knitr::opts_chunk$set(echo = TRUE)
library(fpp)
## Warning: package 'fpp' was built under R version 3.4.3
## Warning: package 'fma' was built under R version 3.4.3
## Warning: package 'expsmooth' was built under R version 3.4.3
library(fpp2)
## Warning: package 'fpp2' was built under R version 3.4.3
## Warning: package 'ggplot2' was built under R version 3.4.3
autoplot(melsyd[,"Economy.Class"]) +
ggtitle("Economy class passengers: Melbourne-Sydney") +
xlab("Year") + ylab("Thousands")
autoplot(a10)+
ggtitle("Antidiabetic drug sales") +
ylab("$ million") + xlab("Year")
ggseasonplot(a10, year.labels = TRUE, year.labels.left = TRUE) +
xlab("$million") + ggtitle("Seasonal plot: antidiabetic drug sales")
ggseasonplot(a10, polar = TRUE) +
ylab("$ million") + ggtitle("Polar seasonal plot: antidiabetic drug sales")
ggsubseriesplot(a10)+
ylab("$million") +
ggtitle("Seasonal subseries plot: antidiabetic drug sales")
month.breaks <- cumsum(c(0,31,28,31,30,31,30,31,31,30,31,30,31)*48)
autoplot(elecdemand[,c(1,3)], facet=TRUE) +
xlab("Year: 2014") + ylab("") +
ggtitle("Half-hourly electricity demand: Victoria, Australia") +
scale_x_continuous(breaks=2014+month.breaks/max(month.breaks),
minor_breaks=NULL, labels=c(month.abb,month.abb[1]))
qplot(Temperature, Demand, data = as.data.frame(elecdemand))+
ylab("Demand (GW)") + xlab("Temperature (Celsius)")
autoplot(vn, facets = TRUE)+
ylab("Number of visitor nights each quarter")
vn %>%
as.data.frame() %>%
GGally::ggpairs()
beer2 <- window(ausbeer, start=1992)
gglagplot(beer2)
ggAcf(beer2)
aelec <- window(elec, start=1980)
autoplot(aelec) + xlab("Year") + ylab("GWh")
ggAcf(aelec, lag=48)
set.seed(30)
y <- ts(rnorm(50))
autoplot(y) + ggtitle("White noise")
ggAcf(y)
help("gold")
## starting httpd help server ... done
help("woolyrnq")
help("gas")
library(forecast)
autoplot(gold)
autoplot(woolyrnq)
autoplot(gas)
frequency(gold)
## [1] 1
frequency(woolyrnq)
## [1] 4
frequency(gas)
## [1] 12
which.max(gold)
## [1] 770
which.max(woolyrnq)
## [1] 21
which.max(gas)
## [1] 475
Descargue algunos datos de http://otexts.org/fpp2/extrafiles/tute1.csv
tute1 <- read.csv("D:/datasets/tute1.csv", header = TRUE)
print(tute1)
## X Sales AdBudget GDP
## 1 Mar-81 1020.2 659.2 251.8
## 2 Jun-81 889.2 589.0 290.9
## 3 Sep-81 795.0 512.5 290.8
## 4 Dec-81 1003.9 614.1 292.4
## 5 Mar-82 1057.7 647.2 279.1
## 6 Jun-82 944.4 602.0 254.0
## 7 Sep-82 778.5 530.7 295.6
## 8 Dec-82 932.5 608.4 271.7
## 9 Mar-83 996.5 637.9 259.6
## 10 Jun-83 907.7 582.4 280.5
## 11 Sep-83 735.1 506.8 287.2
## 12 Dec-83 958.1 606.7 278.0
## 13 Mar-84 1034.1 658.7 256.8
## 14 Jun-84 992.8 614.9 271.0
## 15 Sep-84 791.7 489.9 300.9
## 16 Dec-84 914.2 586.5 289.8
## 17 Mar-85 1106.5 663.0 266.8
## 18 Jun-85 985.1 591.7 273.7
## 19 Sep-85 823.9 502.2 301.3
## 20 Dec-85 1025.1 616.4 285.6
## 21 Mar-86 1064.7 647.1 270.6
## 22 Jun-86 981.9 615.5 274.6
## 23 Sep-86 828.3 514.8 299.7
## 24 Dec-86 940.7 609.1 275.9
## 25 Mar-87 991.1 641.3 279.3
## 26 Jun-87 1021.2 620.2 290.8
## 27 Sep-87 796.7 511.2 295.6
## 28 Dec-87 986.6 621.3 271.9
## 29 Mar-88 1054.2 645.3 267.4
## 30 Jun-88 1018.7 616.0 281.0
## 31 Sep-88 815.6 503.2 309.0
## 32 Dec-88 1010.6 617.5 266.7
## 33 Mar-89 1071.5 642.8 283.5
## 34 Jun-89 954.0 585.6 282.3
## 35 Sep-89 822.9 520.6 289.2
## 36 Dec-89 867.5 608.6 270.7
## 37 Mar-90 1002.3 645.7 266.5
## 38 Jun-90 972.0 597.4 287.9
## 39 Sep-90 782.9 499.8 287.6
## 40 Dec-90 972.8 601.8 283.4
## 41 Mar-91 1108.0 650.8 266.4
## 42 Jun-91 943.7 588.3 292.3
## 43 Sep-91 806.1 491.6 330.6
## 44 Dec-91 954.2 603.3 286.2
## 45 Mar-92 1115.5 663.2 259.2
## 46 Jun-92 927.1 614.0 263.7
## 47 Sep-92 800.7 506.3 288.2
## 48 Dec-92 955.7 606.2 274.1
## 49 Mar-93 1049.8 639.5 287.1
## 50 Jun-93 886.0 585.9 285.5
## 51 Sep-93 786.4 492.2 303.7
## 52 Dec-93 991.3 610.4 275.6
## 53 Mar-94 1113.9 660.8 249.3
## 54 Jun-94 924.5 612.2 272.9
## 55 Sep-94 771.4 509.2 289.8
## 56 Dec-94 949.8 612.1 269.2
## 57 Mar-95 990.5 653.2 261.3
## 58 Jun-95 1071.4 605.3 292.9
## 59 Sep-95 854.1 506.6 304.6
## 60 Dec-95 929.8 597.4 276.3
## 61 Mar-96 959.6 635.2 268.2
## 62 Jun-96 991.1 611.6 293.5
## 63 Sep-96 832.9 503.8 311.1
## 64 Dec-96 1006.1 609.9 273.7
## 65 Mar-97 1040.7 645.2 267.5
## 66 Jun-97 1026.3 609.8 271.9
## 67 Sep-97 785.9 512.1 308.8
## 68 Dec-97 997.6 603.7 282.9
## 69 Mar-98 1055.0 639.4 268.4
## 70 Jun-98 925.6 601.6 271.4
## 71 Sep-98 805.6 497.0 292.1
## 72 Dec-98 934.1 602.8 287.6
## 73 Mar-99 1081.7 647.3 258.0
## 74 Jun-99 1062.3 612.5 282.9
## 75 Sep-99 798.8 492.2 295.0
## 76 Dec-99 1014.3 610.8 271.2
## 77 Mar-00 1049.5 646.5 275.4
## 78 Jun-00 961.7 603.3 284.0
## 79 Sep-00 793.4 503.8 300.9
## 80 Dec-00 872.3 598.3 277.4
## 81 Mar-01 1014.2 649.4 273.8
## 82 Jun-01 952.6 620.2 288.4
## 83 Sep-01 792.4 497.9 283.4
## 84 Dec-01 922.3 609.2 273.4
## 85 Mar-02 1055.9 665.9 271.5
## 86 Jun-02 906.2 600.4 283.6
## 87 Sep-02 811.2 502.3 290.6
## 88 Dec-02 1005.8 605.6 289.1
## 89 Mar-03 1013.8 647.6 282.2
## 90 Jun-03 905.6 583.5 285.6
## 91 Sep-03 957.3 502.5 304.0
## 92 Dec-03 1059.5 625.9 271.5
## 93 Mar-04 1090.6 648.7 263.9
## 94 Jun-04 998.9 610.7 288.3
## 95 Sep-04 866.6 519.1 290.2
## 96 Dec-04 1018.7 634.9 284.0
## 97 Mar-05 1112.5 663.1 270.9
## 98 Jun-05 997.4 583.3 294.7
## 99 Sep-05 826.8 508.6 292.2
## 100 Dec-05 992.6 634.2 255.1
mytimeseries <- ts(tute1[,-1], start = 1981, frequency = 4)
autoplot(mytimeseries, facets = T)
autoplot(mytimeseries, facets = F)
Descargue algunos datos de http://otexts.org/fpp2/extrafiles/retail.xlsx
library(readxl)
## Warning: package 'readxl' was built under R version 3.4.3
retaildata <- readxl::read_excel("D:/datasets/retail.xlsx", skip = 1)
head(retaildata)
## # A tibble: 6 x 190
## `Series ID` A3349335T A3349627V A3349338X A3349398A A3349468W A3349336V
## <dttm> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1982-04-01 303.1 41.7 63.9 408.7 65.8 91.8
## 2 1982-05-01 297.8 43.1 64.0 404.9 65.8 102.6
## 3 1982-06-01 298.0 40.3 62.7 401.0 62.3 105.0
## 4 1982-07-01 307.9 40.9 65.6 414.4 68.2 106.0
## 5 1982-08-01 299.2 42.1 62.6 403.8 66.0 96.9
## 6 1982-09-01 305.4 42.0 64.4 411.8 62.3 97.5
## # ... with 183 more variables: A3349337W <dbl>, A3349397X <dbl>,
## # A3349399C <dbl>, A3349874C <dbl>, A3349871W <dbl>, A3349790V <dbl>,
## # A3349556W <dbl>, A3349791W <dbl>, A3349401C <dbl>, A3349873A <dbl>,
## # A3349872X <dbl>, A3349709X <dbl>, A3349792X <dbl>, A3349789K <dbl>,
## # A3349555V <dbl>, A3349565X <dbl>, A3349414R <dbl>, A3349799R <dbl>,
## # A3349642T <dbl>, A3349413L <dbl>, A3349564W <dbl>, A3349416V <dbl>,
## # A3349643V <dbl>, A3349483V <dbl>, A3349722T <dbl>, A3349727C <dbl>,
## # A3349641R <dbl>, A3349639C <dbl>, A3349415T <dbl>, A3349349F <dbl>,
## # A3349563V <dbl>, A3349350R <dbl>, A3349640L <dbl>, A3349566A <dbl>,
## # A3349417W <dbl>, A3349352V <dbl>, A3349882C <dbl>, A3349561R <dbl>,
## # A3349883F <dbl>, A3349721R <dbl>, A3349478A <dbl>, A3349637X <dbl>,
## # A3349479C <dbl>, A3349797K <dbl>, A3349477X <dbl>, A3349719C <dbl>,
## # A3349884J <dbl>, A3349562T <dbl>, A3349348C <dbl>, A3349480L <dbl>,
## # A3349476W <dbl>, A3349881A <dbl>, A3349410F <dbl>, A3349481R <dbl>,
## # A3349718A <dbl>, A3349411J <dbl>, A3349638A <dbl>, A3349654A <dbl>,
## # A3349499L <dbl>, A3349902A <dbl>, A3349432V <dbl>, A3349656F <dbl>,
## # A3349361W <dbl>, A3349501L <dbl>, A3349503T <dbl>, A3349360V <dbl>,
## # A3349903C <dbl>, A3349905J <dbl>, A3349658K <dbl>, A3349575C <dbl>,
## # A3349428C <dbl>, A3349500K <dbl>, A3349577J <dbl>, A3349433W <dbl>,
## # A3349576F <dbl>, A3349574A <dbl>, A3349816F <dbl>, A3349815C <dbl>,
## # A3349744F <dbl>, A3349823C <dbl>, A3349508C <dbl>, A3349742A <dbl>,
## # A3349661X <dbl>, A3349660W <dbl>, A3349909T <dbl>, A3349824F <dbl>,
## # A3349507A <dbl>, A3349580W <dbl>, A3349825J <dbl>, A3349434X <dbl>,
## # A3349822A <dbl>, A3349821X <dbl>, A3349581X <dbl>, A3349908R <dbl>,
## # A3349743C <dbl>, A3349910A <dbl>, A3349435A <dbl>, A3349365F <dbl>,
## # A3349746K <dbl>, A3349370X <dbl>, ...
myts <- ts(retaildata[,"A3349873A"], frequency=12, start=c(1982,4))
autoplot(myts)
ggseasonplot(myts, year.labels = TRUE, year.labels.left = TRUE)
ggsubseriesplot(myts)
gglagplot(myts)
ggAcf(myts)