Exercise17

Maggie Hallerud

December 7, 2017

Set up R

setwd("~/WILD4580/data/exercise_dat") # set working directory
poppy<-read.csv('bearclawpoppy2.csv') #load poppy data
names(poppy); head(poppy) # check properly loaded
##  [1] "X"          "UNIQUE_ID"  "PLANT"      "Raster_ID"  "UTM_East"  
##  [6] "UTM_North"  "flag"       "SURVEY"     "SOIL"       "VEG_SYMBOL"
## [11] "ELEV"       "SLOPE"      "ASPECT"     "GEOLOGY"    "DATE_"     
## [16] "LANDFORM"   "PARENT_MA"  "PEN"        "PEN_SIZE"   "SHEAR"     
## [21] "SHEAR_S"    "B_CRUST"    "P_CRUST"    "ROCK_"      "R_TYPE"    
## [26] "surveytype" "penvalue"   "prec_pc1"   "prec_pc2"   "sdir_pc1"  
## [31] "srad_pc1"   "tmax_pc1"   "tmin_pc1"   "vpam_pc1"   "pH"        
## [36] "Eff_Cl"     "RF_Cl"      "Text_Cl"    "Clay"       "ECe"       
## [41] "Gypsum"     "BD"         "Calc_Fr"    "presab"
##   X UNIQUE_ID   PLANT Raster_ID UTM_East UTM_North flag SURVEY
## 1 1         1 absence      9114   723192  26838867    1      1
## 2 2         2 absence     14435   723168  26837227    1      1
## 3 3         3 absence     20457   723144  26835587    1      1
## 4 4         4 absence      9483   729773  26840083    1      1
## 5 5         5 absence     10409   729768  26839755    1      1
## 6 6         6 absence     11374   729763  26839427    1      1
##             SOIL VEG_SYMBOL     ELEV SLOPE  ASPECT GEOLOGY      DATE_
## 1 wesier_wechech    lar_amb 2879.166 1.410  32.346    qayo 12/15/2006
## 2 wesier_wechech    lar_amb 2911.940 2.377  44.875    qayo 12/15/2006
## 3 wesier_wechech    lar_amb 2941.563 1.553  75.169    qayo 12/15/2006
## 4 wesier_wechech    lar_amb 2729.234 0.482 208.368    qayy 12/15/2006
## 5 wesier_wechech    lar_amb 2735.651 1.844  37.124    qscd 12/15/2006
## 6 wesier_wechech    lar_amb 2737.211 1.147   0.105     qay 12/15/2006
##   LANDFORM PARENT_MA  PEN PEN_SIZE SHEAR SHEAR_S B_CRUST P_CRUST ROCK_
## 1  lb_type         a 0.75        s  3.40       m       y       n  0.90
## 2  lb_type         a 0.75        s  2.10       m       n       y  0.75
## 3  lb_type         a 0.50        s  1.20       m       y       n  0.96
## 4  bf_type         a 1.25        s  3.00       m       y       y  0.02
## 5  lb_type         a 2.50        s  1.25       m       y       y  0.70
## 6  lb_type         a 3.00        s  1.70       m       n       y  0.75
##   R_TYPE surveytype penvalue  prec_pc1  prec_pc2  sdir_pc1  srad_pc1
## 1      r     allveg     0.75 0.1363856 0.2142525 -1062.100 -1064.707
## 2      r     allveg     0.75 0.1344728 0.2141875 -1086.588 -1089.468
## 3      r     allveg     0.50 0.1304870 0.2143614 -1117.242 -1120.475
## 4      r     allveg     1.25 0.1288793 0.2142503 -1090.328 -1093.253
## 5      r     allveg     2.50 0.1267729 0.2141954 -1047.573 -1050.008
## 6      r     allveg     3.00 0.1248227 0.2141166 -1032.656 -1034.933
##    tmax_pc1  tmin_pc1  vpam_pc1  pH Eff_Cl RF_Cl Text_Cl Clay    ECe
## 1 -2.483355 -2.793451 -293.8363 8.3     ST   GRX     FSL   10 0.2150
## 2 -2.469300 -2.782737 -293.0078 8.1     VE    GR      SL   12 0.1441
## 3 -2.441888 -2.762343 -290.1468 8.1     ST   GRV      SL    8 0.1562
## 4 -2.429754 -2.753041 -289.5523 8.2     ST   GRV      SL   12 0.1809
## 5 -2.414395 -2.741408 -288.7027 8.2     VE   GRV     FSL    8 0.1484
## 6 -2.400032 -2.730495 -287.1061 8.2     ST   GRV      SL   10 0.1470
##   Gypsum         BD Calc_Fr presab
## 1      0 99.0000000       0      0
## 2      0  1.2008168       0      0
## 3      0  0.8479899       0      0
## 4      0 99.0000000       0      0
## 5      0  1.0512397       0      0
## 6      0  1.0522036       0      0

Set separate data objects to store each statistic and define axis names

means = array(0, dim=c(3,3))
sd = array(0, dim=c(3,3))
n = array(0, dim=c(3,3))
dimnames(means)[[1]]<-list("poppy$presab==0", "poppy$presab==1", "is.na(poppy$presab)")
dimnames(means)[[2]]<-list("poppy$ELEV", "poppy$SLOPE", "poppy$ASPECT")
dimnames(sd)[[1]]<-list("poppy$presab==0", "poppy$presab==1", "is.na(poppy$presab)")
dimnames(sd)[[2]]<-list("poppy$ELEV", "poppy$SLOPE", "poppy$ASPECT")
dimnames(n)[[1]]<-list("poppy$presab==0", "poppy$presab==1", "is.na(poppy$presab)")
dimnames(n)[[2]]<-list("poppy$ELEV", "poppy$SLOPE", "poppy$ASPECT")

Calculate mean, standard deviation, length for each variable by presab value

for (i in c("poppy$presab==0", "poppy$presab==1", "is.na(poppy$presab)")){
  for (j in c("poppy$ELEV", "poppy$SLOPE", "poppy$ASPECT")){
    means[i,j] <- mean(eval(parse(text=j))[eval(parse(text=i))], na.rm=TRUE)
    sd[i,j] = sd(eval(parse(text=j))[eval(parse(text=i))], na.rm=TRUE)
    n[i,j] = length(eval(parse(text=j))[eval(parse(text=i))]) # not counting NAs
  } }
# double check that it worked...
means; sd; n
##                     poppy$ELEV poppy$SLOPE poppy$ASPECT
## poppy$presab==0       2444.154    3.022640     136.6153
## poppy$presab==1       2277.846    4.070245     134.7960
## is.na(poppy$presab)   2265.721    3.810533     150.3075
##                     poppy$ELEV poppy$SLOPE poppy$ASPECT
## poppy$presab==0      175.34274    4.175694     75.76116
## poppy$presab==1       42.42477    5.048535     89.39325
## is.na(poppy$presab)   37.04901    5.015968     71.80549
##                     poppy$ELEV poppy$SLOPE poppy$ASPECT
## poppy$presab==0            288         288          288
## poppy$presab==1             68          68           68
## is.na(poppy$presab)         15          15           15
# save as 3 data objects
save(means, sd, n, file = "poppy_stats")

Write a loop to read in the 4 m1.csv,.,m4.csv datasets

setwd("~/WILD4580/data/powerpoint_dat") # set new working directory
files = list(); out = list() # create lists to store filenames and R object names
for (i in 1:4){
  files[i] <- paste('m', i, '.csv', sep = '') #specify filename as m*.csv
  out[i] <- paste('m', i, sep = '') #specify output name as m* 
  assign(out[[i]], read.csv(files[[i]]))  #assign output name to loaded CSV name 
  }