Here, we analyse the placement statistics of Jain University of Management, as reported in the “Dean’s Dilemma” article published by Harvard Business Review.
The data set used is as follows:
setwd("C:\\Users\\Tejajay\\Desktop\\Internship\\3. Data Analytics")
dd <- read.csv(paste("DeansDilemma.csv", sep=""))
View(dd)
Summary of the entire data set:
summary(dd)
## SlNo Gender Gender.B Percent_SSC Board_SSC
## Min. : 1.0 F:127 Min. :0.0000 Min. :37.00 CBSE :113
## 1st Qu.: 98.5 M:264 1st Qu.:0.0000 1st Qu.:56.00 ICSE : 77
## Median :196.0 Median :0.0000 Median :64.50 Others:201
## Mean :196.0 Mean :0.3248 Mean :64.65
## 3rd Qu.:293.5 3rd Qu.:1.0000 3rd Qu.:74.00
## Max. :391.0 Max. :1.0000 Max. :87.20
##
## Board_CBSE Board_ICSE Percent_HSC Board_HSC
## Min. :0.000 Min. :0.0000 Min. :40.0 CBSE : 96
## 1st Qu.:0.000 1st Qu.:0.0000 1st Qu.:54.0 ISC : 48
## Median :0.000 Median :0.0000 Median :63.0 Others:247
## Mean :0.289 Mean :0.1969 Mean :63.8
## 3rd Qu.:1.000 3rd Qu.:0.0000 3rd Qu.:72.0
## Max. :1.000 Max. :1.0000 Max. :94.7
##
## Stream_HSC Percent_Degree Course_Degree
## Arts : 18 Min. :35.00 Arts : 13
## Commerce:222 1st Qu.:57.52 Commerce :117
## Science :151 Median :63.00 Computer Applications: 32
## Mean :62.98 Engineering : 37
## 3rd Qu.:69.00 Management :163
## Max. :89.00 Others : 5
## Science : 24
## Degree_Engg Experience_Yrs Entrance_Test S.TEST
## Min. :0.00000 Min. :0.0000 MAT :265 Min. :0.0000
## 1st Qu.:0.00000 1st Qu.:0.0000 None : 67 1st Qu.:1.0000
## Median :0.00000 Median :0.0000 K-MAT : 24 Median :1.0000
## Mean :0.09463 Mean :0.4783 CAT : 22 Mean :0.8286
## 3rd Qu.:0.00000 3rd Qu.:1.0000 PGCET : 8 3rd Qu.:1.0000
## Max. :1.00000 Max. :3.0000 GCET : 2 Max. :1.0000
## (Other): 3
## Percentile_ET S.TEST.SCORE Percent_MBA
## Min. : 0.00 Min. : 0.00 Min. :50.83
## 1st Qu.:41.19 1st Qu.:41.19 1st Qu.:57.20
## Median :62.00 Median :62.00 Median :61.01
## Mean :54.93 Mean :54.93 Mean :61.67
## 3rd Qu.:78.00 3rd Qu.:78.00 3rd Qu.:66.02
## Max. :98.69 Max. :98.69 Max. :77.89
##
## Specialization_MBA Marks_Communication Marks_Projectwork
## Marketing & Finance:222 Min. :50.00 Min. :50.00
## Marketing & HR :156 1st Qu.:53.00 1st Qu.:64.00
## Marketing & IB : 13 Median :58.00 Median :69.00
## Mean :60.54 Mean :68.36
## 3rd Qu.:67.00 3rd Qu.:74.00
## Max. :88.00 Max. :87.00
##
## Marks_BOCA Placement Placement_B Salary
## Min. :50.00 Not Placed: 79 Min. :0.000 Min. : 0
## 1st Qu.:57.00 Placed :312 1st Qu.:1.000 1st Qu.:172800
## Median :63.00 Median :1.000 Median :240000
## Mean :64.38 Mean :0.798 Mean :219078
## 3rd Qu.:72.50 3rd Qu.:1.000 3rd Qu.:300000
## Max. :96.00 Max. :1.000 Max. :940000
##
Summary of SSC Percentage and Board:
summary(dd$Percent_SSC)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 37.00 56.00 64.50 64.65 74.00 87.20
summary(dd$Board_SSC)
## CBSE ICSE Others
## 113 77 201
Summary of HSC Percentage, Board and Stream:
summary(dd$Percent_HSC)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 40.0 54.0 63.0 63.8 72.0 94.7
summary(dd$Board_HSC)
## CBSE ISC Others
## 96 48 247
summary(dd$Stream_HSC)
## Arts Commerce Science
## 18 222 151
Summary of Degree course and Percentage:
summary(dd$Percent_Degree)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 35.00 57.52 63.00 62.98 69.00 89.00
summary(dd$Course_Degree)
## Arts Commerce Computer Applications
## 13 117 32
## Engineering Management Others
## 37 163 5
## Science
## 24
Summary of Job experience:
summary(dd$Experience_Yrs)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.0000 0.0000 0.4783 1.0000 3.0000
Summary of Entrance Test details:
summary(dd$Entrance_Test)
## CAT G-MAT G-SAT GCET K-MAT MAT None PGCET XAT
## 22 1 1 2 24 265 67 8 1
summary(dd$S.TEST.SCORE)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 41.19 62.00 54.93 78.00 98.69
summary(dd$Percentile_ET)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 41.19 62.00 54.93 78.00 98.69
Summary of MBA Degree details:
summary(dd$Percent_MBA)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 50.83 57.20 61.01 61.67 66.02 77.89
summary(dd$Specialization_MBA)
## Marketing & Finance Marketing & HR Marketing & IB
## 222 156 13
summary(dd$Marks_Communication)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 50.00 53.00 58.00 60.54 67.00 88.00
summary(dd$Marks_Projectwork)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 50.00 64.00 69.00 68.36 74.00 87.00
summary(dd$Marks_BOCA)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 50.00 57.00 63.00 64.38 72.50 96.00
Summary of Placement details:
summary(dd$Placement)
## Not Placed Placed
## 79 312
summary(dd$Salary)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0 172800 240000 219078 300000 940000
Median salary of students:
median(dd$Salary)
## [1] 240000
Percentage of students who were placed:
placedpercentage <- summary(dd$Placement)
View(placedpercentage)
prop.table(placedpercentage)*100
## Not Placed Placed
## 20.2046 79.7954
Overall data of students who were placed:
placed <- dd[ which(dd$Placement_B=='1'), ]
View(placed)
Median salary of placed students:
median(placed$Salary)
## [1] 260000
Mean salary of male and female students:
placedmale <- placed[ which(placed$Gender.B=='0'), ]
mean(placedmale$Salary)
## [1] 284241.9
placedfemale <- placed[ which(placed$Gender.B=='1'), ]
mean(placedfemale$Salary)
## [1] 253068
Histogram of Placed Students:
hist(placed$Percent_MBA, main = "MBA Performance of Placed Students",
xlim = c(50, 80), ylim = c(0, 100),
xlab = "MBA Performance"
)
Not Placed Students:
notplaced <- dd[ which(dd$Placement_B=='0'), ]
View(notplaced)
Histograms of Placed vs Non-placed:
par(mfrow=c(1,2))
hist(placed$Percent_MBA, xlab = "MBA Performance", main = "Placed")
hist(notplaced$Percent_MBA, xlab = "MBA Performance", main = "Not placed")
Boxplot of Male vs Female Salaries:
par(mfrow=c(2, 1))
boxplot(placedmale$Salary, main = "Male", xlab = "Salary")
boxplot(placedfemale$Salary, main = "Female", xlab = "Salary")
Entrance Exam + Placed:
placedET <- placed[ which(placed$S.TEST=='1'), ]
View(placedET)
Scatterplots:
par(mfrow=c(1, 3))
plot(placedET$Salary, placedET$Percent_MBA, xlab = "Salary", ylab = "MBA Percentage")
plot(placedET$Salary, placedET$Percentile_ET, xlab = "Salary", ylab = "Entrance Test Percentile")
plot(placedET$Percent_MBA, placedET$Percentile_ET, xlab = "MBA Percentage", ylab = "Entrance Test Percentile")