The Dean’s Dilemma- A Statistical Analysis

Here, we analyse the placement statistics of Jain University of Management, as reported in the “Dean’s Dilemma” article published by Harvard Business Review.

The data set used is as follows:

setwd("C:\\Users\\Tejajay\\Desktop\\Internship\\3. Data Analytics")
dd <- read.csv(paste("DeansDilemma.csv", sep=""))
View(dd)

Summary of Variables

Summary of the entire data set:

summary(dd)
##       SlNo       Gender     Gender.B       Percent_SSC     Board_SSC  
##  Min.   :  1.0   F:127   Min.   :0.0000   Min.   :37.00   CBSE  :113  
##  1st Qu.: 98.5   M:264   1st Qu.:0.0000   1st Qu.:56.00   ICSE  : 77  
##  Median :196.0           Median :0.0000   Median :64.50   Others:201  
##  Mean   :196.0           Mean   :0.3248   Mean   :64.65               
##  3rd Qu.:293.5           3rd Qu.:1.0000   3rd Qu.:74.00               
##  Max.   :391.0           Max.   :1.0000   Max.   :87.20               
##                                                                       
##    Board_CBSE      Board_ICSE      Percent_HSC    Board_HSC  
##  Min.   :0.000   Min.   :0.0000   Min.   :40.0   CBSE  : 96  
##  1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:54.0   ISC   : 48  
##  Median :0.000   Median :0.0000   Median :63.0   Others:247  
##  Mean   :0.289   Mean   :0.1969   Mean   :63.8               
##  3rd Qu.:1.000   3rd Qu.:0.0000   3rd Qu.:72.0               
##  Max.   :1.000   Max.   :1.0000   Max.   :94.7               
##                                                              
##     Stream_HSC  Percent_Degree                Course_Degree
##  Arts    : 18   Min.   :35.00   Arts                 : 13  
##  Commerce:222   1st Qu.:57.52   Commerce             :117  
##  Science :151   Median :63.00   Computer Applications: 32  
##                 Mean   :62.98   Engineering          : 37  
##                 3rd Qu.:69.00   Management           :163  
##                 Max.   :89.00   Others               :  5  
##                                 Science              : 24  
##   Degree_Engg      Experience_Yrs   Entrance_Test     S.TEST      
##  Min.   :0.00000   Min.   :0.0000   MAT    :265   Min.   :0.0000  
##  1st Qu.:0.00000   1st Qu.:0.0000   None   : 67   1st Qu.:1.0000  
##  Median :0.00000   Median :0.0000   K-MAT  : 24   Median :1.0000  
##  Mean   :0.09463   Mean   :0.4783   CAT    : 22   Mean   :0.8286  
##  3rd Qu.:0.00000   3rd Qu.:1.0000   PGCET  :  8   3rd Qu.:1.0000  
##  Max.   :1.00000   Max.   :3.0000   GCET   :  2   Max.   :1.0000  
##                                     (Other):  3                   
##  Percentile_ET    S.TEST.SCORE    Percent_MBA   
##  Min.   : 0.00   Min.   : 0.00   Min.   :50.83  
##  1st Qu.:41.19   1st Qu.:41.19   1st Qu.:57.20  
##  Median :62.00   Median :62.00   Median :61.01  
##  Mean   :54.93   Mean   :54.93   Mean   :61.67  
##  3rd Qu.:78.00   3rd Qu.:78.00   3rd Qu.:66.02  
##  Max.   :98.69   Max.   :98.69   Max.   :77.89  
##                                                 
##            Specialization_MBA Marks_Communication Marks_Projectwork
##  Marketing & Finance:222      Min.   :50.00       Min.   :50.00    
##  Marketing & HR     :156      1st Qu.:53.00       1st Qu.:64.00    
##  Marketing & IB     : 13      Median :58.00       Median :69.00    
##                               Mean   :60.54       Mean   :68.36    
##                               3rd Qu.:67.00       3rd Qu.:74.00    
##                               Max.   :88.00       Max.   :87.00    
##                                                                    
##    Marks_BOCA         Placement    Placement_B        Salary      
##  Min.   :50.00   Not Placed: 79   Min.   :0.000   Min.   :     0  
##  1st Qu.:57.00   Placed    :312   1st Qu.:1.000   1st Qu.:172800  
##  Median :63.00                    Median :1.000   Median :240000  
##  Mean   :64.38                    Mean   :0.798   Mean   :219078  
##  3rd Qu.:72.50                    3rd Qu.:1.000   3rd Qu.:300000  
##  Max.   :96.00                    Max.   :1.000   Max.   :940000  
## 

Summary of SSC Percentage and Board:

summary(dd$Percent_SSC)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   37.00   56.00   64.50   64.65   74.00   87.20
summary(dd$Board_SSC)
##   CBSE   ICSE Others 
##    113     77    201

Summary of HSC Percentage, Board and Stream:

summary(dd$Percent_HSC)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    40.0    54.0    63.0    63.8    72.0    94.7
summary(dd$Board_HSC)
##   CBSE    ISC Others 
##     96     48    247
summary(dd$Stream_HSC)
##     Arts Commerce  Science 
##       18      222      151

Summary of Degree course and Percentage:

summary(dd$Percent_Degree)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   35.00   57.52   63.00   62.98   69.00   89.00
summary(dd$Course_Degree)
##                  Arts              Commerce Computer Applications 
##                    13                   117                    32 
##           Engineering            Management                Others 
##                    37                   163                     5 
##               Science 
##                    24

Summary of Job experience:

summary(dd$Experience_Yrs)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.4783  1.0000  3.0000

Summary of Entrance Test details:

summary(dd$Entrance_Test)
##   CAT G-MAT G-SAT  GCET K-MAT   MAT  None PGCET   XAT 
##    22     1     1     2    24   265    67     8     1
summary(dd$S.TEST.SCORE)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   41.19   62.00   54.93   78.00   98.69
summary(dd$Percentile_ET)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   41.19   62.00   54.93   78.00   98.69

Summary of MBA Degree details:

summary(dd$Percent_MBA)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   50.83   57.20   61.01   61.67   66.02   77.89
summary(dd$Specialization_MBA)
## Marketing & Finance      Marketing & HR      Marketing & IB 
##                 222                 156                  13
summary(dd$Marks_Communication)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   50.00   53.00   58.00   60.54   67.00   88.00
summary(dd$Marks_Projectwork)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   50.00   64.00   69.00   68.36   74.00   87.00
summary(dd$Marks_BOCA)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   50.00   57.00   63.00   64.38   72.50   96.00

Summary of Placement details:

summary(dd$Placement)
## Not Placed     Placed 
##         79        312
summary(dd$Salary)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0  172800  240000  219078  300000  940000

Median salary of students:

median(dd$Salary)
## [1] 240000

Statistics of Students Who Were Placed

Percentage of students who were placed:

placedpercentage <- summary(dd$Placement)
View(placedpercentage)
prop.table(placedpercentage)*100
## Not Placed     Placed 
##    20.2046    79.7954

Overall data of students who were placed:

placed <- dd[ which(dd$Placement_B=='1'), ]
View(placed)

Median salary of placed students:

median(placed$Salary)
## [1] 260000

Mean salary of male and female students:

placedmale <- placed[ which(placed$Gender.B=='0'), ]
mean(placedmale$Salary)
## [1] 284241.9
placedfemale <- placed[ which(placed$Gender.B=='1'), ]
mean(placedfemale$Salary)
## [1] 253068

Histogram of Placed Students:

hist(placed$Percent_MBA, main = "MBA Performance of Placed Students", 
xlim = c(50, 80), ylim = c(0, 100),
xlab = "MBA Performance"
)

Not Placed Students:

notplaced <- dd[ which(dd$Placement_B=='0'), ]
View(notplaced)

Histograms of Placed vs Non-placed:

par(mfrow=c(1,2))
hist(placed$Percent_MBA, xlab = "MBA Performance", main = "Placed")
hist(notplaced$Percent_MBA, xlab = "MBA Performance", main = "Not placed")

Boxplot of Male vs Female Salaries:

par(mfrow=c(2, 1))
boxplot(placedmale$Salary, main = "Male", xlab = "Salary")
boxplot(placedfemale$Salary, main = "Female", xlab = "Salary")

Entrance Exam + Placed:

placedET <- placed[ which(placed$S.TEST=='1'), ]
View(placedET)

Scatterplots:

par(mfrow=c(1, 3))
plot(placedET$Salary, placedET$Percent_MBA, xlab = "Salary", ylab = "MBA Percentage")
plot(placedET$Salary, placedET$Percentile_ET, xlab = "Salary", ylab = "Entrance Test Percentile")
plot(placedET$Percent_MBA, placedET$Percentile_ET, xlab = "MBA Percentage", ylab = "Entrance Test Percentile")