenue for name brand: \(R(y) = y*(40 + 11x - 23y)\)
Total Revenue: \(R(x,y)= x*(81 - 21x + 17y) + y*(40 + 11x - 23y)\)
\(R(x,y)= 81x - 21x^2 + 17xy + 40y + 11xy - 23y^2\)
$R(x,y)= - 21x^2 - 23y^2 + 28xy + 81x + 40y $
Step 2. What is the revenue if she sells the “house” brand for $2.30 and the “name” brand for $4.10?
Find R(2.3, 4.1):
x <- 2.3
y <- 4.1
z <- -21*(x^2) - 23*(y^2) + 28*x*y + 81*x +40*y
z
## [1] 116.62
The revenue is 116.62
A company has a plant in Los Angeles and a plant in Denver. The firm is committed to produce a total of 96 units of a product each week. The total weekly cost is given by \(C(x,y) = \frac{1}{6} x^2 + \frac{1}{6} y^2 + 7x + 25y + 700\) , where x is the number of units produced in Los Angeles and y is the number of units produced in Denver. How many units should be produced in each plant to minimize the total weekly cost?
Total unit per week = 96 units Number of LA = x Number of Denver = y
$ x + y = 96$
$ y = 96-x $
When $ y = 96-x $ in equation:
\(C(x,y) = \frac{1}{6} x^2 + \frac{1}{6} y^2 + 7x + 25y + 700\)
$ = x^2 + (96 - x)^2 + 7x + 25(96-x) + 700$
$ = x^2 + 1536 - 32x + + 7x + 2400 - 25x + 700$
$ = x^2 - 50x + 4636$
Minima critical point : \(C'(x) = 0\)
\(C'(x) = \frac{2}{3} x - 50 = 0\)
$ x = 75$
when $ x = 75$ in $ x + y = 96$:
$ y = 21 $
Minimize the cost should be 75 units in LA, 21 unit in Denver.
Evaluate the double integral on the given region.
\(\int \int_R (e^{8x + 3y}) dA; R: 2 \leq x \leq 4 \ { and } \ 2 \leq y \leq 4\)
Write your answer in exact form without decimals.
$ {y = 2}^{y = 4} {x = 2}^{x = 4} (e^{8x + 3y}) dx dy $
\(= \int_{2}^{4} \int_{2}^{4} (e^{8x}e^{3y}) \ dx \ dy\)
\(= \int_{2}^{4} \int_{2}^{4} (e^{8x}e^{3y}) \ dx \ dy\)
\(=\int_{2}^{4} \frac{1}{8}e^{3y+32}-\frac{1}{8}e^{3y+16} \ dy\)
\(=\int_{2}^{4} \frac{1}{8}\left(e^{16}-1\right)e^{3y+16} \ dy\)
\(=\frac{e^{44}-e^{28}}{24}-\frac{e^{38}-e^{22}}{24}\)
\(=\frac{1}{24}\left(e^{22}-e^{28}-e^{38}+e^{44}\right)\)