Maggie Hallerud
December 7, 2017
setwd("~/WILD4580/data/exercise_dat") # set working directory
poppy<-read.csv('bearclawpoppy2.csv') #load poppy data
names(poppy); head(poppy) # check properly loaded
## [1] "X" "UNIQUE_ID" "PLANT" "Raster_ID" "UTM_East"
## [6] "UTM_North" "flag" "SURVEY" "SOIL" "VEG_SYMBOL"
## [11] "ELEV" "SLOPE" "ASPECT" "GEOLOGY" "DATE_"
## [16] "LANDFORM" "PARENT_MA" "PEN" "PEN_SIZE" "SHEAR"
## [21] "SHEAR_S" "B_CRUST" "P_CRUST" "ROCK_" "R_TYPE"
## [26] "surveytype" "penvalue" "prec_pc1" "prec_pc2" "sdir_pc1"
## [31] "srad_pc1" "tmax_pc1" "tmin_pc1" "vpam_pc1" "pH"
## [36] "Eff_Cl" "RF_Cl" "Text_Cl" "Clay" "ECe"
## [41] "Gypsum" "BD" "Calc_Fr" "presab"
## X UNIQUE_ID PLANT Raster_ID UTM_East UTM_North flag SURVEY
## 1 1 1 absence 9114 723192 26838867 1 1
## 2 2 2 absence 14435 723168 26837227 1 1
## 3 3 3 absence 20457 723144 26835587 1 1
## 4 4 4 absence 9483 729773 26840083 1 1
## 5 5 5 absence 10409 729768 26839755 1 1
## 6 6 6 absence 11374 729763 26839427 1 1
## SOIL VEG_SYMBOL ELEV SLOPE ASPECT GEOLOGY DATE_
## 1 wesier_wechech lar_amb 2879.166 1.410 32.346 qayo 12/15/2006
## 2 wesier_wechech lar_amb 2911.940 2.377 44.875 qayo 12/15/2006
## 3 wesier_wechech lar_amb 2941.563 1.553 75.169 qayo 12/15/2006
## 4 wesier_wechech lar_amb 2729.234 0.482 208.368 qayy 12/15/2006
## 5 wesier_wechech lar_amb 2735.651 1.844 37.124 qscd 12/15/2006
## 6 wesier_wechech lar_amb 2737.211 1.147 0.105 qay 12/15/2006
## LANDFORM PARENT_MA PEN PEN_SIZE SHEAR SHEAR_S B_CRUST P_CRUST ROCK_
## 1 lb_type a 0.75 s 3.40 m y n 0.90
## 2 lb_type a 0.75 s 2.10 m n y 0.75
## 3 lb_type a 0.50 s 1.20 m y n 0.96
## 4 bf_type a 1.25 s 3.00 m y y 0.02
## 5 lb_type a 2.50 s 1.25 m y y 0.70
## 6 lb_type a 3.00 s 1.70 m n y 0.75
## R_TYPE surveytype penvalue prec_pc1 prec_pc2 sdir_pc1 srad_pc1
## 1 r allveg 0.75 0.1363856 0.2142525 -1062.100 -1064.707
## 2 r allveg 0.75 0.1344728 0.2141875 -1086.588 -1089.468
## 3 r allveg 0.50 0.1304870 0.2143614 -1117.242 -1120.475
## 4 r allveg 1.25 0.1288793 0.2142503 -1090.328 -1093.253
## 5 r allveg 2.50 0.1267729 0.2141954 -1047.573 -1050.008
## 6 r allveg 3.00 0.1248227 0.2141166 -1032.656 -1034.933
## tmax_pc1 tmin_pc1 vpam_pc1 pH Eff_Cl RF_Cl Text_Cl Clay ECe
## 1 -2.483355 -2.793451 -293.8363 8.3 ST GRX FSL 10 0.2150
## 2 -2.469300 -2.782737 -293.0078 8.1 VE GR SL 12 0.1441
## 3 -2.441888 -2.762343 -290.1468 8.1 ST GRV SL 8 0.1562
## 4 -2.429754 -2.753041 -289.5523 8.2 ST GRV SL 12 0.1809
## 5 -2.414395 -2.741408 -288.7027 8.2 VE GRV FSL 8 0.1484
## 6 -2.400032 -2.730495 -287.1061 8.2 ST GRV SL 10 0.1470
## Gypsum BD Calc_Fr presab
## 1 0 99.0000000 0 0
## 2 0 1.2008168 0 0
## 3 0 0.8479899 0 0
## 4 0 99.0000000 0 0
## 5 0 1.0512397 0 0
## 6 0 1.0522036 0 0
means = array(0, dim=c(3,3))
sd = array(0, dim=c(3,3))
n = array(0, dim=c(3,3))
dimnames(means)[[1]]<-list("poppy$presab==0", "poppy$presab==1", "is.na(poppy$presab)")
dimnames(means)[[2]]<-list("poppy$ELEV", "poppy$SLOPE", "poppy$ASPECT")
dimnames(sd)[[1]]<-list("poppy$presab==0", "poppy$presab==1", "is.na(poppy$presab)")
dimnames(sd)[[2]]<-list("poppy$ELEV", "poppy$SLOPE", "poppy$ASPECT")
dimnames(n)[[1]]<-list("poppy$presab==0", "poppy$presab==1", "is.na(poppy$presab)")
dimnames(n)[[2]]<-list("poppy$ELEV", "poppy$SLOPE", "poppy$ASPECT")
for (i in c("poppy$presab==0", "poppy$presab==1", "is.na(poppy$presab)")){
for (j in c("poppy$ELEV", "poppy$SLOPE", "poppy$ASPECT")){
means[i,j] <- mean(eval(parse(text=j))[eval(parse(text=i))], na.rm=TRUE)
sd[i,j] = sd(eval(parse(text=j))[eval(parse(text=i))], na.rm=TRUE)
n[i,j] = length(eval(parse(text=j))[eval(parse(text=i))]) # not counting NAs
} }
# double check that it worked...
means; sd; n
## poppy$ELEV poppy$SLOPE poppy$ASPECT
## poppy$presab==0 2444.154 3.022640 136.6153
## poppy$presab==1 2277.846 4.070245 134.7960
## is.na(poppy$presab) 2265.721 3.810533 150.3075
## poppy$ELEV poppy$SLOPE poppy$ASPECT
## poppy$presab==0 175.34274 4.175694 75.76116
## poppy$presab==1 42.42477 5.048535 89.39325
## is.na(poppy$presab) 37.04901 5.015968 71.80549
## poppy$ELEV poppy$SLOPE poppy$ASPECT
## poppy$presab==0 288 288 288
## poppy$presab==1 68 68 68
## is.na(poppy$presab) 15 15 15
# save as 3 data objects
save(means, sd, n, file = "poppy_stats")
setwd("~/WILD4580/data/powerpoint_dat") # set new working directory
files = list(); out = list() # create lists to store filenames and R object names
for (i in 1:4){
files[i] <- paste('m', i, '.csv', sep = '') #specify filename as m*.csv
out[i] <- paste('m', i, sep = '') #specify output name as m*
assign(out[[i]], read.csv(files[[i]])) #assign output name to loaded CSV name
}