Exercises

C1

setwd("/Users/vancam/Documents/WAIKATO-Thesis/Rworking/Wooldridge/StataFile")
library(foreign)
library(tidyverse)
## Loading tidyverse: ggplot2
## Loading tidyverse: tibble
## Loading tidyverse: tidyr
## Loading tidyverse: readr
## Loading tidyverse: purrr
## Loading tidyverse: dplyr
## Conflicts with tidy packages ----------------------------------------------
## filter(): dplyr, stats
## lag():    dplyr, stats
ir401k <- read.dta("401K.DTA")
## Warning in read.dta("401K.DTA"): cannot read factor labels from Stata 5
## files
#1. Average participation rate and the average match rate
summary(ir401k$prate)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    3.00   78.02   95.70   87.36  100.00  100.00
summary(ir401k$mrate)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0100  0.3000  0.4600  0.7315  0.8300  4.9100
#2. Estimate the simple regression equation
ir401kreg <- lm(data = ir401k, prate~mrate)
summary(ir401kreg)
## 
## Call:
## lm(formula = prate ~ mrate, data = ir401k)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -82.303  -8.184   5.178  12.712  16.807 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  83.0755     0.5633  147.48   <2e-16 ***
## mrate         5.8611     0.5270   11.12   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 16.09 on 1532 degrees of freedom
## Multiple R-squared:  0.0747, Adjusted R-squared:  0.0741 
## F-statistic: 123.7 on 1 and 1532 DF,  p-value: < 2.2e-16
#3. Verbal explaination
#4. Pridicted "prate" when "mrate" = 3.5
83.0755 + 5.6*3.5
## [1] 102.6755
#5. How much of the variation in "prate" is explained by "mrate": Rsquare = 0.0747

C2

ceoal2 <- read.dta("CEOSAL2.DTA")
## Warning in read.dta("CEOSAL2.DTA"): cannot read factor labels from Stata 5
## files
#1. Average salary and tenure 
summary(ceoal2$salary)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   100.0   471.0   707.0   865.9  1119.0  5299.0
summary(ceoal2$ceoten)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   3.000   6.000   7.955  11.000  37.000
#2. How many CEOs at the first year as CEO (ceoten=0)
sum(ceoal2$ceoten==0, na.rm = TRUE)
## [1] 5
# Max value of "ceoten" is 37 (in the previous code)
#3. Estimation
ceoreg <- lm(data = ceoal2, log(salary)~ceoten)
summary(ceoreg)
## 
## Call:
## lm(formula = log(salary) ~ ceoten, data = ceoal2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.15314 -0.38319 -0.02251  0.44439  1.94337 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 6.505498   0.067991  95.682   <2e-16 ***
## ceoten      0.009724   0.006364   1.528    0.128    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6038 on 175 degrees of freedom
## Multiple R-squared:  0.01316,    Adjusted R-squared:  0.007523 
## F-statistic: 2.334 on 1 and 175 DF,  p-value: 0.1284
# One more year as CEO raise approximate 0.0097*100 = 0.97% in predicted percentage of salary

C3

sleep75 <- read.dta("SLEEP75.DTA")
## Warning in read.dta("SLEEP75.DTA"): cannot read factor labels from Stata 5
## files
#1. Regression
irfanlovessleeping_reg <- lm(data=sleep75, sleep~totwrk)
summary(irfanlovessleeping_reg)
## 
## Call:
## lm(formula = sleep ~ totwrk, data = sleep75)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2429.94  -240.25     4.91   250.53  1339.72 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 3586.37695   38.91243  92.165   <2e-16 ***
## totwrk        -0.15075    0.01674  -9.005   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 421.1 on 704 degrees of freedom
## Multiple R-squared:  0.1033, Adjusted R-squared:  0.102 
## F-statistic: 81.09 on 1 and 704 DF,  p-value: < 2.2e-16
#2. Verbal explaination
#3. If "totwrk" - total work increses by 2 hours, then "sleep" is estimated to fall: 2*0.15 = 0.3 

C4

wage2 <- read.dta("WAGE2.DTA")
## Warning in read.dta("WAGE2.DTA"): cannot read factor labels from Stata 5
## files
#1. Average IQ
summary(wage2$IQ) 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    50.0    92.0   102.0   101.3   112.0   145.0
# Average IQ in the sample is 102.0
sd(wage2$IQ)
## [1] 15.05264
#Standard deviation of IQ is 15.05
#2. Estimation
wage2reg <- lm(data = wage2, wage~IQ)
summary(wage2reg)
## 
## Call:
## lm(formula = wage ~ IQ, data = wage2)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -898.7 -256.5  -47.3  201.1 2072.6 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 116.9916    85.6415   1.366    0.172    
## IQ            8.3031     0.8364   9.927   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 384.8 on 933 degrees of freedom
## Multiple R-squared:  0.09554,    Adjusted R-squared:  0.09457 
## F-statistic: 98.55 on 1 and 933 DF,  p-value: < 2.2e-16
# An increase in IQ of 15 points will lead to an incsrease in predicted wage of 124.5
8.30*15
## [1] 124.5
# R-square = 0.095 => IQ can explain around 9.5% change in wage
#3.
wage2reg1 <- lm(data = wage2, log(wage)~IQ)
summary(wage2reg1)
## 
## Call:
## lm(formula = log(wage) ~ IQ, data = wage2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.09324 -0.25547  0.02261  0.27544  1.21486 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 5.8869943  0.0890206   66.13   <2e-16 ***
## IQ          0.0088072  0.0008694   10.13   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3999 on 933 degrees of freedom
## Multiple R-squared:  0.09909,    Adjusted R-squared:  0.09813 
## F-statistic: 102.6 on 1 and 933 DF,  p-value: < 2.2e-16
# An increase in IQ of 15 points will lead to estimated of 13.2% change in wage
(15*0.0088)*100 
## [1] 13.2

C5

rdchem <- read.dta("RDCHEM.DTA")
## Warning in read.dta("RDCHEM.DTA"): cannot read factor labels from Stata 5
## files
#2. Regression
rdchemreg <- lm(data = rdchem, rd~sales)
summary(rdchemreg)
## 
## Call:
## lm(formula = rd ~ sales, data = rdchem)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -184.65  -37.60  -10.92    0.02  333.27 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.577217  20.515489  -0.028    0.978    
## sales        0.040626   0.002449  16.591   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 103.5 on 30 degrees of freedom
## Multiple R-squared:  0.9017, Adjusted R-squared:  0.8985 
## F-statistic: 275.3 on 1 and 30 DF,  p-value: < 2.2e-16
#Verbal explaination

C6

meap93 <- read.dta("MEAP93.DTA")
## Warning in read.dta("MEAP93.DTA"): cannot read factor labels from Stata 5
## files
#3. Estimation
meap93reg <- lm(data = meap93, math10~log(expend))
summary(meap93reg)
## 
## Call:
## lm(formula = math10 ~ log(expend), data = meap93)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -22.343  -7.100  -0.914   6.148  39.093 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -69.341     26.530  -2.614 0.009290 ** 
## log(expend)   11.164      3.169   3.523 0.000475 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.35 on 406 degrees of freedom
## Multiple R-squared:  0.02966,    Adjusted R-squared:  0.02727 
## F-statistic: 12.41 on 1 and 406 DF,  p-value: 0.0004752
#4. If spending increase by 10% will lead to 1.116 point increase in math10??
0.1*11.164
## [1] 1.1164
# log-log form
meap93reg2 <- lm(data = meap93, log(math10)~log(expend))
summary(meap93reg2)
## 
## Call:
## lm(formula = log(math10) ~ log(expend), data = meap93)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.38927 -0.24846  0.06635  0.33480  1.08064 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   0.4319     1.2735   0.339   0.7347  
## log(expend)   0.3158     0.1521   2.076   0.0385 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4968 on 406 degrees of freedom
## Multiple R-squared:  0.01051,    Adjusted R-squared:  0.008069 
## F-statistic: 4.311 on 1 and 406 DF,  p-value: 0.0385
#5. Irfan 

C7

charity <- read.dta("CHARITY.DTA")
summary(charity$gift)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   0.000   0.000   7.444  10.000 250.000
#1 Average gift is 7.44
sum(charity$gift==0, na.rm = TRUE)
## [1] 2561
# 2561/4268 = 60 percent of people give no gift
2561/4268
## [1] 0.6000469
#2. Average of mailings
summary(charity$mailsyear)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.25    1.75    2.00    2.05    2.50    3.50
#3. Estimation
charityreg <- lm(data = charity, gift~mailsyear)
summary(charityreg)
## 
## Call:
## lm(formula = gift ~ mailsyear, data = charity)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -11.287  -7.976  -5.976   2.687 245.999 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.0141     0.7395   2.724  0.00648 ** 
## mailsyear     2.6495     0.3431   7.723  1.4e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14.96 on 4266 degrees of freedom
## Multiple R-squared:  0.01379,    Adjusted R-squared:  0.01356 
## F-statistic: 59.65 on 1 and 4266 DF,  p-value: 1.404e-14
#4.5. Verbal explaination
##Extral work
library(ggplot2)
ggplot(charity, aes(gift, mailsyear))+geom_point()+geom_smooth(method = "lm")

C8 - A little challenging

#1.Generate xi
#Number of obs to create
nobs <- 500
min <- 0
max <- 10
xi <- runif(nobs, min = 0, max = 10)
#Mean and median of xi
summary(xi)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.01751 3.19800 5.63000 5.34200 7.51700 9.96500
#Standard deviation of xi
sd(xi)
## [1] 2.704125
#2. Generate ui
ui <- rnorm(nobs, mean = 5.015, sd = 2.8859) 
summary(ui)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  -3.289   3.194   4.935   5.083   6.956  14.240
ui
##   [1]  2.38981143  4.48561958  7.38560864  7.17436688  7.87905298
##   [6]  4.89201449  7.93730075  6.32043468  6.86316244  6.39207581
##  [11]  9.14020667  6.73723200  3.80999050  8.76974142 10.77211229
##  [16]  4.64302330  8.14013182  3.85494679  3.76782922  2.26803906
##  [21]  5.18518652  0.56354784 -0.48448623  5.64415860  4.46421591
##  [26]  3.63706666  6.33458740  3.64407956  3.76678462  4.65794585
##  [31]  5.37753634  3.22939337  3.82679222  4.00739960  1.34159881
##  [36]  3.61441148  6.84196899  2.41589983  5.11180358  5.87994084
##  [41]  3.90430416  1.72536835  9.12847145  4.12917794  3.90082692
##  [46] -1.02361170  3.57895293  5.08851693  5.81528666  4.85879914
##  [51]  7.40960538  3.03786538  4.43716176  6.11265931  5.21066350
##  [56]  6.17449277  3.75260218  3.32874288  0.56389257  5.17960662
##  [61]  7.99537885  5.14726546  7.11772561  7.15288841  5.22491190
##  [66]  1.34865590  7.55631350  3.55239538  7.08354667  3.79797618
##  [71]  3.94893200 10.74464210  4.10385212  3.58169403  2.85343223
##  [76]  5.95288703  2.06044403  2.23259638  1.89720990  1.63688342
##  [81]  4.31914924  8.22936632 -1.04197808  3.58824061  3.01066535
##  [86]  0.21366790  8.06408271  6.70728555  0.66338889  9.02180931
##  [91]  4.44773349  6.04986249  8.80041332  0.19319742  5.95290142
##  [96]  7.45147765  6.28840257 10.36641978  6.86739084  4.58667052
## [101]  5.65505854  1.68041789 13.31370635  5.72695820  4.78404929
## [106]  6.10814327 -0.73527833  5.34844456  4.92474260  6.32514797
## [111]  1.09480502  8.53751531  7.38592358  5.15903713 10.73189894
## [116]  2.56391294  0.37955101  4.34929667  4.17097883  7.34253163
## [121]  4.14226142  4.89518560  3.52765492  3.69794048  9.41643243
## [126]  4.82401220  4.43199710  6.30169901  2.85320011  4.34256358
## [131]  2.82106819  7.27486493  5.59821353  3.78653211  7.09759311
## [136]  6.75987555 -2.20348078  4.74425368  6.11544351  2.71871743
## [141]  4.89859201  2.82571271  3.71537619  7.40206836  7.35339833
## [146]  7.85352743  6.50520517  4.45220585  6.40375045  7.87983156
## [151]  4.08888193  6.12021397  5.91136621  3.22264909  4.98582667
## [156]  2.42412777  1.83361482  6.47858250  5.42863449 11.47303131
## [161]  1.82440516  9.10593285  6.19213120  3.66258474  5.80760299
## [166]  8.96582002  2.79622337  1.95918163  6.09008073  4.56060699
## [171] -3.28881186  8.72102502  3.41157935  3.00064155  8.56797037
## [176]  5.87709043  4.58919037  7.19520060  5.92070293  4.58421969
## [181]  4.66349728  4.80402481  8.98970825  6.41143962 10.16216459
## [186]  6.55178311  6.25281256 -1.60375547  4.41352524  8.25113698
## [191]  2.71373874  6.64917607  7.60113349  5.47080973  5.78675296
## [196]  2.10884479  8.72858817  7.24691836  6.33962679  6.02422974
## [201] 11.86022468  2.24811893  0.82706790  9.16265548  2.39039493
## [206]  8.42720406  3.27373871  9.20406599  6.50171933  4.75585751
## [211]  5.43816807  0.93311019  5.19557630  1.03065288  6.97188731
## [216] 12.55997047  3.89384803  7.13073287 14.24027915  3.12836136
## [221]  2.68411253  6.64401012  6.00462525  1.31791594  4.94162569
## [226]  6.84761800  8.22555167  6.69974903  5.46577507 10.16981120
## [231]  5.42160260  9.41414903  0.86420232  8.60869357  2.19719394
## [236]  0.46030719  5.19110625  3.55389620  1.97165023  3.42489732
## [241]  2.16704521  1.71000077  2.13840438  6.15411828  6.77937509
## [246]  3.19418570  8.03173178  4.20008277  3.31284959 10.07954292
## [251]  8.35208802  4.11474931  8.49800283  9.99729022  4.88314349
## [256] 10.32510482  6.73654528  8.29469842  8.74179985  6.57748742
## [261]  6.18739518  5.16857838  2.68453950  5.18774918  3.48763321
## [266]  8.05033307  6.71163644  1.61884840 10.26818192  3.80081122
## [271]  8.49208065 11.54970536 -0.71054951  4.56756230 -0.72000226
## [276]  6.48033123  5.26160244  7.08176530  1.11889987  7.02853309
## [281]  5.07148617  7.95661950  3.17705336  1.33153215  1.62696374
## [286] 12.66919808  5.46900762  3.20737879  4.83600236  5.32818435
## [291]  4.81925205  5.87996247  9.00383841  3.77982269  3.26728871
## [296]  4.37780571  6.99375718 -1.51946993 10.48330788  4.14905814
## [301] -0.07533938  4.72302222  4.48645838  5.97851991 -0.03295655
## [306]  3.55485089  9.70684391  2.86785040  2.44790600  8.68181536
## [311]  6.03929225  6.66258037  1.62409700  3.06492993  5.73927725
## [316]  5.03960295  4.72049607  6.10942716  0.33566980  4.09022329
## [321]  6.36110517  5.13463164 11.97606979  2.26948282  3.19386301
## [326]  3.89993026  4.12591651 -0.44341556  1.44996982  4.38784180
## [331]  4.76417671  4.79134674  6.59804642  5.51104454  3.62871700
## [336]  7.53912599  0.69480438  8.57044211  4.42135880  3.94592555
## [341]  7.47874602 11.18133544  2.49011064  1.72714606  6.82546075
## [346]  8.17444478  2.39094687  5.12348745 11.19212226  5.37505307
## [351]  7.25431967  0.25687369  1.67593967  7.55982294  0.51801885
## [356]  0.22123562  7.11692437 -0.21536214  5.02436485  9.54353530
## [361]  3.31343357  4.38677104  4.92809803  6.91002278  2.41253350
## [366]  2.06255118  6.45939548  7.73524237  5.64457002  0.85705531
## [371]  4.45799030  8.80318116  6.53321366  1.28147326  0.62015711
## [376]  5.12717975  7.71087491  7.72111392  7.68088944  2.72013573
## [381]  6.28465779  8.81704504  8.47265795 -1.69149584  4.89423290
## [386]  4.39706747  6.83131149  6.95134545  2.80444319  5.38165805
## [391]  1.86379239 10.61072905  7.86813587  3.65532996  4.07141511
## [396]  3.81269285  7.79005549  6.20840529  4.92072386  3.57621950
## [401]  2.92392928  7.66207430  6.98147283  8.86875884  6.85721548
## [406]  2.31787792  8.65178831  9.04749420  8.48346510  4.01909923
## [411]  8.87582279  1.66076297  1.83727941  3.62779615  3.98397374
## [416]  1.75794470  4.19450761  2.21756834  6.83002671  5.20422920
## [421]  3.18594785  2.68984587  4.55257857  5.82090354 -2.17966198
## [426]  2.06215628  9.97381522  8.52237882  2.96779865  2.05340285
## [431]  1.99530293 -0.76132902  4.49344462  7.71139749  2.82932277
## [436]  6.57157486  3.11449005  5.84017004  6.05331428  3.39853036
## [441]  2.20115571  5.10777154  7.25716102  2.83590599  6.92410641
## [446] -0.90571310  5.20722633  6.76870375  6.74729311  4.36167099
## [451]  3.67430188  8.99010143  6.01711043  4.67295857  8.51210857
## [456]  9.27833104  3.65618433  7.33901217  5.39891901  2.54275789
## [461]  8.19730758 12.14626995  5.47564725  2.43677613  5.56777143
## [466]  4.05418944  8.65353991  3.62819725  6.92887155  5.45062686
## [471]  0.81997247  3.16276717  4.17955802  3.10766468  2.56237674
## [476]  8.16068874  2.21311540  4.33317649  3.72426867  4.28771998
## [481]  4.30424413  4.45921088  5.88648223  6.02321593  4.73404702
## [486]  7.26786071  7.00321164  2.92558558  8.57306224  4.56292248
## [491]  7.00257475  1.31815774  3.42783691 11.36637866  3.14687745
## [496]  5.48552117  4.01283354  8.82187646  0.49692646  0.99507220
#3. Generate y
vandf <- data.frame(xi, ui)
vandf <- mutate(vandf, yi = 1+2*vandf$xi+vandf$ui)
# Regression
vandfreg <- lm(data = vandf, yi~xi)
summary(vandfreg)
## 
## Call:
## lm(formula = yi ~ xi, data = vandf)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.4151 -1.8743 -0.1128  1.8663  9.1690 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  6.35345    0.28202   22.53   <2e-16 ***
## xi           1.94945    0.04711   41.38   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.846 on 498 degrees of freedom
## Multiple R-squared:  0.7747, Adjusted R-squared:  0.7743 
## F-statistic:  1712 on 1 and 498 DF,  p-value: < 2.2e-16
#4. Fitted value of u
vandfreg$residuals
##            1            2            3            4            5 
## -2.784734560 -0.694703575  2.132533284  1.935842970  2.969208767 
##            6            7            8            9           10 
## -0.110958787  2.991032122  1.224422573  1.706884021  1.082366931 
##           11           12           13           14           15 
##  4.114975658  1.623253894 -1.179248428  3.729798031  5.618284524 
##           16           17           18           19           20 
## -0.445002118  3.141042542 -1.356631536 -1.184410316 -2.767445559 
##           21           22           23           24           25 
##  0.117371358 -4.357597892 -5.583268606  0.556174702 -0.669753123 
##           26           27           28           29           30 
## -1.384868553  1.024063356 -1.463468346 -1.284055860 -0.514935392 
##           31           32           33           34           35 
##  0.471775772 -1.663004405 -1.075824191 -0.881188818 -3.944706191 
##           36           37           38           39           40 
## -1.523567067  1.805199284 -2.571217340  0.013930598  0.898636307 
##           41           42           43           44           45 
## -1.210871787 -3.599657803  3.848908170 -0.931908747 -1.322802549 
##           46           47           48           49           50 
## -6.072949886 -1.312915905 -0.210558797  0.532910504 -0.096490733 
##           51           52           53           54           55 
##  2.148117816 -2.215850148 -0.697363336  0.842030409  0.273177723 
##           56           57           58           59           60 
##  1.062296733 -1.202804288 -1.873472108 -4.325098684  0.153614744 
##           61           62           63           64           65 
##  3.142225907  0.003563479  2.102275264  2.021219491  0.145090559 
##           66           67           68           69           70 
## -3.514339177  2.343012474 -1.411910424  1.854460957 -1.314568647 
##           71           72           73           74           75 
## -0.939487074  5.885664199 -1.219847771 -1.313354513 -2.151969124 
##           76           77           78           79           80 
##  0.791290587 -3.121210640 -3.004373298 -3.190303354 -3.476577205 
##           81           82           83           84           85 
## -0.783366221  3.359544100 -5.891672721 -1.727314072 -2.175708102 
##           86           87           88           89           90 
## -4.792950820  3.171441817  1.425795973 -4.590143179  3.831799869 
##           91           92           93           94           95 
## -0.483532985  0.721634305  3.845671018 -4.814405609  0.752593552 
##           96           97           98           99          100 
##  2.360541141  1.285810449  5.387191352  1.986600384 -0.570422295 
##          101          102          103          104          105 
##  0.640814059 -3.337311652  8.326056444  0.409921337 -0.276851366 
##          106          107          108          109          110 
##  1.185045621 -5.829207094  0.390023177 -0.114734408  1.188309489 
##          111          112          113          114          115 
## -4.228975601  3.650375132  2.412544641 -0.125353150  5.781886280 
##          116          117          118          119          120 
## -2.562922480 -4.538381249 -0.804473210 -0.969498987  2.154165360 
##          121          122          123          124          125 
## -1.171658790 -0.273444810 -1.537343911 -1.316167389  4.097246497 
##          126          127          128          129          130 
## -0.084449385 -0.554547869  1.143174558 -2.339292358 -0.684786196 
##          131          132          133          134          135 
## -2.406129452  2.305486936  0.363293007 -1.289061188  2.194803044 
##          136          137          138          139          140 
##  1.791165035 -7.256631471 -0.320224767  0.844898127 -2.255338921 
##          141          142          143          144          145 
## -0.314883026 -2.291115498 -1.327537700  2.538430291  2.283539279 
##          146          147          148          149          150 
##  2.808662617  1.476660958 -0.637017258  1.321574894  2.752654967 
##          151          152          153          154          155 
## -1.157715648  1.018412317  0.896534167 -2.098967225  0.006710064 
##          156          157          158          159          160 
## -2.590612919 -3.048274780  1.352221680  0.375883197  6.178197880 
##          161          162          163          164          165 
## -3.130240092  3.800732743  1.004551248 -1.396180651  0.763342775 
##          166          167          168          169          170 
##  3.829371333 -2.171251340 -3.242340163  1.185840511 -0.463584620 
##          171          172          173          174          175 
## -8.415122448  3.570162750 -1.750549701 -2.344615170  3.594462961 
##          176          177          178          179          180 
##  0.686116820 -0.402445583  2.155775066  0.707321364 -0.360057551 
##          181          182          183          184          185 
## -0.570504366 -0.125528533  4.058842511  1.508268551  4.906265782 
##          186          187          188          189          190 
##  1.699715795  1.106591750 -6.931057291 -0.548403278  2.917193597 
##          191          192          193          194          195 
## -2.590973735  1.781873541  2.428264896  0.556687470  0.637803423 
##          196          197          198          199          200 
## -2.874713099  3.849821221  2.091136927  1.400906571  1.112104782 
##          201          202          203          204          205 
##  6.537362579 -2.951714346 -4.279265459  4.285336455 -2.757107464 
##          206          207          208          209          210 
##  3.368649601 -1.846555748  4.173161158  1.235755725 -0.316491336 
##          211          212          213          214          215 
##  0.363380853 -4.252613420 -0.135257857 -4.022687995  1.904972060 
##          216          217          218          219          220 
##  7.652656010 -1.274244121  2.074063418  9.169019047 -1.934145172 
##          221          222          223          224          225 
## -2.319949633  1.365468455  1.042453330 -3.712178833 -0.084976057 
##          226          227          228          229          230 
##  1.647729177  3.089523255  1.780658690  0.394027308  4.933813385 
##          231          232          233          234          235 
##  0.460465171  4.310554779 -4.113742183  3.429741796 -3.041909106 
##          236          237          238          239          240 
## -4.690696061  0.258970287 -1.529965217 -3.222070026 -1.923868235 
##          241          242          243          244          245 
## -2.941451941 -3.165470804 -2.774271629  0.938895729  1.857619141 
##          246          247          248          249          250 
## -2.007400729  2.725079461 -1.070103950 -1.703686673  5.103762777 
##          251          252          253          254          255 
##  3.082068040 -0.965152175  3.379347065  5.067451501 -0.184008081 
##          256          257          258          259          260 
##  5.369493988  1.641654607  3.204172452  3.886521157  1.487465398 
##          261          262          263          264          265 
##  1.004309857 -0.014088677 -2.661948045  0.188827645 -1.366841660 
##          266          267          268          269          270 
##  2.843005455  1.378591980 -3.443922361  4.918434243 -1.460814617 
##          271          272          273          274          275 
##  3.515415677  6.588334069 -5.602162401 -0.475013311 -5.731101582 
##          276          277          278          279          280 
##  1.407983512  0.355374556  2.216413399 -3.803411950  1.858345585 
##          281          282          283          284          285 
##  0.092581229  2.997084601 -1.876742250 -3.541915711 -3.398068704 
##          286          287          288          289          290 
##  7.585706596  0.552884468 -1.869426123 -0.230051617  0.250655190 
##          291          292          293          294          295 
## -0.433307436  0.864887352  3.952771899 -1.409956594 -1.588521289 
##          296          297          298          299          300 
## -0.973488872  1.792321718 -6.408597088  5.463797038 -0.746949903 
##          301          302          303          304          305 
## -4.988527611 -0.420653574 -0.480438796  0.843229250 -4.899169324 
##          306          307          308          309          310 
## -1.569163141  4.682766334 -2.238020987 -2.784393790  3.618656591 
##          311          312          313          314          315 
##  1.139127990  1.312929235 -3.252812068 -1.976697953  0.447648046 
##          316          317          318          319          320 
##  0.115141607 -0.598652417  0.863926618 -4.624948153 -0.844588112 
##          321          322          323          324          325 
##  1.373385659  0.171963436  7.024237787 -3.028923205 -1.943890484 
##          326          327          328          329          330 
## -0.985075540 -0.857542851 -5.642514289 -3.547610831 -0.484234991 
##          331          332          333          334          335 
## -0.519151704 -0.415761485  1.675718353  0.597851438 -1.421992897 
##          336          337          338          339          340 
##  2.483195269 -4.222024270  3.294324866 -0.511105979 -0.965984908 
##          341          342          343          344          345 
##  2.457793480  6.326516942 -2.501294505 -3.310690976  1.531471043 
##          346          347          348          349          350 
##  2.977700761 -2.545534417  0.239872531  5.953195840  0.261894253 
##          351          352          353          354          355 
##  2.062794108 -4.815624925 -3.576097878  2.332837565 -4.784452292 
##          356          357          358          359          360 
## -4.936908741  1.811225621 -5.073075457  0.003044742  4.556000742 
##          361          362          363          364          365 
## -1.737118959 -0.643409345 -0.290968445  1.890120616 -2.870495976 
##          366          367          368          369          370 
## -3.231555006  1.483415260  2.454042168  0.405488572 -4.297463037 
##          371          372          373          374          375 
## -0.715090065  3.818093165  1.246894983 -3.667119992 -4.604919727 
##          376          377          378          379          380 
## -0.158209301  2.364554096  2.515791003  2.632743405 -2.269415400 
##          381          382          383          384          385 
##  1.080621714  3.961993100  3.449460463 -6.772605172 -0.136475120 
##          386          387          388          389          390 
## -0.559662677  1.785156314  2.046118393 -2.226338735  0.399280196 
##          391          392          393          394          395 
## -3.085177184  5.338055720  2.822435081 -1.424685115 -0.836625596 
##          396          397          398          399          400 
## -1.107749931  2.663327380  1.269813468  0.062877385 -1.582126991 
##          401          402          403          404          405 
## -2.287093297  2.474756045  1.942031988  3.767340424  1.772231651 
##          406          407          408          409          410 
## -2.603969890  3.345016951  3.754155617  3.354053646 -1.200190106 
##          411          412          413          414          415 
##  3.819398895 -3.635547827 -3.074131889 -1.417352347 -1.203069018 
##          416          417          418          419          420 
## -3.500971335 -0.868120738 -2.781356257  1.784778332  0.238133417 
##          421          422          423          424          425 
## -1.694818621 -2.335979253 -0.526739695  0.576251068 -7.161797913 
##          426          427          428          429          430 
## -3.158286908  4.687880895  3.410178236 -1.969128247 -3.058863845 
##          431          432          433          434          435 
## -3.226197908 -5.862861235 -0.841329708  2.454590200 -2.181356293 
##          436          437          438          439          440 
##  1.308307458 -1.791440603  0.677034606  0.707384422 -1.722545629 
##          441          442          443          444          445 
## -2.846445154  0.133527962  2.167527671 -2.430901127  1.678080744 
##          446          447          448          449          450 
## -6.213656175 -0.054854487  1.707731176  1.675284489 -0.605588360 
##          451          452          453          454          455 
## -1.539932347  4.100110738  1.156308816 -0.251346522  3.173670304 
##          456          457          458          459          460 
##  4.112513396 -1.448707123  2.062911001  0.262604524 -2.391814494 
##          461          462          463          464          465 
##  3.154881996  7.243168739  0.428005260 -2.810148974  0.547051564 
##          466          467          468          469          470 
## -1.050349282  3.386929909 -1.334499117  1.943961019  0.479432449 
##          471          472          473          474          475 
## -4.279145542 -1.854157406 -0.919843472 -1.884636716 -2.589569318 
##          476          477          478          479          480 
##  2.813816201 -2.975497294 -0.595068202 -1.280471112 -0.841812602 
##          481          482          483          484          485 
## -0.683983794 -0.466712976  0.831284931  1.016352840 -0.124632181 
##          486          487          488          489          490 
##  2.177389605  1.969048665 -2.141552514  3.663819155 -0.632626339 
##          491          492          493          494          495 
##  1.916238772 -3.658993717 -1.527116030  6.048168436 -2.021880195 
##          496          497          498          499          500 
##  0.432991973 -0.873903198  3.703062616 -4.855639178 -4.042288117
#6. Repeat 
set.seed(9)
nobs <- 500
min <- 0
max <- 10
xi <- runif(nobs, min = 0, max = 10)
summary(xi)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.03091 2.45000 4.93100 5.03200 7.53600 9.98600
sd(xi)
## [1] 2.900968
ui <- rnorm(nobs, mean = 5.032, sd = 2.900968) 
irfdf <- data.frame(xi, ui)
irfdf <- mutate(irfdf, yi = 1+2*vandf$xi+vandf$ui)
irfdfreg <- lm(data = irfdf, yi~xi)
summary(irfdfreg)
## 
## Call:
## lm(formula = yi ~ xi, data = irfdf)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -16.3493  -4.4450   0.1924   4.2267  15.1785 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 17.05642    0.53705  31.760   <2e-16 ***
## xi          -0.05727    0.09248  -0.619    0.536    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.993 on 498 degrees of freedom
## Multiple R-squared:  0.0007695,  Adjusted R-squared:  -0.001237 
## F-statistic: 0.3835 on 1 and 498 DF,  p-value: 0.536
ui
##   [1]  4.0497941589  5.9701128689  5.0440790685  8.9924580152  1.4765662431
##   [6]  4.1369234700  5.3626145018  9.0545583777  4.8312414054  8.8524084961
##  [11]  0.4193871725  4.3393893709  4.3170556660  8.3322821678  7.0091801354
##  [16]  3.8651750645  0.0333425570  2.4864097950  4.9404063312  3.7485226446
##  [21]  8.4126820974  1.1632409392  3.1895997138  6.4411433578  8.1716881890
##  [26]  6.2097042140  2.0128064174  9.7318722407  4.7679946294 -2.0049512228
##  [31]  5.3537027711  6.5616663898  7.0392337151  3.9282022240  6.3712345884
##  [36]  6.4986242018  7.9909127594  5.7567899613  8.4525124859  8.2397063648
##  [41]  6.7975711156  2.8824350386 10.3873487225  8.3194735323  1.4641354582
##  [46]  8.6443559907  9.3119315076  4.0782516886  3.9093372662  1.5102352161
##  [51]  7.3238971050  5.2847539875 10.4745412342  3.2949279307 -0.3026311201
##  [56]  2.9070231031 10.3269109902  6.7261847079 -0.7825266217  3.9274917883
##  [61]  9.5725490053 -0.3065862235 -0.6190675170  3.1185611674  9.1882258730
##  [66]  3.1157346803  8.6773771010  7.2824302003  7.0556944180  3.6986716893
##  [71]  5.2809070272  8.9495812371  6.5852093977  5.3721435951  6.3285687202
##  [76]  8.1056990010 13.0460080249  1.7514580972  6.2887386860  6.7650014043
##  [81]  4.3191753068  4.9121337629  5.7450702059  4.0616865151  3.5436202343
##  [86]  3.3675397663  5.9914100255  4.4313821275  7.1593509284 12.1921320576
##  [91]  4.3997877279  5.3985340019  1.7938595940  2.6409001408  8.3984201955
##  [96]  7.3210652265  6.3405774725  5.4962871729  1.7248006117  4.1144466404
## [101]  9.1384893533  2.7362083928  7.6901032510  2.9300288723  3.2932136568
## [106]  3.6741820777  7.7871503100  2.9475264383  4.3923590652  7.6686844414
## [111]  6.3748187496  6.3062462385  8.2122381255  2.9788367895  1.6448161150
## [116]  3.1872408649  4.7275785545  6.2331030747  3.8427727872  4.9663397283
## [121]  7.2311388208  4.0506826288  6.8016752602  3.5640481296  2.7789821640
## [126] 12.9569398556  3.9944759179  5.5999233205  5.6183827458  5.2836835429
## [131]  5.3286469805  5.1686257125  5.1456798342  8.3575531556  2.8311985261
## [136]  6.3660017781  4.1126667765  8.0826368324  0.0001841672 10.0715048325
## [141]  4.4818237047  2.3931334122  8.3014377524  3.5772385560  7.5986926681
## [146]  8.6980097608  2.7323882113  4.3246657880  4.0927963193  9.8142185518
## [151]  0.8996582995  2.0451556754  7.1613843010  6.0365524825  2.2386553907
## [156]  0.6801591521  3.8736282537  6.1004313560 -0.6384919805  3.2923386348
## [161]  2.1989536077  6.4528941897  0.8304108982  8.9116365865  5.3321149077
## [166]  2.7570251409  7.0341029778  7.4985228530  4.5839865576  9.1900156486
## [171] 11.0660191198  5.0725609766  4.2032416295  4.5321942521  5.6535361711
## [176]  6.0127720475  1.1270728370  6.5398230426  6.2208414021  4.3420537737
## [181]  2.1290383773  3.7591378364  2.6734863665  5.7032483991  5.8708044211
## [186]  5.9480855760  6.9642768812  3.5683651056 10.5172043819  2.9672897825
## [191]  2.3417898344  4.8758587168  5.3035351602  4.8038623709  6.2463845118
## [196]  2.6468352229  5.9187325952 12.0540485526  8.2551964840  2.0552318758
## [201]  3.9189754823  2.7271688312  4.2316023974  4.5858481638  7.9153771032
## [206]  3.7794326416  3.8610684773  3.4489879921  7.9182655807  8.0045515487
## [211]  0.2121435598  5.6487992289  4.8572032558  7.1993987761  7.1736204421
## [216]  2.0442842546  7.1872598089  6.1795310766  3.6118326065  5.7543436006
## [221]  1.8839149690  4.5092651487  4.2214983994  2.8560401110  6.1938748244
## [226] -3.7900587596  5.4737706655  4.2559336789  6.6768354036  5.0242571925
## [231]  5.7356686799  8.5583010894  6.5056466846  4.3019161286  6.0291390505
## [236]  5.8385827122  8.5530333516  6.4689721311  5.5801545122  3.5749970262
## [241]  5.8798620763  3.4582685814  6.5762320785  4.8234330536  0.2500857352
## [246]  8.1470731654 11.4146396271  3.7246754176  8.6718857019  3.3618123957
## [251]  2.2675727638 11.5727692100 10.1186502608  6.5161752669  2.5897688509
## [256]  4.0385837961  6.8071089060  6.3633037405  5.9902048671  4.1022088928
## [261]  4.6889781013  4.0994838439  7.7847166894  8.1045477310  5.6424836425
## [266]  5.5011566686  6.2761332666  7.1470287146  7.4227603577  7.3396746089
## [271] 10.1092910630 10.3431030903  5.2031134616  6.3405412235 10.5084112172
## [276] -0.3893659812  0.1559512362  8.3948806813  1.1298803717  9.2468110652
## [281] 11.5987893149  3.5009218458  4.2098332317 -1.6442769987  5.2622520696
## [286]  4.2515454193  6.9533321301  7.5869667641  5.8874747999  2.7062404977
## [291] -2.1827066953  6.5229666898  6.8988985880  2.4149363451  4.1825348418
## [296]  8.1592435005  2.9379711006  5.3553200972  2.1193630409  2.5642798243
## [301]  5.6085213519  2.1057434800 -1.6190041212  9.3171202722  5.4686351610
## [306]  4.8421840075  5.6319054989  7.2150708762  3.0578182369  4.7122003776
## [311]  4.5994888351  5.2394815136 -0.1949357522  7.2055796342  5.7389412024
## [316]  4.3541205261  1.6082016137  6.0814950687 11.7603186692  5.6062030238
## [321]  7.4646578243  3.9667683571  7.0187921968  6.1722228987  5.5792079284
## [326]  6.2846617045  6.9761140231  4.1129637272  6.6249195291  6.6778576309
## [331]  1.4946474624  6.0903716488  1.4351276248  5.6741967414  4.4540778129
## [336]  2.7602682152  2.1928421301  9.5384123571  4.9240738292  3.7948151886
## [341]  0.1503495175  9.3648479492  6.3908799041  2.6113734807  3.2531492036
## [346]  5.8658914113  3.4770755112 12.3374801556  0.8052631499  0.9141407227
## [351]  2.3210662365  5.8247745993  5.9788203664  3.1337868415  6.1674550355
## [356]  2.9725796795  5.6188410384  6.8590450973  8.0885815585 -0.4033613273
## [361]  8.4305725927  7.3107070125  6.5398119867  5.1402066252 -0.6273969601
## [366]  6.3521846066  3.5566976956  3.7184881923  5.7559078300  3.2622723914
## [371]  3.5759504137  4.8691509777 10.1518496295  7.7619270134  3.2948117516
## [376]  4.0841158012  7.1878785615  7.6416026593  7.5768445062  3.8154257844
## [381]  6.7978619233  1.0936210955  7.6633721091  6.3507029657  6.1579138792
## [386]  7.2223978682  2.5995128592  7.8401693107  4.2312243669  1.8264452553
## [391]  7.1808488156  5.6175854051  7.1510999736  4.7257673920  2.9810215594
## [396] 10.6815277739  1.3926712534  2.0782467944  6.4639778946  2.9854604860
## [401]  0.8287959645  7.2531047138  6.7506544052  3.3850889412  3.3699574978
## [406]  5.0465307838  4.7440464592  4.8181157148  9.6041545022 -2.3786593489
## [411]  5.7940495388  7.7219604395  7.5519476363 -1.0574022068 10.2363540961
## [416]  1.5172609461  0.7593970018 -1.4874670464  6.2594955336  6.1504522139
## [421]  7.2953078876  5.0932885356  7.3006065079  3.6415337157  1.9789779719
## [426]  6.7964416870  0.4474372065  9.0955454891  8.4177491967  6.1310742206
## [431]  0.3817392609  9.5169232243  6.1799407079  2.4227610001  7.3923030411
## [436]  2.6584371250  1.7643406323  3.1561532326  5.0078161222  2.3966599907
## [441]  6.0188230024  5.4366523472  5.5234474225  6.1756012077  4.0673619879
## [446] 10.7175900561  8.4142697039  6.6903701277  4.5825877941  6.1659901395
## [451]  4.0757011850  4.9202287182  5.3094744709  5.0752976747  8.0163693759
## [456]  1.7669165294  9.8215580550  2.9810077991  8.3341172629  2.0480962116
## [461]  5.8250004004  1.5664126514  4.3882908885  4.1518010914  4.8329332720
## [466]  2.6512796476  7.9695003347  2.1957824552  6.2079051293  3.2516808584
## [471] 10.4579315799  4.5172536595  3.8909113834  7.7685851783  4.2864755829
## [476]  6.9150442461  6.4839199758  6.7885836672  7.5681477482  5.7611417839
## [481]  4.3536565147  4.8589364864  4.9939895431  5.3103683861  6.2621148326
## [486]  6.7066863491  6.3518011606  2.4184422457  2.5634526917  1.1941488059
## [491]  0.9126821034  5.7893055169  1.4190872991  5.5237015169  3.9283952627
## [496]  7.2785841593  9.4682985511  6.8249211305  0.2190807491 12.3479370263
irfdfreg$residuals
##            1            2            3            4            5 
##  -6.46144349  -4.70724217  -4.58090204  -4.21149198   9.62775942 
##            6            7            8            9           10 
##   2.77879011   8.21450765   0.66091913  -1.00928826  -7.36551822 
##           11           12           13           14           15 
##   6.13695587   0.16023962   2.66929335   5.28945211   2.89584953 
##           16           17           18           19           20 
##  -0.62529720   6.33404128  -6.02878472   3.79028433  -0.92667745 
##           21           22           23           24           25 
##   0.94479896   1.62291650  -6.28209521   0.15543502  -2.60597242 
##           26           27           28           29           30 
##   1.21968462  -7.79717772  -2.46465804   0.23704853  -3.76831177 
##           31           32           33           34           35 
##   7.14857158   5.97140826   5.87601482   6.85878269 -12.05570718 
##           36           37           38           39           40 
##  -3.41399816   3.78027508   1.39271186  -0.69560988   4.97964690 
##           41           42           43           44           45 
##  -2.17480672 -12.79331538  -3.67686339  -0.25761050  -6.79320065 
##           46           47           48           49           50 
##  -4.93296027   6.25599899  -8.42801550  -7.28933843   5.08964294 
##           51           52           53           54           55 
##  -4.43772220  -8.76544059  -2.62082096  -6.15324836   5.74900688 
##           56           57           58           59           60 
##   0.18504347   3.82353140  -6.31541754   3.25241755   2.16106135 
##           61           62           63           64           65 
##  11.83623695  -2.42728524   4.64921178  -0.08980863   0.48294770 
##           66           67           68           69           70 
##   4.84373046  -2.63058167   3.08028905  -3.75890744  -2.27209736 
##           71           72           73           74           75 
##   6.38061976  14.36095313 -10.40376667   6.13983817   0.68544662 
##           76           77           78           79           80 
##  -2.44345295  -6.83173735  -8.64340662  -3.32990513  -4.71170197 
##           81           82           83           84           85 
##  -1.68924672  11.55706689   2.84481577 -10.63953455  -6.30370385 
##           86           87           88           89           90 
##  -1.87535093  10.61104982  -6.44016626 -10.89099336  -0.05680758 
##           91           92           93           94           95 
##   5.33502953  -8.88441646   8.60999176  -1.63009628  -3.98972002 
##           96           97           98           99          100 
##   2.19794294   4.20463610   9.43167669   9.67527278  -3.58109141 
##          101          102          103          104          105 
##   3.56899072  -0.67264438  11.89714414  -8.75236518   0.41403225 
##          106          107          108          109          110 
##   7.46900913  -6.22626335   5.17078971   1.53144242  -1.00875243 
##          111          112          113          114          115 
## -13.71052652  11.09175214   6.70759731  -7.84926150  11.00861445 
##          116          117          118          119          120 
##  -4.31522634   2.11948799  -3.78997108  -2.95257586  -2.10952607 
##          121          122          123          124          125 
## -10.00037672  -3.36166745  -1.05075476   1.57811209  -4.89538758 
##          126          127          128          129          130 
##   6.69971344   3.25712021  -1.87551184  -6.67599838   1.23574622 
##          131          132          133          134          135 
##  -8.12759649   6.84772783  -5.53808066  -0.84531046   9.40855582 
##          136          137          138          139          140 
##   6.37844369  -5.97353030   0.16215343  -6.12182833   1.79791771 
##          141          142          143          144          145 
##  -5.27696015  -3.83550081  -0.04062414  10.91311126   2.63693178 
##          146          147          148          149          150 
##   4.24245747   3.48046758  -0.60928308   1.43516348   1.33799953 
##          151          152          153          154          155 
##  -7.51876928   0.58151157   3.78339410 -11.00924718   4.20294842 
##          156          157          158          159          160 
##   0.27991574   4.53173365  -0.34126559   1.54831387  -2.14315230 
##          161          162          163          164          165 
##   1.85882801  -4.51179327  -3.21809139  -0.20744661   2.30596145 
##          166          167          168          169          170 
##   2.02007803   2.52801001  -7.65167327   7.87731398   1.72400279 
##          171          172          173          174          175 
## -10.02323926   0.87485469  -4.62319317 -12.45982303   7.67665454 
##          176          177          178          179          180 
##  -3.67520552   2.87798247   4.10817046  -4.13620207   4.87395111 
##          181          182          183          184          185 
##  -6.45930981   5.81650756   9.78826401   8.44057898  -1.93528899 
##          186          187          188          189          190 
##  10.89711026  -1.16520899 -16.34928368   4.03684313  -6.92581947 
##          191          192          193          194          195 
## -11.18441415  10.01062202  -1.16705119   7.09815992  -1.72715420 
##          196          197          198          199          200 
##   0.92721049  11.49180942  -0.73499625   7.07838262   7.85894664 
##          201          202          203          204          205 
##  -2.51545280  -7.59001396  -5.23662748  12.42929217  -5.09049642 
##          206          207          208          209          210 
##   4.37506126  -3.48482634   6.13508583  -5.67275268   0.19975697 
##          211          212          213          214          215 
##   0.53306207  -8.33025150  -9.66438452  -2.58676069   2.27914711 
##          216          217          218          219          220 
##  14.57729518  -4.72023969   2.92123746   9.71002518  -1.39749110 
##          221          222          223          224          225 
##   0.77288601  -5.97616170   5.75450327  -1.60445711   2.22359605 
##          226          227          228          229          230 
##  -2.67501608   1.04034793   8.30590758   1.02395006  -0.69013150 
##          231          232          233          234          235 
##   4.90313367   3.74008816  -0.26966933  -0.42337365  -9.16070991 
##          236          237          238          239          240 
##  -7.19022451   6.21403040  -1.48407230  -7.43771464 -12.12946527 
##          241          242          243          244          245 
##  -3.69061552   4.76449662   3.75184442  -4.04578757   8.09041980 
##          246          247          248          249          250 
##  -6.32267195  -5.66286603  -8.06130502   0.80811822   9.36211604 
##          251          252          253          254          255 
##  -4.26529199  -0.95132598   2.23293272  10.81286162   0.65933128 
##          256          257          258          259          260 
##  10.05528805   1.26598796   2.65142834  12.91160030   1.50712456 
##          261          262          263          264          265 
##  -2.70918547  -3.94057919 -13.08346509   3.25952147   7.65501826 
##          266          267          268          269          270 
##  -1.70700396  -8.23241723  -2.85177137  -5.62282768  -8.39081257 
##          271          272          273          274          275 
##   7.37466384  11.45422704   1.59588510   1.03632679  -2.87856392 
##          276          277          278          279          280 
##   1.94108059   7.16547820  10.73259935   2.54908088  -1.59368860 
##          281          282          283          284          285 
##   4.33548311   7.60656326  -0.56381993   4.80152004  -1.43259050 
##          286          287          288          289          290 
##   7.34017967   6.86975138  -1.88771945   0.18475795   0.52147463 
##          291          292          293          294          295 
##  -6.80362857   3.69844652   5.25376313  -5.41004162   7.06460617 
##          296          297          298          299          300 
## -11.46212326  -2.64674882   0.82128660   7.67410490   6.68497584 
##          301          302          303          304          305 
##   1.43883634  -2.57413756   3.83232306  -1.18681550   3.40553915 
##          306          307          308          309          310 
##  -3.15911238   6.93504608  -2.94901897  -8.43035434   4.40643514 
##          311          312          313          314          315 
##   8.39711212  -8.99211956   4.76890407  -0.25982465  -7.57981599 
##          316          317          318          319          320 
##   6.24602547  -9.75917398  -5.18645948   0.04182506   5.09762776 
##          321          322          323          324          325 
##   5.27114627   5.03316475  11.95050054 -11.36286279  -4.23201206 
##          326          327          328          329          330 
##   6.74052113   3.02549152 -10.12105657  -0.01064766   7.73563288 
##          331          332          333          334          335 
##  -8.12197073  -5.10916472   7.86677140   7.32398120  -0.43807956 
##          336          337          338          339          340 
##   3.34430796   2.46544713  -3.87982669   5.21459665   5.61793636 
##          341          342          343          344          345 
##   4.62143420  15.17847853   0.97021801  -1.61968578  -6.79488233 
##          346          347          348          349          350 
##  -1.35543505   2.85242771   7.79542771  -0.25858374  -0.63069808 
##          351          352          353          354          355 
##  -2.07833410  -4.53693598 -10.13443739  -3.26488304 -13.33000190 
##          356          357          358          359          360 
##  -8.07924550  -6.68166987   3.91219879   2.11024220   8.46297523 
##          361          362          363          364          365 
##  -0.71091541   1.53367337  -5.42682244   4.37169204 -10.58899479 
##          366          367          368          369          370 
## -11.27162082   5.80138642  -5.38754714  -5.56211710  -7.01241774 
##          371          372          373          374          375 
##  -3.94507616   7.52941515  -6.80828264   1.37953547 -10.19580270 
##          376          377          378          379          380 
##  -7.88196201  -7.67916066  -2.16707235   4.12866170   1.52231312 
##          381          382          383          384          385 
##  -3.74949657  12.52206807   6.01111729  -6.54544107   1.62597649 
##          386          387          388          389          390 
##   4.16667505   3.35478923   9.11778620  -0.06811797   4.09303461 
##          391          392          393          394          395 
##   2.15245298  -2.05539514   4.08550942  -1.05194269   5.96868140 
##          396          397          398          399          400 
##   5.28567834   1.23258606   7.11210885   8.58560121  -4.33759858 
##          401          402          403          404          405 
##  -6.93726497  -1.37485003   3.58394686   3.23742858   1.50796406 
##          406          407          408          409          410 
##   3.85783984  -5.31098106  -4.46684133   1.42632196  -6.54617311 
##          411          412          413          414          415 
##   4.61727113 -11.64371921   3.55154022   0.13519517  -5.25777182 
##          416          417          418          419          420 
## -10.08478270  -0.32382878   0.46145057   3.41518889   4.50207913 
##          421          422          423          424          425 
##   6.12804319   0.01438820  -0.48550334  -5.38634928  -3.20570824 
##          426          427          428          429          430 
##  -8.29040624  -2.99517309   2.41506659   3.90240995  -4.29789140 
##          431          432          433          434          435 
##  -8.64767176  -6.79277649 -10.66546356  -4.22577547   0.87487397 
##          436          437          438          439          440 
##  -5.79306861   5.20367200  -2.35424844  -9.32407649  -2.90820711 
##          441          442          443          444          445 
##  -1.42845423   4.24046189   1.99341049  -9.78498925  -4.64754363 
##          446          447          448          449          450 
## -14.70239991  -6.69725031   2.46840404   2.04556549   3.77655073 
##          451          452          453          454          455 
##  -6.65934575  11.34631269   9.64626535   5.69559205  -6.56210437 
##          456          457          458          459          460 
##   1.06122423  -2.47409004  -5.61639091  -1.95774839   3.39285177 
##          461          462          463          464          465 
##   4.93749866  14.14544246   1.52611058  -9.13600002   3.11271004 
##          466          467          468          469          470 
##  -2.11236606  -3.68919882   3.24271581   5.98589794   4.62140068 
##          471          472          473          474          475 
##  -4.66968868   0.95632509  -1.67951166   1.63551031  -5.27166267 
##          476          477          478          479          480 
##  -7.10705625  -7.31772797   5.32146456   1.68128091  -2.66124105 
##          481          482          483          484          485 
##   3.13227755   5.60018452   1.81439629   4.22208592   8.33217836 
##          486          487          488          489          490 
##   1.85259083   3.96427147  -1.37946289  10.29423173  -4.86299582 
##          491          492          493          494          495 
##   1.96503225   0.46760469   3.22593345  -3.13020771  -5.59565401 
##          496          497          498          499          500 
##   1.69334170   6.59961715   2.26103446 -15.32862099  -2.19962618