dataDD <- read.csv("DeansDilemma.csv")
summary(dataDD)
## SlNo Gender Gender.B Percent_SSC Board_SSC
## Min. : 1.0 F:127 Min. :0.0000 Min. :37.00 CBSE :113
## 1st Qu.: 98.5 M:264 1st Qu.:0.0000 1st Qu.:56.00 ICSE : 77
## Median :196.0 Median :0.0000 Median :64.50 Others:201
## Mean :196.0 Mean :0.3248 Mean :64.65
## 3rd Qu.:293.5 3rd Qu.:1.0000 3rd Qu.:74.00
## Max. :391.0 Max. :1.0000 Max. :87.20
##
## Board_CBSE Board_ICSE Percent_HSC Board_HSC
## Min. :0.000 Min. :0.0000 Min. :40.0 CBSE : 96
## 1st Qu.:0.000 1st Qu.:0.0000 1st Qu.:54.0 ISC : 48
## Median :0.000 Median :0.0000 Median :63.0 Others:247
## Mean :0.289 Mean :0.1969 Mean :63.8
## 3rd Qu.:1.000 3rd Qu.:0.0000 3rd Qu.:72.0
## Max. :1.000 Max. :1.0000 Max. :94.7
##
## Stream_HSC Percent_Degree Course_Degree
## Arts : 18 Min. :35.00 Arts : 13
## Commerce:222 1st Qu.:57.52 Commerce :117
## Science :151 Median :63.00 Computer Applications: 32
## Mean :62.98 Engineering : 37
## 3rd Qu.:69.00 Management :163
## Max. :89.00 Others : 5
## Science : 24
## Degree_Engg Experience_Yrs Entrance_Test S.TEST
## Min. :0.00000 Min. :0.0000 MAT :265 Min. :0.0000
## 1st Qu.:0.00000 1st Qu.:0.0000 None : 67 1st Qu.:1.0000
## Median :0.00000 Median :0.0000 K-MAT : 24 Median :1.0000
## Mean :0.09463 Mean :0.4783 CAT : 22 Mean :0.8286
## 3rd Qu.:0.00000 3rd Qu.:1.0000 PGCET : 8 3rd Qu.:1.0000
## Max. :1.00000 Max. :3.0000 GCET : 2 Max. :1.0000
## (Other): 3
## Percentile_ET S.TEST.SCORE Percent_MBA
## Min. : 0.00 Min. : 0.00 Min. :50.83
## 1st Qu.:41.19 1st Qu.:41.19 1st Qu.:57.20
## Median :62.00 Median :62.00 Median :61.01
## Mean :54.93 Mean :54.93 Mean :61.67
## 3rd Qu.:78.00 3rd Qu.:78.00 3rd Qu.:66.02
## Max. :98.69 Max. :98.69 Max. :77.89
##
## Specialization_MBA Marks_Communication Marks_Projectwork
## Marketing & Finance:222 Min. :50.00 Min. :50.00
## Marketing & HR :156 1st Qu.:53.00 1st Qu.:64.00
## Marketing & IB : 13 Median :58.00 Median :69.00
## Mean :60.54 Mean :68.36
## 3rd Qu.:67.00 3rd Qu.:74.00
## Max. :88.00 Max. :87.00
##
## Marks_BOCA Placement Placement_B Salary
## Min. :50.00 Not Placed: 79 Min. :0.000 Min. : 0
## 1st Qu.:57.00 Placed :312 1st Qu.:1.000 1st Qu.:172800
## Median :63.00 Median :1.000 Median :240000
## Mean :64.38 Mean :0.798 Mean :219078
## 3rd Qu.:72.50 3rd Qu.:1.000 3rd Qu.:300000
## Max. :96.00 Max. :1.000 Max. :940000
##
dim(dataDD)
## [1] 391 26
head(dataDD)
## SlNo Gender Gender.B Percent_SSC Board_SSC Board_CBSE Board_ICSE
## 1 1 M 0 62.00 Others 0 0
## 2 2 M 0 76.33 ICSE 0 1
## 3 3 M 0 72.00 Others 0 0
## 4 4 M 0 60.00 CBSE 1 0
## 5 5 M 0 61.00 CBSE 1 0
## 6 6 M 0 55.00 ICSE 0 1
## Percent_HSC Board_HSC Stream_HSC Percent_Degree Course_Degree
## 1 88.00 Others Commerce 52.00 Science
## 2 75.33 Others Science 75.48 Computer Applications
## 3 78.00 Others Commerce 66.63 Engineering
## 4 63.00 CBSE Arts 58.00 Management
## 5 55.00 ISC Science 54.00 Engineering
## 6 64.00 CBSE Commerce 50.00 Commerce
## Degree_Engg Experience_Yrs Entrance_Test S.TEST Percentile_ET
## 1 0 0 MAT 1 55.0
## 2 0 1 MAT 1 86.5
## 3 1 0 None 0 0.0
## 4 0 0 MAT 1 75.0
## 5 1 1 MAT 1 66.0
## 6 0 0 None 0 0.0
## S.TEST.SCORE Percent_MBA Specialization_MBA Marks_Communication
## 1 55.0 58.80 Marketing & HR 50
## 2 86.5 66.28 Marketing & Finance 69
## 3 0.0 52.91 Marketing & Finance 50
## 4 75.0 57.80 Marketing & Finance 54
## 5 66.0 59.43 Marketing & HR 52
## 6 0.0 56.81 Marketing & Finance 53
## Marks_Projectwork Marks_BOCA Placement Placement_B Salary
## 1 65 74 Placed 1 270000
## 2 70 75 Placed 1 200000
## 3 61 59 Placed 1 240000
## 4 66 62 Placed 1 250000
## 5 65 67 Placed 1 180000
## 6 70 53 Placed 1 300000
median(dataDD$Salary)
## [1] 240000
Hence, the median is 240000
prop.table(table(dataDD$Placement))*100
##
## Not Placed Placed
## 20.2046 79.7954
79.79% People are placed.
dataPlaced <- dataDD[which(dataDD$Placement=="Placed"),]
View(dataPlaced)
median(dataPlaced$Salary)
## [1] 260000
So, the median is 260000
by(dataPlaced$Salary, dataPlaced$Gender, mean)
## dataPlaced$Gender: F
## [1] 253068
## --------------------------------------------------------
## dataPlaced$Gender: M
## [1] 284241.9
hist(dataPlaced$Percent_MBA, xlab="Percentage of MBA", ylab = "No.of Students", main="Performance of Students in MBA", breaks=3, col="blue")
dataNotPlaced <- dataDD[which(dataDD$Placement=="Not Placed"),]
View(dataNotPlaced)
par(mfrow=c(1,2))
hist(dataPlaced$Percent_MBA, xlab="Percentage of MBA", ylab = "No.of Students", main="Placed Students", breaks=3, col="blue")
hist(dataNotPlaced$Percent_MBA, xlab="Percentage of MBA", ylab = "No.of Students", main="Non-placed Students", breaks=3, col="red")
library(lattice)
boxplot(dataPlaced$Salary~dataPlaced$Gender, horizontal=TRUE, xlab = "Salary", ylab = "Gender", main="Gender based salary analysis")
placedETdata <- dataPlaced[which(dataPlaced$S.TEST==1),]
View(placedETdata)
library(car)
## Warning: package 'car' was built under R version 3.4.3
scatterplotMatrix(formula = ~ Salary+Percent_MBA+Percentile_ET, cex=0.6, data=placedETdata)