The answers to questions 2 and 3 are as follows :

2(b)

dean.df <- read.csv(paste("abcd.csv",sep = ""))
View(dean.df)

2(c) Summary of the entire table

summary(dean.df)
##       SlNo       Gender     Gender.B       Percent_SSC     Board_SSC  
##  Min.   :  1.0   F:127   Min.   :0.0000   Min.   :37.00   CBSE  :113  
##  1st Qu.: 98.5   M:264   1st Qu.:0.0000   1st Qu.:56.00   ICSE  : 77  
##  Median :196.0           Median :0.0000   Median :64.50   Others:201  
##  Mean   :196.0           Mean   :0.3248   Mean   :64.65               
##  3rd Qu.:293.5           3rd Qu.:1.0000   3rd Qu.:74.00               
##  Max.   :391.0           Max.   :1.0000   Max.   :87.20               
##                                                                       
##    Board_CBSE      Board_ICSE      Percent_HSC    Board_HSC  
##  Min.   :0.000   Min.   :0.0000   Min.   :40.0   CBSE  : 96  
##  1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:54.0   ISC   : 48  
##  Median :0.000   Median :0.0000   Median :63.0   Others:247  
##  Mean   :0.289   Mean   :0.1969   Mean   :63.8               
##  3rd Qu.:1.000   3rd Qu.:0.0000   3rd Qu.:72.0               
##  Max.   :1.000   Max.   :1.0000   Max.   :94.7               
##                                                              
##     Stream_HSC  Percent_Degree                Course_Degree
##  Arts    : 18   Min.   :35.00   Arts                 : 13  
##  Commerce:222   1st Qu.:57.52   Commerce             :117  
##  Science :151   Median :63.00   Computer Applications: 32  
##                 Mean   :62.98   Engineering          : 37  
##                 3rd Qu.:69.00   Management           :163  
##                 Max.   :89.00   Others               :  5  
##                                 Science              : 24  
##   Degree_Engg      Experience_Yrs   Entrance_Test     S.TEST      
##  Min.   :0.00000   Min.   :0.0000   MAT    :265   Min.   :0.0000  
##  1st Qu.:0.00000   1st Qu.:0.0000   None   : 67   1st Qu.:1.0000  
##  Median :0.00000   Median :0.0000   K-MAT  : 24   Median :1.0000  
##  Mean   :0.09463   Mean   :0.4783   CAT    : 22   Mean   :0.8286  
##  3rd Qu.:0.00000   3rd Qu.:1.0000   PGCET  :  8   3rd Qu.:1.0000  
##  Max.   :1.00000   Max.   :3.0000   GCET   :  2   Max.   :1.0000  
##                                     (Other):  3                   
##  Percentile_ET    S.TEST.SCORE    Percent_MBA   
##  Min.   : 0.00   Min.   : 0.00   Min.   :50.83  
##  1st Qu.:41.19   1st Qu.:41.19   1st Qu.:57.20  
##  Median :62.00   Median :62.00   Median :61.01  
##  Mean   :54.93   Mean   :54.93   Mean   :61.67  
##  3rd Qu.:78.00   3rd Qu.:78.00   3rd Qu.:66.02  
##  Max.   :98.69   Max.   :98.69   Max.   :77.89  
##                                                 
##            Specialization_MBA Marks_Communication Marks_Projectwork
##  Marketing & Finance:222      Min.   :50.00       Min.   :50.00    
##  Marketing & HR     :156      1st Qu.:53.00       1st Qu.:64.00    
##  Marketing & IB     : 13      Median :58.00       Median :69.00    
##                               Mean   :60.54       Mean   :68.36    
##                               3rd Qu.:67.00       3rd Qu.:74.00    
##                               Max.   :88.00       Max.   :87.00    
##                                                                    
##    Marks_BOCA         Placement    Placement_B        Salary      
##  Min.   :50.00   Not Placed: 79   Min.   :0.000   Min.   :     0  
##  1st Qu.:57.00   Placed    :312   1st Qu.:1.000   1st Qu.:172800  
##  Median :63.00                    Median :1.000   Median :240000  
##  Mean   :64.38                    Mean   :0.798   Mean   :219078  
##  3rd Qu.:72.50                    3rd Qu.:1.000   3rd Qu.:300000  
##  Max.   :96.00                    Max.   :1.000   Max.   :940000  
## 

Running describe only for the important coloumns - because for other coloumns it will generate senseless data

library(psych)
describe(dean.df[ , c(4, 8, 11, 17, 18, 19, 21, 22, 23, 26)])
##                     vars   n      mean        sd    median   trimmed
## Percent_SSC            1 391     64.65     10.96     64.50     64.76
## Percent_HSC            2 391     63.80     11.42     63.00     63.34
## Percent_Degree         3 391     62.98      8.92     63.00     62.91
## Percentile_ET          4 391     54.93     31.17     62.00     56.87
## S.TEST.SCORE           5 391     54.93     31.17     62.00     56.87
## Percent_MBA            6 391     61.67      5.85     61.01     61.45
## Marks_Communication    7 391     60.54      8.82     58.00     59.68
## Marks_Projectwork      8 391     68.36      7.15     69.00     68.60
## Marks_BOCA             9 391     64.38      9.58     63.00     64.08
## Salary                10 391 219078.26 138311.65 240000.00 217011.50
##                          mad   min       max     range  skew kurtosis
## Percent_SSC            12.60 37.00     87.20     50.20 -0.06    -0.72
## Percent_HSC            13.34 40.00     94.70     54.70  0.29    -0.67
## Percent_Degree          8.90 35.00     89.00     54.00  0.05     0.24
## Percentile_ET          25.20  0.00     98.69     98.69 -0.74    -0.69
## S.TEST.SCORE           25.20  0.00     98.69     98.69 -0.74    -0.69
## Percent_MBA             6.39 50.83     77.89     27.06  0.34    -0.52
## Marks_Communication     8.90 50.00     88.00     38.00  0.74    -0.25
## Marks_Projectwork       7.41 50.00     87.00     37.00 -0.26    -0.27
## Marks_BOCA             11.86 50.00     96.00     46.00  0.29    -0.85
## Salary              88956.00  0.00 940000.00 940000.00  0.24     1.74
##                          se
## Percent_SSC            0.55
## Percent_HSC            0.58
## Percent_Degree         0.45
## Percentile_ET          1.58
## S.TEST.SCORE           1.58
## Percent_MBA            0.30
## Marks_Communication    0.45
## Marks_Projectwork      0.36
## Marks_BOCA             0.48
## Salary              6994.72

3(a) Median of salary

median(dean.df$Salary)
## [1] 240000

3(b) percentage placed, the value below 1 is the required percentage

abc <- prop.table(table(dean.df$Placement_B))*100
abc
## 
##       0       1 
## 20.2046 79.7954
abc[2]
##       1 
## 79.7954

3(c)

placed.df <- dean.df[which(dean.df$Placement_B == 1) , ]
View(placed.df)

3(d)

median(placed.df$Salary)
## [1] 260000

3(e)

 mytable11 <- aggregate(dean.df$Salary , by = list(sex = dean.df$Gender) , mean)
 mytable11
##   sex        x
## 1   F 193288.2
## 2   M 231484.8

3(f)

 hist(placed.df$Percent_MBA , main = "MBA Performance of Placed Students" , xlab = "MBA Percentage" , ylab = "Count" , xlim = c(50,80) , breaks = 2, col = "gray")

3(g)

notplaced.df <- dean.df[which(dean.df$Placement_B == 0) , ]
 View(notplaced.df)

3(h)

 par(mfcol = c(1,2) , cex = 1 , cex.main = 0.8)
 hist(placed.df$Percent_MBA , main = "MBA Performance of Placed Students" , xlab = "MBA Percentage" , ylab = "Count" , breaks = 2 , col = "gray" , xlim = c(50,80))
 hist(notplaced.df$Percent_MBA , main = "MBA Performance of not placed Students" , xlab = "MBA Percentage" , ylab = "Count" , breaks = 2 , col = "gray" , xlim = c(50,80))

3(i)

 boxplot(placed.df$Salary ~ placed.df$Gender , horizontal = TRUE , main = "Comparison of Salaries of Males and Females" , xlab = "Salary" , ylab = "Gender" , yaxt = "n" , range = 1.5)
 axis(side = 2 , at = c(1,2) , labels = c("Female","Male"))

3(j)

placedET.df <- placed.df[which(placed.df$S.TEST == 1) , ]
View(placedET.df)

3(k)

library("car", lib.loc="~/R/win-library/3.4")
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
scatterplotMatrix(formula = ~ Salary + Percent_MBA + Percentile_ET , cex = 0.6 , data = placedET.df)

Thanking you

Nihir Gulati