library(dplyr)
## Warning: package 'dplyr' was built under R version 3.2.5
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
rm(list=ls())
## Warning: package 'ggplot2' was built under R version 3.2.5
## Classes 'tbl_df', 'tbl' and 'data.frame': 234 obs. of 11 variables:
## $ manufacturer: chr "audi" "audi" "audi" "audi" ...
## $ model : chr "a4" "a4" "a4" "a4" ...
## $ displ : num 1.8 1.8 2 2 2.8 2.8 3.1 1.8 1.8 2 ...
## $ year : int 1999 1999 2008 2008 1999 1999 2008 1999 1999 2008 ...
## $ cyl : int 4 4 4 4 6 6 6 4 4 4 ...
## $ trans : chr "auto(l5)" "manual(m5)" "manual(m6)" "auto(av)" ...
## $ drv : chr "f" "f" "f" "f" ...
## $ cty : int 18 21 20 21 16 18 18 18 16 20 ...
## $ hwy : int 29 29 31 30 26 26 27 26 25 28 ...
## $ fl : chr "p" "p" "p" "p" ...
## $ class : chr "compact" "compact" "compact" "compact" ...
help("mpg")
## starting httpd help server ... done
# Vis 1
p <- ggplot(data=df,aes(class))
p <- p+ geom_bar(position = "stack" ,aes(fill=Transmission) )
p
help("geom_bar")
# Vis 2
df2 <-mpg
p2 <- ggplot(data=df2,aes(manufacturer,hwy ))
p2 <- p2 + geom_boxplot(aes(group=manufacturer)) + coord_flip() + xlab("Vehicle Manufacturer") + ylab("Highway Fuel Efficiency(miles/gallon")
p2
# Vis 3
data("diamonds")
library(ggthemes)
## Warning: package 'ggthemes' was built under R version 3.2.5
df3 <- diamonds
str(df3)
## Classes 'tbl_df', 'tbl' and 'data.frame': 53940 obs. of 10 variables:
## $ carat : num 0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 0.23 ...
## $ cut : Ord.factor w/ 5 levels "Fair"<"Good"<..: 5 4 2 4 2 3 3 3 1 3 ...
## $ color : Ord.factor w/ 7 levels "D"<"E"<"F"<"G"<..: 2 2 2 6 7 7 6 5 2 5 ...
## $ clarity: Ord.factor w/ 8 levels "I1"<"SI2"<"SI1"<..: 2 3 5 4 2 6 7 3 4 5 ...
## $ depth : num 61.5 59.8 56.9 62.4 63.3 62.8 62.3 61.9 65.1 59.4 ...
## $ table : num 55 61 65 58 58 57 57 55 61 61 ...
## $ price : int 326 326 327 334 335 336 336 337 337 338 ...
## $ x : num 3.95 3.89 4.05 4.2 4.34 3.94 3.95 4.07 3.87 4 ...
## $ y : num 3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 ...
## $ z : num 2.43 2.31 2.31 2.63 2.75 2.48 2.47 2.53 2.49 2.39 ...
p3 <- ggplot(data=df3,aes(x=price, fill=cut))
p3 <- p3+ geom_density() +
xlab("Diamond Price(USD)") +theme(legend.position = "top") + ggtitle("Diamond Price Density")
p3
help("ggthemes")
# Vis 4
library(datasets)
df4 <- iris
summary(df4)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
## Species
## setosa :50
## versicolor:50
## virginica :50
##
##
##
p4 <- ggplot(data=df4, aes( Sepal.Length, Petal.Length ))
p4 <- p4 + geom_point() +geom_smooth(method=lm) + xlab("Irs Sepal Length") + ylab("Iris Petal Length") +ggtitle("Relationship Between Petal and Sepal Length")
p4
#Vis 5
p5 <- ggplot(data=df4, aes( Sepal.Length, Petal.Length))
p5 <- p4 + geom_point(aes(color=Species),size=3) + xlab("Irs Sepal Length") + ylab("Iris Petal Length") +ggtitle("Relationship Between Petal and Sepal Length") + theme_bw() + geom_smooth(method="lm",se=FALSE)+theme(legend.position = "bottom")
p5
Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.