The Taylor series of function \(f(x)\) is:
\(\displaystyle\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + ...\)
When \(a\) = \(0\), the series is also called a Maclaurin series.
\(\displaystyle\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}(x)^n = f(0) + \frac{f'(0)}{1!}(x) + \frac{f''(0)}{2!}(x)^2 + \frac{f'''(0)}{3!}(x)^3 + ...\)
\(f(x) = \frac{1}{(1-x)}\)
| Function and Derivatives | Function at \(x = 0\) |
|---|---|
| \(f(x) = \frac{1}{(1-x)}\) | \(f(0) = \frac{1}{(1-0)} = \frac{1}{1} = 1\) |
| \(f'(x) = \frac{1}{(1-x)^2}\) | \(f'(0) = \frac{1}{(1-0)^2} = \frac{1}{1} = 1\) |
| \(f''(x) = \frac{-2}{(x-1)^3}\) | \(f''(0) = \frac{-2}{(0-1)^3} = \frac{-2}{-1} = 2\) | \(f'''(x) = \frac{6}{(x-1)^4}\) | \(f'''(0) = \frac{6}{(0-1)^4} = \frac{6}{1} = 6\) |
| \(f^4(x) = \frac{-24}{(x-1)^5}\) | \(f^4(0) = \frac{-24}{(0-1)^5} = \frac{-24}{-1} = 24\) |
| \(f^5(x) = \frac{120}{(x-1)^6}\) | \(f^5(0) = \frac{120}{(0-1)^6} = \frac{120}{1} = 120\) |
| \(f^6(x) = \frac{-720}{(x-1)^7}\) | \(f^6(0) = \frac{-720}{(0-1)^7} = \frac{-720}{-1} = 720\) | \(f^7(x) = \frac{5040}{(x-1)^8}\) | \(f^7(0) = \frac{5040}{(0-1)^8} = \frac{5040}{1} = 5040\) |
Use the Maclaurin series (Taylor series centered at point of zero):
\(\frac{1}{(1-x)} = \displaystyle\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}(x)^n = f(0) + \frac{f^{'}(0)}{1!}x + \frac{f^{''}(0)}{2!}x^2 + \frac{f^{'''}(0)}{3!}x^3 + ... + \frac{f^{n}(0)}{n!}x^n\)
By substituting terms, we get the following series:
\(\frac{1}{(1-x)} = \displaystyle\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}(x)^n = 1 + \frac{1}{1!}x + \frac{2}{2!}x^2 + \frac{6}{3!}x^3 + \frac{24}{4!}x^4 + \frac{120}{5!}x^5 + \frac{720}{6!}x^6 + \frac{5040}{7!}x^7 + ...\)
\(\frac{1}{(1-x)} = \displaystyle\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}(x)^n = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + ...\)
The series representation of this function is :
\(\frac{1}{(1-x)} = \displaystyle\sum_{n=0}^{\infty} x^n\) for \(|x| < 1\)
\(f(x) = e^x\)
| Function and Derivatives | Function at \(x = 0\) |
|---|---|
| \(f(x) = e^{x}\) | \(f(0) = e^{0} = 1\) |
| \(f'(x) = e^{x}\) | \(f'(0) = e^{0} = 1\) |
| \(f''(x) = e^{x}\) | \(f''(0) = e^{0} = 1\) | \(f'''(x) = e^{x}\) | \(f'''(0) = e^{0} = 1\) |
| \(f^4(x) = e^{x}\) | \(f^4(0) = e^{0} = 1\) |
| \(f^5(x) = e^{x}\) | \(f^5(0) = e^{0} = 1\) |
| \(f^6(x) = e^{x}\) | \(f^6(0) = e^{0} = 1\) | \(f^7(x) = e^{x}\) | \(f^7(0) = e^{0} = 1\) |
Use the Maclaurin series (Taylor series centered at point of zero):
\(e^{x} = \displaystyle\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}(x)^n = f(0) + \frac{f^{'}(0)}{1!}x + \frac{f^{''}(0)}{2!}x^2 + \frac{f^{'''}(0)}{3!}x^3 + ... + \frac{f^{n}(0)}{n!}x^n\)
By substituting terms, we get the following series:
\(e^{x} = \displaystyle\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}(x)^n = 1 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \frac{1}{4!}x^4 + \frac{1}{5!}x^5 + \frac{1}{6!}x^6 + \frac{1}{7!}x^7 + ...\)
\(e^{x} = \displaystyle\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}(x)^n = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + \frac{x^6}{720} + \frac{x^7}{5040} + ...\)
The series representation of this function is :
\(e^{x} = \displaystyle\sum_{k=0}^{\infty} \frac{x^k}{k!}\)
\(f(x) = ln(1+x)\)
| Function and Derivatives | Function at \(x = 0\) |
|---|---|
| \(f(x) = ln(1+x)\) | \(f(0) = ln(1+0) = ln(1) = 0\) |
| \(f'(x) = \frac{1}{(1+x)}\) | \(f'(0) = \frac{1}{(1+0)} = \frac{1}{1} = 1\) |
| \(f''(x) = \frac{-1}{(1+x)^2}\) | \(f''(0) = \frac{-1}{(1+0)^2} = \frac{-1}{1} = -1\) | \(f'''(x) = \frac{2}{(1+x)^3}\) | \(f'''(0) = \frac{2}{(1+0)^3} = \frac{2}{1} = 2\) |
| \(f^4(x) = \frac{-6}{(1+x)^4}\) | \(f^4(0) = \frac{-6}{(1+0)^2} = \frac{-6}{1} = -6\) |
| \(f^5(x) = \frac{24}{(1+x)^5}\) | \(f^5(0) = \frac{24}{(1+0)^5} = \frac{24}{1} = 24\) |
| \(f^6(x) = \frac{-120}{(1+x)^6}\) | \(f^6(0) = \frac{-120}{(1+0)^6} = \frac{-120}{1} = -120\) | \(f^7(x) = \frac{720}{(1+x)^7}\) | \(f^7(0) = \frac{720}{(1+0)^7} = \frac{720}{1} = 720\) |
Use the Maclaurin series (Taylor series centered at point of zero):
\(ln(1+x) = \displaystyle\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}(x)^n = f(0) + \frac{f^{'}(0)}{1!}x + \frac{f^{''}(0)}{2!}x^2 + \frac{f^{'''}(0)}{3!}x^3 + ... + \frac{f^{n}(0)}{n!}x^n\)
By substituting terms, we get the following series:
\(ln(1+x) = \displaystyle\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}(x)^n = 0 + \frac{1}{1!}x + \frac{(-1)}{2!}x^2 + \frac{2}{3!}x^3 + \frac{(-6)}{4!}x^4 + \frac{24}{5!}x^5 + + \frac{(-120)}{6!}x^6 + \frac{720}{7!}x^7 + ...\)
\(ln(1+x) = \displaystyle\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}(x)^n = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + \frac{x^7}{7} + ...\)
The series representation of this function is :
\(ln(1+x) = -\displaystyle\sum_{k=1}^{\infty} \frac{(-1)^k x^k}{k}\) for \(|x| < 1\)