###################################
#  ### DESCRIBING DATA ###
############

#1) Setting working directory
setwd("C:/Users/HP/Downloads/Intern/Titanic")

#2) Reading the data using read.csv and creation of dataframe
titanic.df <- read.csv(paste("Titanic Data.csv", sep=""))

#3) Viewing the data frame in R
View(titanic.df)

library(psych)
describe(titanic.df)
##           vars   n  mean    sd median trimmed   mad min    max  range
## Survived     1 889  0.38  0.49   0.00    0.35  0.00 0.0   1.00   1.00
## Pclass       2 889  2.31  0.83   3.00    2.39  0.00 1.0   3.00   2.00
## Sex*         3 889  1.65  0.48   2.00    1.69  0.00 1.0   2.00   1.00
## Age          4 889 29.65 12.97  29.70   29.22  9.34 0.4  80.00  79.60
## SibSp        5 889  0.52  1.10   0.00    0.27  0.00 0.0   8.00   8.00
## Parch        6 889  0.38  0.81   0.00    0.19  0.00 0.0   6.00   6.00
## Fare         7 889 32.10 49.70  14.45   21.28 10.24 0.0 512.33 512.33
## Embarked*    8 889  2.54  0.79   3.00    2.67  0.00 1.0   3.00   2.00
##            skew kurtosis   se
## Survived   0.48    -1.77 0.02
## Pclass    -0.63    -1.27 0.03
## Sex*      -0.62    -1.61 0.02
## Age        0.43     0.96 0.43
## SibSp      3.68    17.69 0.04
## Parch      2.74     9.66 0.03
## Fare       4.79    33.23 1.67
## Embarked* -1.26    -0.23 0.03
summary(titanic.df)
##     Survived          Pclass          Sex           Age       
##  Min.   :0.0000   Min.   :1.000   female:312   Min.   : 0.40  
##  1st Qu.:0.0000   1st Qu.:2.000   male  :577   1st Qu.:22.00  
##  Median :0.0000   Median :3.000                Median :29.70  
##  Mean   :0.3825   Mean   :2.312                Mean   :29.65  
##  3rd Qu.:1.0000   3rd Qu.:3.000                3rd Qu.:35.00  
##  Max.   :1.0000   Max.   :3.000                Max.   :80.00  
##      SibSp            Parch             Fare         Embarked
##  Min.   :0.0000   Min.   :0.0000   Min.   :  0.000   C:168   
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:  7.896   Q: 77   
##  Median :0.0000   Median :0.0000   Median : 14.454   S:644   
##  Mean   :0.5242   Mean   :0.3825   Mean   : 32.097           
##  3rd Qu.:1.0000   3rd Qu.:0.0000   3rd Qu.: 31.000           
##  Max.   :8.0000   Max.   :6.0000   Max.   :512.329
#4) Number of Passengers onboard the Titanic
length(titanic.df$Survived)
## [1] 889
#5) Number of Passengers who survived the sinking of Titanic
mytable<-xtabs(~Survived,data=titanic.df)
mytable
## Survived
##   0   1 
## 549 340
#6) Percentage of passengers who survived the sinking of Titanic
prop.table(mytable)*100
## Survived
##        0        1 
## 61.75478 38.24522
#7) No. of first class passengers who survived the sinking of titanic
mytable<-xtabs(~Survived+Pclass,data=titanic.df)
mytable
##         Pclass
## Survived   1   2   3
##        0  80  97 372
##        1 134  87 119
#8)  percentage of first-class passengers who survived the sinking of the Titanic
prop.table(mytable)*100
##         Pclass
## Survived         1         2         3
##        0  8.998875 10.911136 41.844769
##        1 15.073116  9.786277 13.385827
#9)  number of females from First-Class who survived the sinking of the Titanic
mytable<-xtabs(~Survived+Sex,data=titanic.df)
mytable
##         Sex
## Survived female male
##        0     81  468
##        1    231  109
#10) percentage of survivors who were female
prop.table(mytable)*100
##         Sex
## Survived    female      male
##        0  9.111361 52.643420
##        1 25.984252 12.260967
#11) percentage of females on board the Titanic who survived
mytable<-xtabs(~Survived+Sex,data=titanic.df)
mytable
##         Sex
## Survived female male
##        0     81  468
##        1    231  109
#12) Pearson's Chi-squared test to test the following hypothesis:
#Hypothesis:  The proportion of females onboard who survived the sinking of the Titanic was higher than the proportion of males onboard who survived the sinking of the Titanic.

chisq.test(mytable)
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  mytable
## X-squared = 258.43, df = 1, p-value < 2.2e-16

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.